Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 2461

Neighbor Discovery for IP Version 6 (IPv6)

Pages: 93
Obsoletes:  1970
Obsoleted by:  4861
Updated by:  4311
Part 1 of 4 – Pages 1 to 17
None   None   Next

ToP   noToC   RFC2461 - Page 1
Network Working Group                                        T. Narten
Request for Comments: 2461                                         IBM
Obsoletes: 1970                                            E. Nordmark
Category: Standards Track                             Sun Microsystems
                                                            W. Simpson
                                                            Daydreamer
                                                         December 1998


               Neighbor Discovery for IP Version 6 (IPv6)

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1998).  All Rights Reserved.

Abstract

   This document specifies the Neighbor Discovery protocol for IP
   Version 6.  IPv6 nodes on the same link use Neighbor Discovery to
   discover each other's presence, to determine each other's link-layer
   addresses, to find routers and to maintain reachability information
   about the paths to active neighbors.

Table of Contents

   1.  INTRODUCTION.............................................    3
   2.  TERMINOLOGY..............................................    4
      2.1.  General.............................................    4
      2.2.  Link Types..........................................    7
      2.3.  Addresses...........................................    8
      2.4.  Requirements........................................    9
   3.  PROTOCOL OVERVIEW........................................    9
      3.1.  Comparison with IPv4................................   13
      3.2.  Supported Link Types................................   15
   4.  MESSAGE FORMATS..........................................   17
      4.1.  Router Solicitation Message Format..................   17
      4.2.  Router Advertisement Message Format.................   18
      4.3.  Neighbor Solicitation Message Format................   21
      4.4.  Neighbor Advertisement Message Format...............   23
      4.5.  Redirect Message Format.............................   26
ToP   noToC   RFC2461 - Page 2
      4.6.  Option Formats......................................   28
         4.6.1.  Source/Target Link-layer Address...............   28
         4.6.2.  Prefix Information.............................   29
         4.6.3.  Redirected Header..............................   31
         4.6.4.  MTU............................................   32
   5.  CONCEPTUAL MODEL OF A HOST...............................   33
      5.1.  Conceptual Data Structures..........................   33
      5.2.  Conceptual Sending Algorithm........................   35
      5.3.  Garbage Collection and Timeout Requirements.........   37
   6.  ROUTER AND PREFIX DISCOVERY..............................   37
      6.1.  Message Validation..................................   38
         6.1.1.  Validation of Router Solicitation Messages.....   38
         6.1.2.  Validation of Router Advertisement Messages....   39
      6.2.  Router Specification................................   40
         6.2.1.  Router Configuration Variables.................   40
         6.2.2.  Becoming An Advertising Interface..............   44
         6.2.3.  Router Advertisement Message Content...........   44
         6.2.4.  Sending Unsolicited Router Advertisements......   46
         6.2.5.  Ceasing To Be An Advertising Interface.........   46
         6.2.6.  Processing Router Solicitations................   47
         6.2.7.  Router Advertisement Consistency...............   48
         6.2.8.  Link-local Address Change......................   49
      6.3.  Host Specification..................................   50
         6.3.1.  Host Configuration Variables...................   50
         6.3.2.  Host Variables.................................   50
         6.3.3.  Interface Initialization.......................   51
         6.3.4.  Processing Received Router Advertisements......   51
         6.3.5.  Timing out Prefixes and Default Routers........   54
         6.3.6.  Default Router Selection.......................   54
         6.3.7.  Sending Router Solicitations...................   55
   7.  ADDRESS RESOLUTION AND NEIGHBOR UNREACHABILITY DETECTION.   56
      7.1.  Message Validation..................................   57
         7.1.1.  Validation of Neighbor Solicitations...........   57
         7.1.2.  Validation of Neighbor Advertisements..........   58
      7.2.  Address Resolution..................................   58
         7.2.1.  Interface Initialization.......................   59
         7.2.2.  Sending Neighbor Solicitations.................   59
         7.2.3.  Receipt of Neighbor Solicitations..............   60
         7.2.4.  Sending Solicited Neighbor Advertisements......   61
         7.2.5.  Receipt of Neighbor Advertisements.............   62
         7.2.6.  Sending Unsolicited Neighbor Advertisements....   64
         7.2.7.  Anycast Neighbor Advertisements................   65
         7.2.8.  Proxy Neighbor Advertisements..................   65
      7.3.  Neighbor Unreachability Detection...................   66
         7.3.1.  Reachability Confirmation......................   66
         7.3.2.  Neighbor Cache Entry States....................   67
         7.3.3.  Node Behavior..................................   68
   8.  REDIRECT FUNCTION........................................   70
ToP   noToC   RFC2461 - Page 3
      8.1.  Validation of Redirect Messages.....................   71
      8.2.  Router Specification................................   72
      8.3.  Host Specification..................................   73
   9.  EXTENSIBILITY - OPTION PROCESSING........................   74
   10.  PROTOCOL CONSTANTS......................................   75
   11.  SECURITY CONSIDERATIONS.................................   76
   12.  RENUMBERING CONSIDERATIONS..............................   78

