6. A SCENARIO In our sample domain space, suppose we wanted separate administrative control for the root, MIL, EDU, MIT.EDU and ISI.EDU zones. We might allocate name servers as follows: |(C.ISI.EDU,SRI-NIC.ARPA | A.ISI.EDU) +---------------------+------------------+ | | | MIL EDU ARPA |(SRI-NIC.ARPA, |(SRI-NIC.ARPA, | | A.ISI.EDU | C.ISI.EDU) | +-----+-----+ | +------+-----+-----+ | | | | | | | BRL NOSC DARPA | IN-ADDR SRI-NIC ACC | +--------+------------------+---------------+--------+ | | | | | UCI MIT | UDEL YALE |(XX.LCS.MIT.EDU, ISI |ACHILLES.MIT.EDU) |(VAXA.ISI.EDU,VENERA.ISI.EDU, +---+---+ | A.ISI.EDU) | | | LCS ACHILLES +--+-----+-----+--------+ | | | | | | XX A C VAXA VENERA Mockapetris
In this example, the authoritative name server is shown in parentheses at the point in the domain tree at which is assumes control. Thus the root name servers are on C.ISI.EDU, SRI-NIC.ARPA, and A.ISI.EDU. The MIL domain is served by SRI-NIC.ARPA and A.ISI.EDU. The EDU domain is served by SRI-NIC.ARPA. and C.ISI.EDU. Note that servers may have zones which are contiguous or disjoint. In this scenario, C.ISI.EDU has contiguous zones at the root and EDU domains. A.ISI.EDU has contiguous zones at the root and MIL domains, but also has a non- contiguous zone at ISI.EDU. 6.1. C.ISI.EDU name server C.ISI.EDU is a name server for the root, MIL, and EDU domains of the IN class, and would have zones for these domains. The zone data for the root domain might be: . IN SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. ( 870611 ;serial 1800 ;refresh every 30 min 300 ;retry every 5 min 604800 ;expire after a week 86400) ;minimum of a day NS A.ISI.EDU. NS C.ISI.EDU. NS SRI-NIC.ARPA. MIL. 86400 NS SRI-NIC.ARPA. 86400 NS A.ISI.EDU. EDU. 86400 NS SRI-NIC.ARPA. 86400 NS C.ISI.EDU. SRI-NIC.ARPA. A 26.0.0.73 A 10.0.0.51 MX 0 SRI-NIC.ARPA. HINFO DEC-2060 TOPS20 ACC.ARPA. A 26.6.0.65 HINFO PDP-11/70 UNIX MX 10 ACC.ARPA. USC-ISIC.ARPA. CNAME C.ISI.EDU. 73.0.0.26.IN-ADDR.ARPA. PTR SRI-NIC.ARPA. 65.0.6.26.IN-ADDR.ARPA. PTR ACC.ARPA. 51.0.0.10.IN-ADDR.ARPA. PTR SRI-NIC.ARPA. 52.0.0.10.IN-ADDR.ARPA. PTR C.ISI.EDU.
103.0.3.26.IN-ADDR.ARPA. PTR A.ISI.EDU. A.ISI.EDU. 86400 A 26.3.0.103 C.ISI.EDU. 86400 A 10.0.0.52 This data is represented as it would be in a master file. Most RRs are single line entries; the sole exception here is the SOA RR, which uses "(" to start a multi-line RR and ")" to show the end of a multi-line RR. Since the class of all RRs in a zone must be the same, only the first RR in a zone need specify the class. When a name server loads a zone, it forces the TTL of all authoritative RRs to be at least the MINIMUM field of the SOA, here 86400 seconds, or one day. The NS RRs marking delegation of the MIL and EDU domains, together with the glue RRs for the servers host addresses, are not part of the authoritative data in the zone, and hence have explicit TTLs. Four RRs are attached to the root node: the SOA which describes the root zone and the 3 NS RRs which list the name servers for the root. The data in the SOA RR describes the management of the zone. The zone data is maintained on host SRI-NIC.ARPA, and the responsible party for the zone is HOSTMASTER@SRI-NIC.ARPA. A key item in the SOA is the 86400 second minimum TTL, which means that all authoritative data in the zone has at least that TTL, although higher values may be explicitly specified. The NS RRs for the MIL and EDU domains mark the boundary between the root zone and the MIL and EDU zones. Note that in this example, the lower zones happen to be supported by name servers which also support the root zone. The master file for the EDU zone might be stated relative to the origin EDU. The zone data for the EDU domain might be: EDU. IN SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. ( 870729 ;serial 1800 ;refresh every 30 minutes 300 ;retry every 5 minutes 604800 ;expire after a week 86400 ;minimum of a day ) NS SRI-NIC.ARPA. NS C.ISI.EDU. UCI 172800 NS ICS.UCI 172800 NS ROME.UCI ICS.UCI 172800 A 192.5.19.1 ROME.UCI 172800 A 192.5.19.31
ISI 172800 NS VAXA.ISI 172800 NS A.ISI 172800 NS VENERA.ISI.EDU. VAXA.ISI 172800 A 10.2.0.27 172800 A 128.9.0.33 VENERA.ISI.EDU. 172800 A 10.1.0.52 172800 A 128.9.0.32 A.ISI 172800 A 26.3.0.103 UDEL.EDU. 172800 NS LOUIE.UDEL.EDU. 172800 NS UMN-REI-UC.ARPA. LOUIE.UDEL.EDU. 172800 A 10.0.0.96 172800 A 192.5.39.3 YALE.EDU. 172800 NS YALE.ARPA. YALE.EDU. 172800 NS YALE-BULLDOG.ARPA. MIT.EDU. 43200 NS XX.LCS.MIT.EDU. 43200 NS ACHILLES.MIT.EDU. XX.LCS.MIT.EDU. 43200 A 10.0.0.44 ACHILLES.MIT.EDU. 43200 A 18.72.0.8 Note the use of relative names here. The owner name for the ISI.EDU. is stated using a relative name, as are two of the name server RR contents. Relative and absolute domain names may be freely intermixed in a master 6.2. Example standard queries The following queries and responses illustrate name server behavior. Unless otherwise noted, the queries do not have recursion desired (RD) in the header. Note that the answers to non-recursive queries do depend on the server being asked, but do not depend on the identity of the requester.
