4. Security Considerations
Proposals for the utilization of link indications may introduce new security vulnerabilities. These include: Spoofing Indication validation Denial of service4.1. Spoofing
Where link layer control frames are unprotected, they may be spoofed by an attacker. For example, PPP does not protect LCP frames such as LCP-Terminate, and [IEEE-802.11] does not protect management frames such as Associate/Reassociate, Disassociate, or Deauthenticate. Spoofing of link layer control traffic may enable attackers to exploit weaknesses in link indication proposals. For example, proposals that do not implement congestion avoidance can enable attackers to mount denial-of-service attacks. However, even where the link layer incorporates security, attacks may still be possible if the security model is not consistent. For example, wireless LANs implementing [IEEE-802.11i] do not enable
stations to send or receive IP packets on the link until completion of an authenticated key exchange protocol known as the "4-way handshake". As a result, a link implementing [IEEE-802.11i] cannot be considered usable at the Internet layer ("Link Up") until completion of the authenticated key exchange. However, while [IEEE-802.11i] requires sending of authenticated frames in order to obtain a "Link Up" indication, it does not support management frame authentication. This weakness can be exploited by attackers to enable denial-of-service attacks on stations attached to distant Access Points (APs). In [IEEE-802.11F], "Link Up" is considered to occur when an AP sends a Reassociation Response. At that point, the AP sends a spoofed frame with the station's source address to a multicast address, thereby causing switches within the Distribution System (DS) to learn the station's MAC address. While this enables forwarding of frames to the station at the new point of attachment, it also permits an attacker to disassociate a station located anywhere within the ESS, by sending an unauthenticated Reassociation Request frame.4.2. Indication Validation
"Fault Isolation and Recovery" [RFC816], Section 3, describes how hosts interact with routers for the purpose of fault recovery: Since the gateways always attempt to have a consistent and correct model of the internetwork topology, the host strategy for fault recovery is very simple. Whenever the host feels that something is wrong, it asks the gateway for advice, and, assuming the advice is forthcoming, it believes the advice completely. The advice will be wrong only during the transient period of negotiation, which immediately follows an outage, but will otherwise be reliably correct. In fact, it is never necessary for a host to explicitly ask a gateway for advice, because the gateway will provide it as appropriate. When a host sends a datagram to some distant net, the host should be prepared to receive back either of two advisory messages which the gateway may send. The ICMP "redirect" message indicates that the gateway to which the host sent the datagram is no longer the best gateway to reach the net in question. The gateway will have forwarded the datagram, but the host should revise its routing table to have a different immediate address for this net. The ICMP "destination unreachable" message indicates that as a result of an outage, it is currently impossible to reach the addressed net or host
in any manner. On receipt of this message, a host can either abandon the connection immediately without any further retransmission, or resend slowly to see if the fault is corrected in reasonable time. Given today's security environment, it is inadvisable for hosts to act on indications provided by routers without careful consideration. As noted in "ICMP attacks against TCP" [Gont], existing ICMP error messages may be exploited by attackers in order to abort connections in progress, prevent setup of new connections, or reduce throughput of ongoing connections. Similar attacks may also be launched against the Internet layer via forging of ICMP redirects. Proposals for transported link indications need to demonstrate that they will not add a new set of similar vulnerabilities. Since transported link indications are typically unauthenticated, hosts receiving them may not be able to determine whether they are authentic, or even plausible. Where link indication proposals may respond to unauthenticated link layer frames, they should utilize upper-layer security mechanisms, where possible. For example, even though a host might utilize an unauthenticated link layer control frame to conclude that a link has become operational, it can use SEND [RFC3971] or authenticated DHCP [RFC3118] in order to obtain secure Internet layer configuration.4.3. Denial of Service