   References...................................................   80
   Authors' Addresses...........................................   81
   Appendix A: Multihomed Hosts.................................   82
   Appendix B: Future Extensions................................   84
   Appendix C: State Machine for the Reachability State.........   85
   Appendix D: Summary of ISROUTER Rules........................   88
   Appendix E: Implementation Issues............................   89
       Appendix E.1: Reachability confirmations.................   89
   Appendix F: Changes since RFC 1970...........................   91
   Full Copyright Statement.....................................   93

1.  INTRODUCTION

   This specification defines the Neighbor Discovery (ND) protocol for
   Internet Protocol Version 6 (IPv6).  Nodes (hosts and routers) use
   Neighbor Discovery to determine the link-layer addresses for
   neighbors known to reside on attached links and to quickly purge
   cached values that become invalid.  Hosts also use Neighbor Discovery
   to find neighboring routers that are willing to forward packets on
   their behalf.  Finally, nodes use the protocol to actively keep track
   of which neighbors are reachable and which are not, and to detect
   changed link-layer addresses.  When a router or the path to a router
   fails, a host actively searches for functioning alternates.

   Unless specified otherwise (in a document that covers operating IP
   over a particular link type) this document applies to all link types.
   However, because ND uses link-layer multicast for some of its
   services, it is possible that on some link types (e.g., NBMA links)
   alternative protocols or mechanisms to implement those services will
   be specified (in the appropriate document covering the operation of
   IP over a particular link type).  The services described in this
   document that are not directly dependent on multicast, such as
   Redirects, Next-hop determination, Neighbor Unreachability Detection,
   etc., are expected to be provided as specified in this document.  The
   details of how one uses ND on NBMA links is an area for further
   study.

   The authors would like to acknowledge the contributions of the IPNGWG
   working group and, in particular, (in alphabetical order) Ran
   Atkinson, Jim Bound, Scott Bradner, Alex Conta, Stephen Deering,
ToP   noToC   RFC2461 - Page 4
   Richard Draves, Francis Dupont, Robert Elz, Robert Gilligan, Robert
   Hinden, Allison Mankin, Dan McDonald, Charles Perkins, Matt Thomas,
   and Susan Thomson.

2.  TERMINOLOGY

2.1.  General

   IP          - Internet Protocol Version 6.  The terms IPv4 and
                 IPv6 are used only in contexts where necessary to avoid
                 ambiguity.