6.2.1. QNAME=SRI-NIC.ARPA, QTYPE=A The query would look like: +---------------------------------------------------+ Header | OPCODE=SQUERY | +---------------------------------------------------+ Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=A | +---------------------------------------------------+ Answer | <empty> | +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | <empty> | +---------------------------------------------------+ The response from C.ISI.EDU would be: +---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE, AA | +---------------------------------------------------+ Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=A | +---------------------------------------------------+ Answer | SRI-NIC.ARPA. 86400 IN A 26.0.0.73 | | 86400 IN A 10.0.0.51 | +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | <empty> | +---------------------------------------------------+ The header of the response looks like the header of the query, except that the RESPONSE bit is set, indicating that this message is a response, not a query, and the Authoritative Answer (AA) bit is set indicating that the address RRs in the answer section are from authoritative data. The question section of the response matches the question section of the query.
If the same query was sent to some other server which was not authoritative for SRI-NIC.ARPA, the response might be: +---------------------------------------------------+ Header | OPCODE=SQUERY,RESPONSE | +---------------------------------------------------+ Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=A | +---------------------------------------------------+ Answer | SRI-NIC.ARPA. 1777 IN A 10.0.0.51 | | 1777 IN A 26.0.0.73 | +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | <empty> | +---------------------------------------------------+ This response is different from the previous one in two ways: the header does not have AA set, and the TTLs are different. The inference is that the data did not come from a zone, but from a cache. The difference between the authoritative TTL and the TTL here is due to aging of the data in a cache. The difference in ordering of the RRs in the answer section is not significant. 6.2.2. QNAME=SRI-NIC.ARPA, QTYPE=* A query similar to the previous one, but using a QTYPE of *, would receive the following response from C.ISI.EDU: +---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE, AA | +---------------------------------------------------+ Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=* | +---------------------------------------------------+ Answer | SRI-NIC.ARPA. 86400 IN A 26.0.0.73 | | A 10.0.0.51 | | MX 0 SRI-NIC.ARPA. | | HINFO DEC-2060 TOPS20 | +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | <empty> | +---------------------------------------------------+
If a similar query was directed to two name servers which are not authoritative for SRI-NIC.ARPA, the responses might be: +---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE | +---------------------------------------------------+ Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=* | +---------------------------------------------------+ Answer | SRI-NIC.ARPA. 12345 IN A 26.0.0.73 | | A 10.0.0.51 | +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | <empty> | +---------------------------------------------------+ and +---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE | +---------------------------------------------------+ Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=* | +---------------------------------------------------+ Answer | SRI-NIC.ARPA. 1290 IN HINFO DEC-2060 TOPS20 | +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | <empty> | +---------------------------------------------------+ Neither of these answers have AA set, so neither response comes from authoritative data. The different contents and different TTLs suggest that the two servers cached data at different times, and that the first server cached the response to a QTYPE=A query and the second cached the response to a HINFO query.
