5G systems rely on reference precision timing signals for network synchronization in order to operate. These synchronization references are generated by Primary reference Time Clocks that typically get the timing reference from GNSS receivers and in order to meet the relevant synchronization requirements also during failure conditions, the synchronization network designs typically include means to address potential degradation of the GNSS signal performance. Some deployment of 5G involve applications that themselves can be sensitive to any degradation of the timing signal. In such cases it is beneficial for the 5G system to be enhanced to act as a backup for loss of their GNSS references. In some implementations, timing resiliency enhancements to the 5G system can work in collaboration with different types of time sources (e.g., atomic clock, time service delivered over the fibre) to provide a robust time synchronization.
5G as a consumer of time synchronization benefits from timing resiliency which enables the support of many critical services within the 5G network even during the event of a loss or degradation of the primary GNSS reference timing. Additionally, for time critical services (e.g. financial sector or smart grid), the 5G system can operate in collaboration with or as backup to other timing solutions. A base of clock synchronization requirements when 5G is providing a time signal, if it is deployed in conjunction with an IEEE TSN network or if it is providing support for IEEE 1588 related protocols, is included in
clause 5.6 of TS 22.104.
The enhancements in this clause build on this to add timing resiliency to the 5G system enabling its use as a replacement or backup for other timing sources.
The 5G system shall support enhanced timing resiliency in collaboration with different types of time sources (e.g., GNSS, TBS/MBS [33] [34], Sync over Fiber [34]) to provide a robust time synchronization.
The 5G system shall be able to maintain accurate time synchronization as appropriate for the supported applications in the event of degradation or loss of the primary timing reference (e.g., GNSS).
The 5G system shall be able to support mechanisms to monitor for timing source failure (e.g., GNSS).
The 5G system shall be able to detect when reference timing signals (e.g., from GNSS or other timing source) are no longer viable for network time synchronization.
The 5G system shall support a mechanism to determine if there is degradation of the 5G time synchronization.
The 5G system shall be able to support mechanisms to indicate to devices (e.g., UEs, applications) that there is an alternate time source available for use (e.g., 5G system internal holdover capability, atomic clock, Sync over Fiber, TBS, GNSS), taking into account the holdover capability of the devices.
The 5G system shall be able to detect when a timing source fails or is restored for network time synchronization.
The 5G system shall support mechanisms to monitor different time sources and adopt the most appropriate.
The 5G system shall support a mechanism to report timing errors such as divergence from UTC and time sync degradation to UEs and 3rd party applications.
The 5G system shall support a mechanism for a 3rd party application to request resilient timing with specific KPIs (e.g., accuracy, interval, coverage area).