   ICMP        - Internet Message Control Protocol for the Internet
                 Protocol Version 6.  The terms ICMPv4 and ICMPv6 are
                 used only in contexts where necessary to avoid
                 ambiguity.

   node        - a device that implements IP.

   router      - a node that forwards IP packets not explicitly
                 addressed to itself.

   host        - any node that is not a router.

   upper layer - a protocol layer immediately above IP.  Examples are
                 transport protocols such as TCP and UDP, control
                 protocols such as ICMP, routing protocols such as OSPF,
                 and internet or lower-layer protocols being "tunneled"
                 over (i.e., encapsulated in) IP such as IPX, AppleTalk,
                 or IP itself.

   link        - a communication facility or medium over which nodes can
                 communicate at the link layer, i.e., the layer
                 immediately below IP.  Examples are Ethernets (simple
                 or bridged), PPP links, X.25, Frame Relay, or ATM
                 networks as well as internet (or higher) layer
                 "tunnels", such as tunnels over IPv4 or IPv6 itself.

   interface   - a node's attachment to a link.

   neighbors   - nodes attached to the same link.

   address     - an IP-layer identifier for an interface or a set of
                 interfaces.

   anycast address
               - an identifier for a set of interfaces (typically
                 belonging to different nodes).  A packet sent to an
ToP   noToC   RFC2461 - Page 5
                 anycast address is delivered to one of the interfaces
                 identified by that address (the "nearest" one,
                 according to the routing protocol's measure of
                 distance).  See [ADDR-ARCH].

                 Note that an anycast address is syntactically
                 indistinguishable from a unicast address.  Thus, nodes
                 sending packets to anycast addresses don't generally
                 know that an anycast address is being used.  Throughout
                 the rest of this document, references to unicast
                 addresses also apply to anycast addresses in those
                 cases where the node is unaware that a unicast address
                 is actually an anycast address.

   prefix      - a bit string that consists of some number of initial
                 bits of an address.

   link-layer address
               - a link-layer identifier for an interface.  Examples
                 include IEEE 802 addresses for Ethernet links and E.164
                 addresses for ISDN links.

   on-link     - an address that is assigned to an interface on a
                 specified link.  A node considers an address to be on-
                 link if:

                    - it is covered by one of the link's prefixes, or

                    - a neighboring router specifies the address as
                      the target of a Redirect message, or

                    - a Neighbor Advertisement message is received for
                      the (target) address, or

                    - any Neighbor Discovery message is received from
                      the address.

   off-link    - the opposite of "on-link"; an address that is not
                 assigned to any interfaces on the specified link.

   longest prefix match
               - The process of determining which prefix (if any) in
                 a set of prefixes covers a target address.  A target
                 address is covered by a prefix if all of the bits in
                 the prefix match the left-most bits of the target
                 address.  When multiple prefixes cover an address,
                 the longest prefix is the one that matches.
ToP   noToC   RFC2461 - Page 6
   reachability
               - whether or not the one-way "forward" path to a
                 neighbor is functioning properly.  In particular,
                 whether packets sent to a neighbor are reaching the
                 IP layer on the neighboring machine and are being
                 processed properly by the receiving IP layer.  For
                 neighboring routers, reachability means that packets
                 sent by a node's IP layer are delivered to the
                 router's IP layer, and the router is indeed
                 forwarding packets (i.e., it is configured as a
                 router, not a host).  For hosts, reachability means
                 that packets sent by a node's IP layer are delivered
                 to the neighbor host's IP layer.

   packet      - an IP header plus payload.

   link MTU    - the maximum transmission unit, i.e., maximum packet
                 size in octets, that can be conveyed in one piece
                 over a link.

   target      - an address about which address resolution
                 information is sought, or an address which is the
                 new first-hop when being redirected.

   proxy       - a router that responds to Neighbor Discovery query
                 messages on behalf of another node.  A router acting
                 on behalf of a mobile node that has moved off-link
                 could potentially act as a proxy for the mobile
                 node.

