Converged 5G ("fifth generation") wireline networks carry user data between 5G residential gateways (5G-RGs) and the 5G Access Gateway Function (identified as a Wireline-AGF (W-AGF) by 3GPP in [
TS23316]) across deployed access networks based on Broadband Forum [
TR101] and [
TR178]. This form of wireline access is considered to be trusted non-3GPP access by the 5G system.
The transport encapsulation used needs to meet a variety of requirements, including the following:
-
The ability to multiplex multiple logical connections (Protocol Data Unit (PDU) sessions as defined by 3GPP) within a VLAN-identified point-to-point logical circuit between a 5G-RG and a W-AGF.
-
To allow unmodified legacy equipment in the data path to identify the encapsulation and inspect specific fields in the payload. Some access nodes in the data path between the 5G-RG and the W-AGF (such as digital subscriber loop access multiplexers (DSLAMs) and optical line terminations (OLTs)) currently inspect packets identified by specific Ethertypes to identify protocols such as the Point-to-Point Protocol over Ethernet (PPPoE), IP, ARP, and IGMP. This may be for the purpose of enhanced QoS, the policing of identifiers, and other applications. Some deployments are dependent upon this inspection. Such devices are able to do this for PPPoE or IP-over-Ethernet (IPoE) packet encodings but would be unable to do so if a completely new encapsulation, or an existing encapsulation using a new Ethertype, were used.
-
To carry per-packet 5G QoS information.
-
An encapsulation that minimizes processing since fixed access residential gateways are sensitive to the complexity of packet processing. While not a strict requirement, this is an important consideration.
A data encapsulation that uses a common Ethertype and has certain fields appearing at the same offset as the PPPoE data encapsulation [
RFC 2516] can address these requirements. This data encapsulation is referred to as the 5G WWC user plane encapsulation or 5WE. Currently deployed access nodes do not police the VER, TYPE, or CODE fields of an
RFC 2516 PPPoE header and only perform limited policing of stateful functions with respect to the procedures documented in
RFC 2516. Therefore, these fields have a different definition for 5WE and are used to:
-
Identify that the mode of operation for packets encapsulated in such a fashion uses 5G WWC session establishment based on non-access stratum (NAS, a logical control interface between user equipment (UE) and a 5th Generation Core Network (5GC) as specified by 3GPP) and life-cycle maintenance procedures as documented in [TS23502] and [TS23316] instead of legacy PPP/PPPoE session establishment procedures [RFC 2516] (i.e., PADI discipline, LCP, NCP, etc.). In this scenario, "discovery" is performed by means outside the scope of this document.
-
Permit the session ID field to be used to identify the 5G PDU session the encapsulated packet is part of.
-
Communicate per-packet 5G QoS Flow Identifier (QFI) and Reflective QoS Indication (RQI) information from the 5GC to the 5G-RG.
This 5G-specific redesign of fields not inspected by deployed equipment results in an encapsulation uniquely applicable to the requirements for the communication of PDU session traffic between the subscriber premises and the 5G system over wireline networks. The 6-byte
RFC 2516 data packet header followed by a 2-byte PPP protocol ID is also the most frugal of the encapsulations that are currently supported by legacy access equipment that could be adapted to meet these requirements.
This encapsulation is expected to be used in environments where
RFC 2516 is deployed. Therefore, implementations
MUST examine the version number:
-
If the version number is 1 and PPPoE [RFC 2516] is supported, process the frame further; else, silently discard it.
-
If the version number is 2 and 5WE is supported, process the frame further; else, silently discard it.
In both cases, frames for the supported version number should have session IDs corresponding to established sessions for the respective protocol models. A 5WE frame with an unrecognized session ID
MUST be silently discarded.
This encapsulation may have MTU issues when used for Ethernet multiplexing in networks where the underlying Ethernet payload is limited to 1500 bytes.
This encapsulation is not suitable for other network environments, e.g., general use over the public Internet.