Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 4836

Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs)

Pages: 67
Proposed Standard
Errata
Obsoletes:  3636
Part 3 of 3 – Pages 46 to 67
First   Prev   None

Top   ToC   RFC4836 - Page 46   prevText

5. IANA-Maintained MAU TC Definitions

IANA-MAU-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-IDENTITY, mib-2 FROM SNMPv2-SMI TEXTUAL-CONVENTION FROM SNMPv2-TC ; ianaMauMIB MODULE-IDENTITY LAST-UPDATED "200704210000Z" -- April 21, 2007 ORGANIZATION "IANA" CONTACT-INFO " Internet Assigned Numbers Authority Postal: ICANN 4676 Admiralty Way, Suite 330 Marina del Rey, CA 90292 Tel: +1-310-823-9358 EMail: iana@iana.org" DESCRIPTION "This MIB module defines dot3MauType OBJECT-IDENTITIES and IANAifMauListBits, IANAifMauMediaAvailable, IANAifMauAutoNegCapBits, and IANAifJackType
Top   ToC   RFC4836 - Page 47
         TEXTUAL-CONVENTIONs, specifying enumerated values of the
         ifMauTypeListBits, ifMauMediaAvailable / rpMauMediaAvailable,
         ifMauAutoNegCapabilityBits / ifMauAutoNegCapAdvertisedBits /
         ifMauAutoNegCapReceivedBits and ifJackType / rpJackType objects
         respectively, defined in the MAU-MIB.

         It is intended that each new MAU type, Media Availability
         state, Auto Negotiation capability and/or Jack type defined by
         the IEEE 802.3 working group and approved for publication in a
         revision of IEEE Std 802.3 will be added to this MIB module,
         provided that it is suitable for being managed by the base
         objects in the MAU-MIB.  An Expert Review, as defined in
         RFC 2434 [RFC2434], is REQUIRED for such additions.

         The following reference is used throughout this MIB module:

         [IEEE802.3] refers to:
            IEEE Std 802.3, 2005 Edition: 'IEEE Standard for
            Information technology - Telecommunications and information
            exchange between systems - Local and metropolitan area
            networks - Specific requirements -
            Part 3: Carrier sense multiple access with collision
            detection (CSMA/CD) access method and physical layer
            specifications'.

         This reference should be updated as appropriate when new
         MAU types, Media Availability states, Auto Negotiation
         capabilities, and/or Jack types are added to this MIB module.

         Copyright (C) The IETF Trust (2007).
         The initial version of this MIB module was published in
         RFC 4836; for full legal notices see the RFC itself.
         Supplementary information may be available at:
         http://www.ietf.org/copyrights/ianamib.html"

       REVISION     "200704210000Z"  -- April 21, 2007
       DESCRIPTION  "Initial version of this MIB as published in
                     RFC 4836."
       ::= { mib-2 154 }

     -- Textual Conventions

     IANAifMauTypeListBits ::= TEXTUAL-CONVENTION
       STATUS       current
       DESCRIPTION
         "This data type is used as the syntax of the ifMauTypeListBits
         object in the (updated) definition of MAU-MIB's ifMauTable.
Top   ToC   RFC4836 - Page 48
         The most recent version of this textual convention is available
         in the online version of this MIB module on the IANA web site.

         Requests for new values should be made to IANA via email
         (iana@iana.org).

         Note that changes in this textual convention SHALL be
         synchronized with relevant changes in the dot3MauType
         OBJECT-IDENTITIES."
       REFERENCE
         "[IEEE802.3], Section 30.5.1.1.2"
       SYNTAX       BITS {
              bOther(0),          -- other or unknown
              bAUI(1),            -- AUI
              b10base5(2),        -- 10BASE-5
              bFoirl(3),          -- FOIRL

              b10base2(4),        -- 10BASE-2
              b10baseT(5),        -- 10BASE-T duplex mode unknown
              b10baseFP(6),       -- 10BASE-FP
              b10baseFB(7),       -- 10BASE-FB
              b10baseFL(8),       -- 10BASE-FL duplex mode unknown
              b10broad36(9),      -- 10BROAD36
              b10baseTHD(10),     -- 10BASE-T  half duplex mode
              b10baseTFD(11),     -- 10BASE-T  full duplex mode
              b10baseFLHD(12),    -- 10BASE-FL half duplex mode
              b10baseFLFD(13),    -- 10BASE-FL full duplex mode
              b100baseT4(14),     -- 100BASE-T4
              b100baseTXHD(15),   -- 100BASE-TX half duplex mode
              b100baseTXFD(16),   -- 100BASE-TX full duplex mode
              b100baseFXHD(17),   -- 100BASE-FX half duplex mode
              b100baseFXFD(18),   -- 100BASE-FX full duplex mode
              b100baseT2HD(19),   -- 100BASE-T2 half duplex mode
              b100baseT2FD(20),   -- 100BASE-T2 full duplex mode