   ICMP destination unreachable indication
               - an error indication returned to the original sender
                 of a packet that cannot be delivered for the reasons
                 outlined in [ICMPv6].  If the error occurs on a node
                 other than the node originating the packet, an ICMP
                 error message is generated.  If the error occurs on
                 the originating node, an implementation is not
                 required to actually create and send an ICMP error
                 packet to the source, as long as the upper-layer
                 sender is notified through an appropriate mechanism
                 (e.g., return value from a procedure call).  Note,
                 however, that an implementation may find it
                 convenient in some cases to return errors to the
                 sender by taking the offending packet, generating an
                 ICMP error message, and then delivering it (locally)
                 through the generic error handling routines.
ToP   noToC   RFC2461 - Page 7
   random delay
               - when sending out messages, it is sometimes necessary to
                 delay a transmission for a random amount of time in
                 order to prevent multiple nodes from transmitting at
                 exactly the same time, or to prevent long-range
                 periodic transmissions from synchronizing with each
                 other [SYNC].  When a random component is required, a
                 node calculates the actual delay in such a way that the
                 computed delay forms a uniformly-distributed random
                 value that falls between the specified minimum and
                 maximum delay times.  The implementor must take care to
                 insure that the granularity of the calculated random
                 component and the resolution of the timer used are both
                 high enough to insure that the probability of multiple
                 nodes delaying the same amount of time is small.

   random delay seed
               - If a pseudo-random number generator is used in
                 calculating a random delay component, the generator
                 should be initialized with a unique seed prior to being
                 used.  Note that it is not sufficient to use the
                 interface token alone as the seed, since interface
                 tokens will not always be unique.  To reduce the
                 probability that duplicate interface tokens cause the
                 same seed to be used, the seed should be calculated
                 from a variety of input sources (e.g., machine
                 components) that are likely to be different even on
                 identical "boxes".  For example, the seed could be
                 formed by combining the CPU's serial number with an
                 interface token.

2.2.  Link Types

   Different link layers have different properties.  The ones of concern
   to Neighbor Discovery are:

   multicast      - a link that supports a native mechanism at the
                    link layer for sending packets to all (i.e.,
                    broadcast) or a subset of all neighbors.

   point-to-point - a link that connects exactly two interfaces.  A
                    point-to-point link is assumed to have multicast
                    capability and have a link-local address.

   non-broadcast multi-access (NBMA)
                  - a link to which more than two interfaces can attach,
                    but that does not support a native form of multicast
                    or broadcast (e.g., X.25, ATM, frame relay, etc.).
ToP   noToC   RFC2461 - Page 8
                    Note that all link types (including NBMA) are
                    expected to provide multicast service for IP (e.g.,
                    using multicast servers), but it is an issue for
                    further study whether ND should use such facilities
                    or an alternate mechanism that provides the
                    equivalent ND services.

   shared media   - a link that allows direct communication among a
                    number of nodes, but attached nodes are configured
                    in such a way that they do not have complete prefix
                    information for all on-link destinations.  That is,
                    at the IP level, nodes on the same link may not know
                    that they are neighbors; by default, they
                    communicate through a router.  Examples are large
                    (switched) public data networks such as SMDS and B-
                    ISDN.  Also known as "large clouds".  See [SH-
                    MEDIA].

   variable MTU   - a link that does not have a well-defined MTU (e.g.,
                    IEEE 802.5 token rings).  Many links (e.g.,
                    Ethernet) have a standard MTU defined by the link-
                    layer protocol or by the specific document
                    describing how to run IP over the link layer.

   asymmetric reachability
                  - a link where non-reflexive and/or non-transitive
                    reachability is part of normal operation.  (Non-
                    reflexive reachability means packets from A reach B
                    but packets from B don't reach A.  Non-transitive
                    reachability means packets from A reach B, and
                    packets from B reach C, but packets from A don't
                    reach C.)  Many radio links exhibit these
                    properties.