6.2.3. QNAME=SRI-NIC.ARPA, QTYPE=MX This type of query might be result from a mailer trying to look up routing information for the mail destination HOSTMASTER@SRI-NIC.ARPA. The response from C.ISI.EDU would be: +---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE, AA | +---------------------------------------------------+ Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=MX | +---------------------------------------------------+ Answer | SRI-NIC.ARPA. 86400 IN MX 0 SRI-NIC.ARPA.| +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | SRI-NIC.ARPA. 86400 IN A 26.0.0.73 | | A 10.0.0.51 | +---------------------------------------------------+ This response contains the MX RR in the answer section of the response. The additional section contains the address RRs because the name server at C.ISI.EDU guesses that the requester will need the addresses in order to properly use the information carried by the MX. 6.2.4. QNAME=SRI-NIC.ARPA, QTYPE=NS C.ISI.EDU would reply to this query with: +---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE, AA | +---------------------------------------------------+ Question | QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=NS | +---------------------------------------------------+ Answer | <empty> | +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | <empty> | +---------------------------------------------------+ The only difference between the response and the query is the AA and RESPONSE bits in the header. The interpretation of this response is that the server is authoritative for the name, and the name exists, but no RRs of type NS are present there. 6.2.5. QNAME=SIR-NIC.ARPA, QTYPE=A If a user mistyped a host name, we might see this type of query.
C.ISI.EDU would answer it with: +---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE, AA, RCODE=NE | +---------------------------------------------------+ Question | QNAME=SIR-NIC.ARPA., QCLASS=IN, QTYPE=A | +---------------------------------------------------+ Answer | <empty> | +---------------------------------------------------+ Authority | . SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. | | 870611 1800 300 604800 86400 | +---------------------------------------------------+ Additional | <empty> | +---------------------------------------------------+ This response states that the name does not exist. This condition is signalled in the response code (RCODE) section of the header. The SOA RR in the authority section is the optional negative caching information which allows the resolver using this response to assume that the name will not exist for the SOA MINIMUM (86400) seconds. 6.2.6. QNAME=BRL.MIL, QTYPE=A If this query is sent to C.ISI.EDU, the reply would be: +---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE | +---------------------------------------------------+ Question | QNAME=BRL.MIL, QCLASS=IN, QTYPE=A | +---------------------------------------------------+ Answer | <empty> | +---------------------------------------------------+ Authority | MIL. 86400 IN NS SRI-NIC.ARPA. | | 86400 NS A.ISI.EDU. | +---------------------------------------------------+ Additional | A.ISI.EDU. A 26.3.0.103 | | SRI-NIC.ARPA. A 26.0.0.73 | | A 10.0.0.51 | +---------------------------------------------------+ This response has an empty answer section, but is not authoritative, so it is a referral. The name server on C.ISI.EDU, realizing that it is not authoritative for the MIL domain, has referred the requester to servers on A.ISI.EDU and SRI-NIC.ARPA, which it knows are authoritative for the MIL domain.