Link indication proposals need to be particularly careful to avoid enabling denial-of-service attacks that can be mounted at a distance. While wireless links are naturally vulnerable to interference, such attacks can only be perpetrated by an attacker capable of establishing radio contact with the target network. However, attacks that can be mounted from a distance, either by an attacker on another point of attachment within the same network or by an off-link attacker, expand the level of vulnerability. The transport of link indications can increase risk by enabling vulnerabilities exploitable only by attackers on the local link to be executed across the Internet. Similarly, by integrating link indications with upper layers, proposals may enable a spoofed link layer frame to consume more resources on the host than might otherwise be the case. As a result, while it is important for upper layers to validate link indications, they should not expend excessive resources in doing so. Congestion control is not only a transport issue, it is also a security issue. In order to not provide leverage to an attacker, a single forged link layer frame should not elicit a magnified response
from one or more hosts, by generating either multiple responses or a single larger response. For example, proposals should not enable multiple hosts to respond to a frame with a multicast destination address.5. References
5.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.5.2. Informative References
[RFC816] Clark, D., "Fault Isolation and Recovery", RFC 816, July 1982. [RFC1058] Hedrick, C., "Routing Information Protocol", RFC 1058, June 1988. [RFC1122] Braden, R., "Requirements for Internet Hosts -- Communication Layers", STD 3, RFC 1122, October 1989. [RFC1131] Moy, J., "The OSPF Specification", RFC 1131, October 1989. [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191, November 1990. [RFC1256] Deering, S., "ICMP Router Discovery Messages", RFC 1256, September 1991. [RFC1305] Mills, D., "Network Time Protocol (Version 3) Specification, Implementation and Analysis", RFC 1305, March 1992. [RFC1307] Young, J. and A. Nicholson, "Dynamically Switched Link Control Protocol", RFC 1307, March 1992. [RFC1661] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, July 1994. [RFC1812] Baker, F., "Requirements for IP Version 4 Routers", RFC 1812, June 1995. [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, D., and E. Lear, "Address Allocation for Private Internets", BCP 5, RFC 1918, February 1996.
[RFC1981] McCann, J., Deering, S. and J. Mogul, "Path MTU Discovery for IP version 6", RFC 1981, June 1996. [RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, March 1997. [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998. [RFC2461] Narten, T., Nordmark, E., and W. Simpson, "Neighbor Discovery for IP Version 6 (IPv6)", RFC 2461, December 1998. [RFC2778] Day, M., Rosenberg, J., and H. Sugano, "A Model for Presence and Instant Messaging", RFC 2778, February 2000. [RFC2861] Handley, M., Padhye, J., and S. Floyd, "TCP Congestion Window Validation", RFC 2861, June 2000. [RFC2914] Floyd, S., "Congestion Control Principles", RFC 2914, BCP 41, September 2000. [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery", RFC 2923, September 2000. [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H. Taylor, T., Rytina, I., Kalla, M., Zhang, L., and V. Paxson, "Stream Control Transmission Protocol" RFC 2960, October 2000. [RFC3118] Droms, R. and B. Arbaugh, "Authentication for DHCP Messages", RFC 3118, June 2001. [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003. [RFC3366] Fairhurst, G. and L. Wood, "Advice to link designers on link Automatic Repeat reQuest (ARQ)", BCP 62, RFC 3366, August 2002. [RFC3428] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and D. Gurle, "Session Initiation Protocol (SIP) Extension for Instant Messaging", RFC 3428, December 2002.
[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H. Levkowetz, "Extensible Authentication Protocol (EAP)", RFC 3748, June 2004. [RFC3775] Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in IPv6", RFC 3775, June 2004. [RFC3921] Saint-Andre, P., "Extensible Messaging and Presence protocol (XMPP): Instant Messaging and Presence", RFC 3921, October 2004. [RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic Configuration of Link-Local IPv4 Addresses", RFC 3927, May 2005. [RFC3971] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure Neighbor Discovery (SEND)", RFC 3971, March 2005. [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram Congestion Control Protocol (DCCP)", RFC 4340, March 2006. [RFC4423] Moskowitz, R. and P. Nikander, "Host Identity Protocol (HIP) Architecture", RFC 4423, May 2006. [RFC4429] Moore, N., "Optimistic Duplicate Address Detection (DAD) for IPv6", RFC 4429, April 2006. [RFC4436] Aboba, B., Carlson, J., and S. Cheshire, "Detecting Network Attachment in IPv4 (DNAv4)", RFC 4436, March 2006. [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU Discovery", RFC 4821, March 2007. [Alimian] Alimian, A., "Roaming Interval Measurements", 11-04-0378-00-roaming-intervals-measurements.ppt, IEEE 802.11 submission (work in progress), March 2004. [Aguayo] Aguayo, D., Bicket, J., Biswas, S., Judd, G., and R. Morris, "Link-level Measurements from an 802.11b Mesh Network", SIGCOMM '04, September 2004, Portland, Oregon.