2.3.  Addresses

   Neighbor Discovery makes use of a number of different addresses
   defined in [ADDR-ARCH], including:

   all-nodes multicast address
               - the link-local scope address to reach all nodes.
                 FF02::1

   all-routers multicast address
               - the link-local scope address to reach all routers.
                 FF02::2
ToP   noToC   RFC2461 - Page 9
   solicited-node multicast address
               - a link-local scope multicast address that is computed
                 as a function of the solicited target's address.  The
                 function is described in [ADDR-ARCH]. The function is
                 chosen so that IP addresses which differ only in the
                 high-order bits, e.g., due to multiple high-order
                 prefixes associated with different providers, will map
                 to the same solicited-node address thereby reducing the
                 number of multicast addresses a node must join.

   link-local address
               - a unicast address having link-only scope that can be
                 used to reach neighbors.  All interfaces on routers
                 MUST have a link-local address.  Also, [ADDRCONF]
                 requires that interfaces on hosts have a link-local
                 address.

   unspecified address
               - a reserved address value that indicates the lack of an
                 address (e.g., the address is unknown).  It is never
                 used as a destination address, but may be used as a
                 source address if the sender does not (yet) know its
                 own address (e.g., while verifying an address is unused
                 during address autoconfiguration [ADDRCONF]).  The
                 unspecified address has a value of 0:0:0:0:0:0:0:0.

2.4.  Requirements

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
   document, are to be interpreted as described in [KEYWORDS].

   This document also makes use of internal conceptual variables to
   describe protocol behavior and external variables that an
   implementation must allow system administrators to change.  The
   specific variable names, how their values change, and how their
   settings influence protocol behavior are provided to demonstrate
   protocol behavior.  An implementation is not required to have them in
   the exact form described here, so long as its external behavior is
   consistent with that described in this document.

3.  PROTOCOL OVERVIEW

   This protocol solves a set of problems related to the interaction
   between nodes attached to the same link.  It defines mechanisms for
   solving each of the following problems:
ToP   noToC   RFC2461 - Page 10
     Router Discovery: How hosts locate routers that reside on an
                attached link.

     Prefix Discovery: How hosts discover the set of address prefixes
                that define which destinations are on-link for an
                attached link.  (Nodes use prefixes to distinguish
                destinations that reside on-link from those only
                reachable through a router.)

     Parameter Discovery: How a node learns such link parameters as the
                link MTU or such Internet parameters as the hop limit
                value to place in outgoing packets.

     Address Autoconfiguration: How nodes automatically configure an
                address for an interface.

     Address resolution: How nodes determine the link-layer address of
                an on-link destination (e.g., a neighbor) given only the
                destination's IP address.

     Next-hop determination: The algorithm for mapping an IP destination
                address into the IP address of the neighbor to which
                traffic for the destination should be sent.  The next-
                hop can be a router or the destination itself.

     Neighbor Unreachability Detection: How nodes determine that a
                neighbor is no longer reachable.  For neighbors used as
                routers, alternate default routers can be tried.  For
                both routers and hosts, address resolution can be
                performed again.

     Duplicate Address Detection: How a node determines that an address
                it wishes to use is not already in use by another node.

     Redirect:  How a router informs a host of a better first-hop node
                to reach a particular destination.

   Neighbor Discovery defines five different ICMP packet types: A pair
   of Router Solicitation and Router Advertisement messages, a pair of
   Neighbor Solicitation and Neighbor Advertisements messages, and a
   Redirect message.  The messages serve the following purpose:

     Router Solicitation: When an interface becomes enabled, hosts may
                send out Router Solicitations that request routers to
                generate Router Advertisements immediately rather than
                at their next scheduled time.
ToP   noToC   RFC2461 - Page 11
     Router Advertisement: Routers advertise their presence together
                with various link and Internet parameters either
                periodically, or in response to a Router Solicitation
                message.  Router Advertisements contain prefixes that
                are used for on-link determination and/or address
                configuration, a suggested hop limit value, etc.