6.2.7. QNAME=USC-ISIC.ARPA, QTYPE=A The response to this query from A.ISI.EDU would be: +---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE, AA | +---------------------------------------------------+ Question | QNAME=USC-ISIC.ARPA., QCLASS=IN, QTYPE=A | +---------------------------------------------------+ Answer | USC-ISIC.ARPA. 86400 IN CNAME C.ISI.EDU. | | C.ISI.EDU. 86400 IN A 10.0.0.52 | +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | <empty> | +---------------------------------------------------+ Note that the AA bit in the header guarantees that the data matching QNAME is authoritative, but does not say anything about whether the data for C.ISI.EDU is authoritative. This complete reply is possible because A.ISI.EDU happens to be authoritative for both the ARPA domain where USC-ISIC.ARPA is found and the ISI.EDU domain where C.ISI.EDU data is found. If the same query was sent to C.ISI.EDU, its response might be the same as shown above if it had its own address in its cache, but might also be:
+---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE, AA | +---------------------------------------------------+ Question | QNAME=USC-ISIC.ARPA., QCLASS=IN, QTYPE=A | +---------------------------------------------------+ Answer | USC-ISIC.ARPA. 86400 IN CNAME C.ISI.EDU. | +---------------------------------------------------+ Authority | ISI.EDU. 172800 IN NS VAXA.ISI.EDU. | | NS A.ISI.EDU. | | NS VENERA.ISI.EDU. | +---------------------------------------------------+ Additional | VAXA.ISI.EDU. 172800 A 10.2.0.27 | | 172800 A 128.9.0.33 | | VENERA.ISI.EDU. 172800 A 10.1.0.52 | | 172800 A 128.9.0.32 | | A.ISI.EDU. 172800 A 26.3.0.103 | +---------------------------------------------------+ This reply contains an authoritative reply for the alias USC-ISIC.ARPA, plus a referral to the name servers for ISI.EDU. This sort of reply isn't very likely given that the query is for the host name of the name server being asked, but would be common for other aliases. 6.2.8. QNAME=USC-ISIC.ARPA, QTYPE=CNAME If this query is sent to either A.ISI.EDU or C.ISI.EDU, the reply would be: +---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE, AA | +---------------------------------------------------+ Question | QNAME=USC-ISIC.ARPA., QCLASS=IN, QTYPE=A | +---------------------------------------------------+ Answer | USC-ISIC.ARPA. 86400 IN CNAME C.ISI.EDU. | +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | <empty> | +---------------------------------------------------+ Because QTYPE=CNAME, the CNAME RR itself answers the query, and the name server doesn't attempt to look up anything for C.ISI.EDU. (Except possibly for the additional section.) 6.3. Example resolution The following examples illustrate the operations a resolver must perform for its client. We assume that the resolver is starting without a
cache, as might be the case after system boot. We further assume that the system is not one of the hosts in the data and that the host is located somewhere on net 26, and that its safety belt (SBELT) data structure has the following information: Match count = -1 SRI-NIC.ARPA. 26.0.0.73 10.0.0.51 A.ISI.EDU. 26.3.0.103 This information specifies servers to try, their addresses, and a match count of -1, which says that the servers aren't very close to the target. Note that the -1 isn't supposed to be an accurate closeness measure, just a value so that later stages of the algorithm will work. The following examples illustrate the use of a cache, so each example assumes that previous requests have completed. 6.3.1. Resolve MX for ISI.EDU. Suppose the first request to the resolver comes from the local mailer, which has mail for PVM@ISI.EDU. The mailer might then ask for type MX RRs for the domain name ISI.EDU. The resolver would look in its cache for MX RRs at ISI.EDU, but the empty cache wouldn't be helpful. The resolver would recognize that it needed to query foreign servers and try to determine the best servers to query. This search would look for NS RRs for the domains ISI.EDU, EDU, and the root. These searches of the cache would also fail. As a last resort, the resolver would use the information from the SBELT, copying it into its SLIST structure. At this point the resolver would need to pick one of the three available addresses to try. Given that the resolver is on net 26, it should choose either 26.0.0.73 or 26.3.0.103 as its first choice. It would then send off a query of the form:
+---------------------------------------------------+ Header | OPCODE=SQUERY | +---------------------------------------------------+ Question | QNAME=ISI.EDU., QCLASS=IN, QTYPE=MX | +---------------------------------------------------+ Answer | <empty> | +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | <empty> | +---------------------------------------------------+ The resolver would then wait for a response to its query or a timeout. If the timeout occurs, it would try different servers, then different addresses of the same servers, lastly retrying addresses already tried. It might eventually receive a reply from SRI-NIC.ARPA: +---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE | +---------------------------------------------------+ Question | QNAME=ISI.EDU., QCLASS=IN, QTYPE=MX | +---------------------------------------------------+ Answer | <empty> | +---------------------------------------------------+ Authority | ISI.EDU. 172800 IN NS VAXA.ISI.EDU. | | NS A.ISI.EDU. | | NS VENERA.ISI.EDU.