In the CCDR architecture, only the edge routers that connect with the PCE are responsible for the prefix advertisement via the multiple BGP sessions deployment. The route information for these prefixes within the on-path routers is distributed via BGP.
For multiple domain deployment, the PCE, or the pool of PCEs responsible for these domains, needs only to control the edge router to build the multiple External BGP (EBGP) sessions; all other procedures are the same as within one domain.
The on-path router needs only to keep the specific policy routes for the BGP next hop of the differentiated prefixes, not the specific routes to the prefixes themselves. This lessens the burden of the table size of policy-based routes for the on-path routers; and has more expandability compared with BGP Flowspec or OpenFlow solutions. For example, if we want to differentiate 1,000 prefixes from the normal traffic, CCDR needs only one explicit peer route in every on-path router, whereas the BGP Flowspec or OpenFlow solutions need 1,000 policy routes on them.
The CCDR architecture is based on the use of native IP. If the PCE fails, the forwarding plane will not be impacted, as the BGP sessions between all the devices will not flap, and the forwarding table remains unchanged.
If one node on the optimal path fails, the priority traffic will fall over to the best-effort forwarding path. One can even design several paths to load balance or to create a hot standby of the priority traffic to meet a path failure situation.
For ensuring high availability of a PCE/SDN-controllers architecture, an operator should rely on existing high availability solutions for SDN controllers, such as clustering technology and deployment.
Not every router within the network needs to support the necessary PCEP extension. For such situations, routers on the edge of a domain can be upgraded first, and then the traffic can be prioritized between different domains. Within each domain, the traffic will be forwarded along the best-effort path. A service provider can selectively upgrade the routers on each domain in sequence.
A PCE needs to assure calculation of the E2E path based on the status of network and the service requirements in real-time.
The PCE needs to consider the explicit route deployment order (for example, from tail router to head router) to eliminate any possible transient traffic loop.
It is necessary to deploy the corresponding E2E path performance monitoring mechanism to assure that the delay, jitter, or packet loss index meets the original path performance aim. The performance monitoring results should provide feedback to the PCE in order for it to accomplish the re-optimization process and send the update control message to the related PCC if necessary. Traditional OAM methods (ping, trace) can be used.