     Neighbor Solicitation: Sent by a node to determine the link-layer
                address of a neighbor, or to verify that a neighbor is
                still reachable via a cached link-layer address.
                Neighbor Solicitations are also used for Duplicate
                Address Detection.

     Neighbor Advertisement: A response to a Neighbor Solicitation
                message.  A node may also send unsolicited Neighbor
                Advertisements to announce a link-layer address change.

     Redirect:  Used by routers to inform hosts of a better first hop
                for a destination.

   On multicast-capable links, each router periodically multicasts a
   Router Advertisement packet announcing its availability.  A host
   receives Router Advertisements from all routers, building a list of
   default routers.  Routers generate Router Advertisements frequently
   enough that hosts will learn of their presence within a few minutes,
   but not frequently enough to rely on an absence of advertisements to
   detect router failure; a separate Neighbor Unreachability Detection
   algorithm provides failure detection.

   Router Advertisements contain a list of prefixes used for on-link
   determination and/or autonomous address configuration; flags
   associated with the prefixes specify the intended uses of a
   particular prefix.  Hosts use the advertised on-link prefixes to
   build and maintain a list that is used in deciding when a packet's
   destination is on-link or beyond a router.  Note that a destination
   can be on-link even though it is not covered by any advertised on-
   link prefix.  In such cases a router can send a Redirect informing
   the sender that the destination is a neighbor.

   Router Advertisements (and per-prefix flags) allow routers to inform
   hosts how to perform Address Autoconfiguration.  For example, routers
   can specify whether hosts should use stateful (DHCPv6) and/or
   autonomous (stateless) address configuration.  The exact semantics
   and usage of the address configuration-related information is
   specified in [ADDRCONF].

   Router Advertisement messages also contain Internet parameters such
   as the hop limit that hosts should use in outgoing packets and,
ToP   noToC   RFC2461 - Page 12
   optionally, link parameters such as the link MTU.  This facilitates
   centralized administration of critical parameters that can be set on
   routers and automatically propagated to all attached hosts.

   Nodes accomplish address resolution by multicasting a Neighbor
   Solicitation that asks the target node to return its link-layer
   address.  Neighbor Solicitation messages are multicast to the
   solicited-node multicast address of the target address.  The target
   returns its link-layer address in a unicast Neighbor Advertisement
   message.  A single request-response pair of packets is sufficient for
   both the initiator and the target to resolve each other's link-layer
   addresses; the initiator includes its link-layer address in the
   Neighbor Solicitation.

   Neighbor Solicitation messages can also be used to determine if more
   than one node has been assigned the same unicast address.  The use of
   Neighbor Solicitation messages for Duplicate Address Detection is
   specified in [ADDRCONF].

   Neighbor Unreachability Detection detects the failure of a neighbor
   or the failure of the forward path to the neighbor.  Doing so
   requires positive confirmation that packets sent to a neighbor are
   actually reaching that neighbor and being processed properly by its
   IP layer.  Neighbor Unreachability Detection uses confirmation from
   two sources.  When possible, upper-layer protocols provide a positive
   confirmation that a connection is making "forward progress", that is,
   previously sent data is known to have been delivered correctly (e.g.,
   new acknowledgments were received recently).  When positive
   confirmation is not forthcoming through such "hints", a node sends
   unicast Neighbor Solicitation messages that solicit Neighbor
   Advertisements as reachability confirmation from the next hop.  To
   reduce unnecessary network traffic, probe messages are only sent to
   neighbors to which the node is actively sending packets.

   In addition to addressing the above general problems, Neighbor
   Discovery also handles the following situations:

     Link-layer address change - A node that knows its link-layer
           address has changed can multicast a few (unsolicited)
           Neighbor Advertisement packets to all nodes to quickly update
           cached link-layer addresses that have become invalid.  Note
           that the sending of unsolicited advertisements is a
           performance enhancement only (e.g., unreliable).  The
           Neighbor Unreachability Detection algorithm ensures that all
           nodes will reliably discover the new address, though the
           delay may be somewhat longer.
ToP   noToC   RFC2461 - Page 13
     Inbound load balancing - Nodes with replicated interfaces may want
           to load balance the reception of incoming packets across
           multiple network interfaces on the same link.  Such nodes
           have multiple link-layer addresses assigned to the same
           interface.  For example, a single network driver could
           represent multiple network interface cards as a single
           logical interface having multiple link-layer addresses.