| +---------------------------------------------------+ Additional | VAXA.ISI.EDU. 172800 A 10.2.0.27 | | 172800 A 128.9.0.33 | | VENERA.ISI.EDU. 172800 A 10.1.0.52 | | 172800 A 128.9.0.32 | | A.ISI.EDU. 172800 A 26.3.0.103 | +---------------------------------------------------+ The resolver would notice that the information in the response gave a closer delegation to ISI.EDU than its existing SLIST (since it matches three labels). The resolver would then cache the information in this response and use it to set up a new SLIST: Match count = 3 A.ISI.EDU. 26.3.0.103 VAXA.ISI.EDU. 10.2.0.27 128.9.0.33 VENERA.ISI.EDU. 10.1.0.52 128.9.0.32 A.ISI.EDU appears on this list as well as the previous one, but that is purely coincidental. The resolver would again start transmitting and waiting for responses. Eventually it would get an answer:
+---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE, AA | +---------------------------------------------------+ Question | QNAME=ISI.EDU., QCLASS=IN, QTYPE=MX | +---------------------------------------------------+ Answer | ISI.EDU. MX 10 VENERA.ISI.EDU. | | MX 20 VAXA.ISI.EDU. | +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | VAXA.ISI.EDU. 172800 A 10.2.0.27 | | 172800 A 128.9.0.33 | | VENERA.ISI.EDU. 172800 A 10.1.0.52 | | 172800 A 128.9.0.32 | +---------------------------------------------------+ The resolver would add this information to its cache, and return the MX RRs to its client. 6.3.2. Get the host name for address 26.6.0.65 The resolver would translate this into a request for PTR RRs for 65.0.6.26.IN-ADDR.ARPA. This information is not in the cache, so the resolver would look for foreign servers to ask. No servers would match, so it would use SBELT again. (Note that the servers for the ISI.EDU domain are in the cache, but ISI.EDU is not an ancestor of 65.0.6.26.IN-ADDR.ARPA, so the SBELT is used.) Since this request is within the authoritative data of both servers in SBELT, eventually one would return:
+---------------------------------------------------+ Header | OPCODE=SQUERY, RESPONSE, AA | +---------------------------------------------------+ Question | QNAME=65.0.6.26.IN-ADDR.ARPA.,QCLASS=IN,QTYPE=PTR | +---------------------------------------------------+ Answer | 65.0.6.26.IN-ADDR.ARPA. PTR ACC.ARPA. | +---------------------------------------------------+ Authority | <empty> | +---------------------------------------------------+ Additional | <empty> | +---------------------------------------------------+ 6.3.3. Get the host address of poneria.ISI.EDU This request would translate into a type A request for poneria.ISI.EDU. The resolver would not find any cached data for this name, but would find the NS RRs in the cache for ISI.EDU when it looks for foreign servers to ask. Using this data, it would construct a SLIST of the form: Match count = 3 A.ISI.EDU. 26.3.0.103 VAXA.ISI.EDU. 10.2.0.27 128.9.0.33 VENERA.ISI.EDU. 10.1.0.52 A.ISI.EDU is listed first on the assumption that the resolver orders its choices by preference, and A.ISI.EDU is on the same network. One of these servers would answer the query. 7. REFERENCES and BIBLIOGRAPHY [Dyer 87] Dyer, S., and F. Hsu, "Hesiod", Project Athena Technical Plan - Name Service, April 1987, version 1.9. Describes the fundamentals of the Hesiod name service. [IEN-116] J. Postel, "Internet Name Server", IEN-116, USC/Information Sciences Institute, August 1979. A name service obsoleted by the Domain Name System, but still in use.
[Quarterman 86] Quarterman, J., and J. Hoskins, "Notable Computer Networks",Communications of the ACM, October 1986, volume 29, number 10. [RFC-742] K. Harrenstien, "NAME/FINGER", RFC-742, Network Information Center, SRI International, December 1977. [RFC-768] J. Postel, "User Datagram Protocol", RFC-768, USC/Information Sciences Institute, August 1980. [RFC-793] J. Postel, "Transmission Control Protocol", RFC-793, USC/Information Sciences Institute, September 1981. [RFC-799] D. Mills, "Internet Name Domains", RFC-799, COMSAT, September 1981. Suggests introduction of a hierarchy in place of a flat name space for the Internet. [RFC-805] J. Postel, "Computer Mail Meeting Notes", RFC-805, USC/Information Sciences Institute, February 1982. [RFC-810] E. Feinler, K. Harrenstien, Z. Su, and V. White, "DOD Internet Host Table Specification", RFC-810, Network Information Center, SRI International, March 1982. Obsolete. See RFC-952. [RFC-811] K. Harrenstien, V. White, and E. Feinler, "Hostnames Server", RFC-811, Network Information Center, SRI International, March 1982. Obsolete. See RFC-953. [RFC-812] K. Harrenstien, and V. White, "NICNAME/WHOIS", RFC-812, Network Information Center, SRI International, March 1982. [RFC-819] Z. Su, and J. Postel, "The Domain Naming Convention for Internet User Applications", RFC-819, Network Information Center, SRI International, August 1982. Early thoughts on the design of the domain system. Current implementation is completely different. [RFC-821] J. Postel, "Simple Mail Transfer Protocol", RFC-821, USC/Information Sciences Institute, August 1980.