[Bakshi] Bakshi, B., Krishna, P., Vadiya, N., and D.Pradhan, "Improving Performance of TCP over Wireless Networks", Proceedings of the 1997 International Conference on Distributed Computer Systems, Baltimore, May 1997. [BFD] Katz, D. and D. Ward, "Bidirectional Forwarding Detection", Work in Progress, March 2007. [Biaz] Biaz, S. and N. Vaidya, "Discriminating Congestion Losses from Wireless Losses Using Interarrival Times at the Receiver", Proceedings of the IEEE Symposium on Application-Specific Systems and Software Engineering and Technology, Richardson, TX, Mar 1999. [CARA] Kim, J., Kim, S., and S. Choi, "CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs", Korean Institute of Communication Sciences (KICS) Journal, Feb. 2006 [Chandran] Chandran, K., Raghunathan, S., Venkatesan, S., and R. Prakash, "A Feedback-Based Scheme for Improving TCP Performance in Ad-Hoc Wireless Networks", Proceedings of the 18th International Conference on Distributed Computing Systems (ICDCS), Amsterdam, May 1998. [DNAv6] Narayanan, S., "Detecting Network Attachment in IPv6 (DNAv6)", Work in Progress, March 2007. [E2ELinkup] Dawkins, S. and C. Williams, "End-to-end, Implicit 'Link-Up' Notification", Work in Progress, October 2003. [EAPIKEv2] Tschofenig, H., Kroeselberg, D., Pashalidis, A., Ohba, Y., and F. Bersani, "EAP IKEv2 Method", Work in Progress, March 2007. [Eckhardt] Eckhardt, D. and P. Steenkiste, "Measurement and Analysis of the Error Characteristics of an In- Building Wireless Network", SIGCOMM '96, August 1996, Stanford, CA. [Eddy] Eddy, W. and Y. Swami, "Adapting End Host Congestion Control for Mobility", Technical Report CR-2005- 213838, NASA Glenn Research Center, July 2005.
[EfficientEthernet] Gunaratne, C. and K. Christensen, "Ethernet Adaptive Link Rate: System Design and Performance Evaluation", Proceedings of the IEEE Conference on Local Computer Networks, pp. 28-35, November 2006. [Eggert] Eggert, L., Schuetz, S., and S. Schmid, "TCP Extensions for Immediate Retransmissions", Work in Progress, June 2005. [Eggert2] Eggert, L. and W. Eddy, "Towards More Expressive Transport-Layer Interfaces", MobiArch '06, San Francisco, CA. [ETX] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris, "A High-Throughput Path Metric for Multi-Hop Wireless Routing", Proceedings of the 9th ACM International Conference on Mobile Computing and Networking (MobiCom '03), San Diego, California, September 2003. [ETX-Rate] Padhye, J., Draves, R. and B. Zill, "Routing in multi-radio, multi-hop wireless mesh networks", Proceedings of ACM MobiCom Conference, September 2003. [ETX-Radio] Kulkarni, G., Nandan, A., Gerla, M., and M. Srivastava, "A Radio Aware Routing Protocol for Wireless Mesh Networks", UCLA Computer Science Department, Los Angeles, CA. [GenTrig] Gupta, V. and D. Johnston, "A Generalized Model for Link Layer Triggers", submission to IEEE 802.21 (work in progress), March 2004, available at: <http://www.ieee802.org/handoff/march04_meeting_docs/ Generalized_triggers-02.pdf>. [Goel] Goel, S. and D. Sanghi, "Improving TCP Performance over Wireless Links", Proceedings of TENCON'98, pages 332-335. IEEE, December 1998. [Gont] Gont, F., "ICMP attacks against TCP", Work in Progress, October 2006. [Gurtov] Gurtov, A. and J. Korhonen, "Effect of Vertical Handovers on Performance of TCP-Friendly Rate Control", to appear in ACM MCCR, 2004.