           Load balancing is handled by allowing routers to omit the
           source link-layer address from Router Advertisement packets,
           thereby forcing neighbors to use Neighbor Solicitation
           messages to learn link-layer addresses of routers.  Returned
           Neighbor Advertisement messages can then contain link-layer
           addresses that differ depending on who issued the
           solicitation.

     Anycast addresses - Anycast addresses identify one of a set of
           nodes providing an equivalent service, and multiple nodes on
           the same link may be configured to recognize the same Anycast
           address.  Neighbor Discovery handles anycasts by having nodes
           expect to receive multiple Neighbor Advertisements for the
           same target.  All advertisements for anycast addresses are
           tagged as being non-Override advertisements.  This invokes
           specific rules to determine which of potentially multiple
           advertisements should be used.

     Proxy advertisements - A router willing to accept packets on behalf
           of a target address that is unable to respond to Neighbor
           Solicitations can issue non-Override Neighbor Advertisements.
           There is currently no specified use of proxy, but proxy
           advertising could potentially be used to handle cases like
           mobile nodes that have moved off-link.  However, it is not
           intended as a general mechanism to handle nodes that, e.g.,
           do not implement this protocol.

3.1.  Comparison with IPv4

   The IPv6 Neighbor Discovery protocol corresponds to a combination of
   the IPv4 protocols ARP [ARP], ICMP Router Discovery [RDISC], and ICMP
   Redirect [ICMPv4].  In IPv4 there is no generally agreed upon
   protocol or mechanism for Neighbor Unreachability Detection, although
   Hosts Requirements [HR-CL] does specify some possible algorithms for
   Dead Gateway Detection (a subset of the problems Neighbor
   Unreachability Detection tackles).

   The Neighbor Discovery protocol provides a multitude of improvements
   over the IPv4 set of protocols:
ToP   noToC   RFC2461 - Page 14
      Router Discovery is part of the base protocol set; there is no
      need for hosts to "snoop" the routing protocols.

      Router advertisements carry link-layer addresses; no additional
      packet exchange is needed to resolve the router's link-layer
      address.

      Router advertisements carry prefixes for a link; there is no need
      to have a separate mechanism to configure the "netmask".

      Router advertisements enable Address Autoconfiguration.

      Routers can advertise an MTU for hosts to use on the link,
      ensuring that all nodes use the same MTU value on links lacking a
      well-defined MTU.

      Address resolution multicasts are "spread" over 4 billion (2^32)
      multicast addresses greatly reducing address resolution related
      interrupts on nodes other than the target.  Moreover, non-IPv6
      machines should not be interrupted at all.

      Redirects contain the link-layer address of the new first hop;
      separate address resolution is not needed upon receiving a
      redirect.

      Multiple prefixes can be associated with the same link.  By
      default, hosts learn all on-link prefixes from Router
      Advertisements.  However, routers may be configured to omit some
      or all prefixes from Router Advertisements.  In such cases hosts
      assume that destinations are off-link and send traffic to routers.
      A router can then issue redirects as appropriate.

      Unlike IPv4, the recipient of an IPv6 redirect assumes that the
      new next-hop is on-link.  In IPv4, a host ignores redirects
      specifying a next-hop that is not on-link according to the link's
      network mask.  The IPv6 redirect mechanism is analogous to the
      XRedirect facility specified in [SH-MEDIA].  It is expected to be
      useful on non-broadcast and shared media links in which it is
      undesirable or not possible for nodes to know all prefixes for
      on-link destinations.