[RFC-830] Z. Su, "A Distributed System for Internet Name Service", RFC-830, Network Information Center, SRI International, October 1982. Early thoughts on the design of the domain system. Current implementation is completely different. [RFC-882] P. Mockapetris, "Domain names - Concepts and Facilities," RFC-882, USC/Information Sciences Institute, November 1983. Superceeded by this memo. [RFC-883] P. Mockapetris, "Domain names - Implementation and Specification," RFC-883, USC/Information Sciences Institute, November 1983. Superceeded by this memo. [RFC-920] J. Postel and J. Reynolds, "Domain Requirements", RFC-920, USC/Information Sciences Institute October 1984. Explains the naming scheme for top level domains. [RFC-952] K. Harrenstien, M. Stahl, E. Feinler, "DoD Internet Host Table Specification", RFC-952, SRI, October 1985. Specifies the format of HOSTS.TXT, the host/address table replaced by the DNS. [RFC-953] K. Harrenstien, M. Stahl, E. Feinler, "HOSTNAME Server", RFC-953, SRI, October 1985. This RFC contains the official specification of the hostname server protocol, which is obsoleted by the DNS. This TCP based protocol accesses information stored in the RFC-952 format, and is used to obtain copies of the host table. [RFC-973] P. Mockapetris, "Domain System Changes and Observations", RFC-973, USC/Information Sciences Institute, January 1986. Describes changes to RFC-882 and RFC-883 and reasons for them. Now obsolete.
[RFC-974] C. Partridge, "Mail routing and the domain system", RFC-974, CSNET CIC BBN Labs, January 1986. Describes the transition from HOSTS.TXT based mail addressing to the more powerful MX system used with the domain system. [RFC-1001] NetBIOS Working Group, "Protocol standard for a NetBIOS service on a TCP/UDP transport: Concepts and Methods", RFC-1001, March 1987. This RFC and RFC-1002 are a preliminary design for NETBIOS on top of TCP/IP which proposes to base NetBIOS name service on top of the DNS. [RFC-1002] NetBIOS Working Group, "Protocol standard for a NetBIOS service on a TCP/UDP transport: Detailed Specifications", RFC-1002, March 1987. [RFC-1010] J. Reynolds and J. Postel, "Assigned Numbers", RFC-1010, USC/Information Sciences Institute, May 1987 Contains socket numbers and mnemonics for host names, operating systems, etc. [RFC-1031] W. Lazear, "MILNET Name Domain Transition", RFC-1031, November 1987. Describes a plan for converting the MILNET to the DNS. [RFC-1032] M. K. Stahl, "Establishing a Domain - Guidelines for Administrators", RFC-1032, November 1987. Describes the registration policies used by the NIC to administer the top level domains and delegate subzones. [RFC-1033] M. K. Lottor, "Domain Administrators Operations Guide", RFC-1033, November 1987. A cookbook for domain administrators. [Solomon 82] M. Solomon, L. Landweber, and D. Neuhengen, "The CSNET Name Server", Computer Networks, vol 6, nr 3, July 1982. Describes a name service for CSNET which is independent from the DNS and DNS use in the CSNET.
Index A 12 Absolute names 8 Aliases 14, 31 Authority 6 AXFR 17 Case of characters 7 CH 12 CNAME 12, 13, 31 Completion queries 18 Domain name 6, 7 Glue RRs 20 HINFO 12 IN 12 Inverse queries 16 Iterative 4 Label 7 Mailbox names 9 MX 12 Name error 27, 36 Name servers 5, 17 NE 30 Negative caching 44 NS 12 Opcode 16 PTR 12 QCLASS 16 QTYPE 16 RDATA 13 Recursive 4 Recursive service 22 Relative names 7 Resolvers 6 RR 12
Safety belt 33 Sections 16 SOA 12 Standard queries 22 Status queries 18 Stub resolvers 32 TTL 12, 13 Wildcards 25 Zone transfers 28 Zones 19