[GurtovFloyd] Gurtov, A. and S. Floyd, "Modeling Wireless Links for Transport Protocols", Computer Communications Review (CCR) 34, 2 (2003). [Haratcherev] Haratcherev, I., Lagendijk, R., Langendoen, K., and H. Sips, "Hybrid Rate Control for IEEE 802.11", MobiWac '04, October 1, 2004, Philadelphia, Pennsylvania, USA. [Haratcherev2] Haratcherev, I., "Application-oriented Link Adaptation for IEEE 802.11", Ph.D. Thesis, Technical University of Delft, Netherlands, ISBN-10:90-9020513-6, ISBN- 13:978-90-9020513-7, March 2006. [HMP] Lee, S., Cho, J., and A. Campbell, "Hotspot Mitigation Protocol (HMP)", Work in Progress, October 2003. [Holland] Holland, G. and N. Vaidya, "Analysis of TCP Performance over Mobile Ad Hoc Networks", Proceedings of the Fifth International Conference on Mobile Computing and Networking, pages 219-230. ACM/IEEE, Seattle, August 1999. [Iannaccone] Iannaccone, G., Chuah, C., Mortier, R., Bhattacharyya, S., and C. Diot, "Analysis of link failures in an IP backbone", Proc. of ACM Sigcomm Internet Measurement Workshop, November, 2002. [IEEE-802.1X] Institute of Electrical and Electronics Engineers, "Local and Metropolitan Area Networks: Port-Based Network Access Control", IEEE Standard 802.1X, December 2004. [IEEE-802.11] Institute of Electrical and Electronics Engineers, "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", IEEE Standard 802.11, 2003. [IEEE-802.11e] Institute of Electrical and Electronics Engineers, "Standard for Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements", IEEE 802.11e, November 2005.
[IEEE-802.11F] Institute of Electrical and Electronics Engineers, "IEEE Trial-Use Recommended Practice for Multi-Vendor Access Point Interoperability via an Inter-Access Point Protocol Across Distribution Systems Supporting IEEE 802.11 Operation", IEEE 802.11F, June 2003 (now deprecated). [IEEE-802.11i] Institute of Electrical and Electronics Engineers, "Supplement to Standard for Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Specification for Enhanced Security", IEEE 802.11i, July 2004. [IEEE-802.11k] Institute of Electrical and Electronics Engineers, "Draft Amendment to Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 7: Radio Resource Management", IEEE 802.11k/D7.0, January 2007. [IEEE-802.21] Institute of Electrical and Electronics Engineers, "Draft Standard for Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 21: Media Independent Handover", IEEE 802.21D0, June 2005. [Kamerman] Kamerman, A. and L. Monteban, "WaveLAN II: A High- Performance Wireless LAN for the Unlicensed Band", Bell Labs Technical Journal, Summer 1997. [Kim] Kim, K., Park, Y., Suh, K., and Y. Park, "The BU- trigger method for improving TCP performance over Mobile IPv6", Work in Progress, August 2004. [Kotz] Kotz, D., Newport, C., and C. Elliot, "The mistaken axioms of wireless-network research", Dartmouth College Computer Science Technical Report TR2003-467, July 2003. [Krishnan] Krishnan, R., Sterbenz, J., Eddy, W., Partridge, C., and M. Allman, "Explicit Transport Error Notification (ETEN) for Error-Prone Wireless and Satellite Networks", Computer Networks, 46 (3), October 2004.
[Lacage] Lacage, M., Manshaei, M., and T. Turletti, "IEEE 802.11 Rate Adaptation: A Practical Approach", MSWiM '04, October 4-6, 2004, Venezia, Italy. [Lee] Park, S., Lee, M., and J. Korhonen, "Link Characteristics Information for Mobile IP", Work in Progress, January 2007. [Ludwig] Ludwig, R. and B. Rathonyi, "Link-layer Enhancements for TCP/IP over GSM", Proceedings of IEEE Infocom '99, March 1999. [MIPEAP] Giaretta, C., Guardini, I., Demaria, E., Bournelle, J., and M. Laurent-Maknavicius, "MIPv6 Authorization and Configuration based on EAP", Work in Progress, October 2006. [Mishra] Mitra, A., Shin, M., and W. Arbaugh, "An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process", CS-TR-4395, University of Maryland Department of Computer Science, September 2002. [Morgan] Morgan, S. and S. Keshav, "Packet-Pair Rate Control - Buffer Requirements and Overload Performance", Technical Memorandum, AT&T Bell Laboratories, October 1994. [Mun] Mun, Y. and J. Park, "Layer 2 Handoff for Mobile-IPv4 with 802.11", Work in Progress, March 2004. [ONOE] Onoe Rate Control, <http://madwifi.org/browser/trunk/ath_rate/onoe>. [Park] Park, S., Njedjou, E., and N. Montavont, "L2 Triggers Optimized Mobile IPv6 Vertical Handover: The 802.11/GPRS Example", Work in Progress, July 2004. [Pavon] Pavon, J. and S. Choi, "Link adaptation strategy for IEEE802.11 WLAN via received signal strength measurement", IEEE International Conference on Communications, 2003 (ICC '03), volume 2, pages 1108- 1113, Anchorage, Alaska, USA, May 2003. [PEAP] Palekar, A., Simon, D., Salowey, J., Zhou, H., Zorn, G., and S. Josefsson, "Protected EAP Protocol (PEAP) Version 2", Work in Progress, October 2004.