      Neighbor Unreachability Detection is part of the base
      significantly improving the robustness of packet delivery in the
      presence of failing routers, partially failing or partitioned
      links and nodes that change their link-layer addresses.  For
      instance, mobile nodes can move off-link without losing any
      connectivity due to stale ARP caches.
ToP   noToC   RFC2461 - Page 15
      Unlike ARP, Neighbor Discovery detects half-link failures (using
      Neighbor Unreachability Detection) and avoids sending traffic to
      neighbors with which two-way connectivity is absent.

      Unlike in IPv4 Router Discovery the Router Advertisement messages
      do not contain a preference field.  The preference field is not
      needed to handle routers of different "stability"; the Neighbor
      Unreachability Detection will detect dead routers and switch to a
      working one.

      The use of link-local addresses to uniquely identify routers (for
      Router Advertisement and Redirect messages) makes it possible for
      hosts to maintain the router associations in the event of the site
      renumbering to use new global prefixes.

      Using the Hop Limit equal to 255 trick Neighbor Discovery is
      immune to off-link senders that accidentally or intentionally send
      ND messages.  In IPv4 off-link senders can send both ICMP
      Redirects and Router Advertisement messages.

      Placing address resolution at the ICMP layer makes the protocol
      more media-independent than ARP and makes it possible to use
      standard IP authentication and security mechanisms as appropriate
      [IPv6-AUTH, IPv6-ESP].

3.2.  Supported Link Types

   Neighbor Discovery supports links with different properties.  In the
   presence of certain properties only a subset of the ND protocol
   mechanisms are fully specified in this document:

     point-to-point - Neighbor Discovery handles such links just like
                      multicast links.  (Multicast can be trivially
                      provided on point to point links, and interfaces
                      can be assigned link-local addresses.)  Neighbor
                      Discovery should be implemented as described in
                      this document.

     multicast      - Neighbor Discovery should be implemented as
                      described in this document.

     non-broadcast multiple access (NBMA)
                    - Redirect, Neighbor Unreachability Detection and
                      next-hop determination should be implemented as
                      described in this document.  Address resolution,
                      and the mechanism for delivering Router
                      Solicitations and Advertisements on NBMA links is
                      not specified in this document.  Note that if
ToP   noToC   RFC2461 - Page 16
                      hosts support manual configuration of a list of
                      default routers, hosts can dynamically acquire the
                      link-layer addresses for their neighbors from
                      Redirect messages.

     shared media   - The Redirect message is modeled after the
                      XRedirect message in [SH-MEDIA] in order to
                      simplify use of the protocol on shared media
                      links.

                      This specification does not address shared media
                      issues that only relate to routers, such as:

                       - How routers exchange reachability information
                         on a shared media link.

                       - How a router determines the link-layer address
                         of a host, which it needs to send redirect
                         messages to the host.

                       - How a router determines that it is the first-
                         hop router for a received packet.

                      The protocol is extensible (through the definition
                      of new options) so that other solutions might be
                      possible in the future.

     variable MTU   - Neighbor Discovery allows routers to specify a MTU
                      for the link, which all nodes then use.  All nodes
                      on a link must use the same MTU (or Maximum
                      Receive Unit) in order for multicast to work
                      properly.  Otherwise when multicasting a sender,
                      which can not know which nodes will receive the
                      packet, could not determine a minimum packet size
                      all receivers can process.

     asymmetric reachability
                    - Neighbor Discovery detects the absence of
                      symmetric reachability; a node avoids paths to a
                      neighbor with which it does not have symmetric
                      connectivity.

                      The Neighbor Unreachability Detection will
                      typically identify such half-links and the node
                      will refrain from using them.

                      The protocol can presumably be extended in the
                      future to find viable paths in environments that
ToP   noToC   RFC2461 - Page 17
                      lack reflexive and transitive connectivity.



(page 17 continued on part 2)

Next Section