[PRNET] Jubin, J. and J. Tornow, "The DARPA packet radio network protocols", Proceedings of the IEEE, 75(1), January 1987. [Qiao] Qiao D., Choi, S., Jain, A., and Kang G. Shin, "MiSer: An Optimal Low-Energy Transmission Strategy for IEEE 802.11 a/h", in Proc. ACM MobiCom'03, San Diego, CA, September 2003. [RBAR] Holland, G., Vaidya, N., and P. Bahl, "A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks", Proceedings ACM MOBICOM, July 2001. [Ramani] Ramani, I. and S. Savage, "SyncScan: Practical Fast Handoff for 802.11 Infrastructure Networks", Proceedings of the IEEE InfoCon 2005, March 2005. [Robust] Wong, S., Yang, H ., Lu, S., and V. Bharghavan, "Robust Rate Adaptation for 802.11 Wireless Networks", ACM MobiCom'06, Los Angeles, CA, September 2006. [SampleRate] Bicket, J., "Bit-rate Selection in Wireless networks", MIT Master's Thesis, 2005. [Scott] Scott, J., Mapp, G., "Link Layer Based TCP Optimisation for Disconnecting Networks", ACM SIGCOMM Computer Communication Review, 33(5), October 2003. [Schuetz] Schutz, S., Eggert, L., Schmid, S., and M. Brunner, "Protocol Enhancements for Intermittently Connected Hosts", ACM SIGCOMM Computer Communications Review, Volume 35, Number 2, July 2005. [Shortest] Douglas S. J. De Couto, Daniel Aguayo, Benjamin A. Chambers and Robert Morris, "Performance of Multihop Wireless Networks: Shortest Path is Not Enough", Proceedings of the First Workshop on Hot Topics in Networking (HotNets-I), Princeton, New Jersey, October 2002. [TRIGTRAN] Dawkins, S., Williams, C., and A. Yegin, "Framework and Requirements for TRIGTRAN", Work in Progress, August 2003. [Vatn] Vatn, J., "An experimental study of IEEE 802.11b handover performance and its effect on voice traffic", TRITA-IMIT-TSLAB R 03:01, KTH Royal Institute of Technology, Stockholm, Sweden, July 2003.
[Velayos] Velayos, H. and G. Karlsson, "Techniques to Reduce IEEE 802.11b MAC Layer Handover Time", TRITA-IMIT-LCN R 03:02, KTH Royal Institute of Technology, Stockholm, Sweden, April 2003. [Vertical] Zhang, Q., Guo, C., Guo, Z., and W. Zhu, "Efficient Mobility Management for Vertical Handoff between WWAN and WLAN", IEEE Communications Magazine, November 2003. [Villamizar] Villamizar, C., "OSPF Optimized Multipath (OSPF-OMP)", Work in Progress, February 1999. [Xylomenos] Xylomenos, G., "Multi Service Link Layers: An Approach to Enhancing Internet Performance over Wireless Links", Ph.D. thesis, University of California at San Diego, 1999. [Yegin] Yegin, A., "Link-layer Triggers Protocol", Work in Progress, June 2002.6. Acknowledgments
The authors would like to acknowledge James Kempf, Phil Roberts, Gorry Fairhurst, John Wroclawski, Aaron Falk, Sally Floyd, Pekka Savola, Pekka Nikander, Dave Thaler, Yogesh Swami, Wesley Eddy, and Janne Peisa for contributions to this document.