              b1000baseXHD(21),   -- 1000BASE-X half duplex mode
              b1000baseXFD(22),   -- 1000BASE-X full duplex mode
              b1000baseLXHD(23),  -- 1000BASE-LX half duplex mode
              b1000baseLXFD(24),  -- 1000BASE-LX full duplex mode
              b1000baseSXHD(25),  -- 1000BASE-SX half duplex mode
              b1000baseSXFD(26),  -- 1000BASE-SX full duplex mode
              b1000baseCXHD(27),  -- 1000BASE-CX half duplex mode
              b1000baseCXFD(28),  -- 1000BASE-CX full duplex mode
              b1000baseTHD(29),   -- 1000BASE-T half duplex mode
              b1000baseTFD(30),   -- 1000BASE-T full duplex mode

              b10GbaseX(31),      -- 10GBASE-X
              b10GbaseLX4(32),    -- 10GBASE-LX4
Top   ToC   RFC4836 - Page 49
              b10GbaseR(33),      -- 10GBASE-R
              b10GbaseER(34),     -- 10GBASE-ER
              b10GbaseLR(35),     -- 10GBASE-LR
              b10GbaseSR(36),     -- 10GBASE-SR
              b10GbaseW(37),      -- 10GBASE-W
              b10GbaseEW(38),     -- 10GBASE-EW
              b10GbaseLW(39),     -- 10GBASE-LW
              b10GbaseSW(40),     -- 10GBASE-SW
              -- new since RFC 3636
              b10GbaseCX4(41),    -- 10GBASE-CX4
              b2BaseTL(42),       -- 2BASE-TL
              b10PassTS(43),      -- 10PASS-TS
              b100BaseBX10D(44),  -- 100BASE-BX10D
              b100BaseBX10U(45),  -- 100BASE-BX10U
              b100BaseLX10(46),   -- 100BASE-LX10
              b1000BaseBX10D(47), -- 1000BASE-BX10D
              b1000BaseBX10U(48), -- 1000BASE-BX10U
              b1000BaseLX10(49),  -- 1000BASE-LX10
              b1000BasePX10D(50), -- 1000BASE-PX10D
              b1000BasePX10U(51), -- 1000BASE-PX10U
              b1000BasePX20D(52), -- 1000BASE-PX20D
              b1000BasePX20U(53)  -- 1000BASE-PX20U
         }

     IANAifMauMediaAvailable ::= TEXTUAL-CONVENTION
       STATUS       current
       DESCRIPTION
         "This data type is used as the syntax of the
         ifMauMediaAvailable and rpMauMediaAvailable objects in the
         (updated) definition of MAU-MIB's ifMauTable and rpMauTable
         respectively.

         Possible values are:
           other(1)             - undefined (not listed below)
           unknown(2)           - MAU's true state is unknown; e.g.,
                                  during initialization
           available(3)         - link, light, or loopback is normal
           notAvailable(4)      - link loss, low light, or no loopback
           remoteFault(5)       - a fault has been detected at the
                                  remote end of the link.  This value
                                  applies to 10BASE-FB, 100BASE-T4 Far
                                  End Fault Indication and non-specified
                                  remote faults from a system running
                                  auto-negotiation
           invalidSignal(6)     - invalid signal has been received from
                                  the other end of the link, 10BASE-FB
                                  only
           remoteJabber(7)      - remote fault, due to jabber
Top   ToC   RFC4836 - Page 50
           remoteLinkLoss(8)    - remote fault, due to link loss
           remoteTest(9)        - remote fault, due to test
           offline(10)          - offline, Clause 37 Auto-Negotiation
                                  only
           autoNegError(11)     - Auto-Negotiation Error, Clause 37
                                  Auto-Negotiation only
           pmdLinkFault(12)     - PMA/PMD receive link fault.  In case
                                  of PAF (2BASE-TL / 10PASS-TS PHYs),
                                  all PMEs in the aggregation group have
                                  detected a link fault
           wisFrameLoss(13)     - WIS loss of frame, 10GBASE-W only
           wisSignalLoss(14)    - WIS loss of signal, 10GBASE-W only
           pcsLinkFault(15)     - PCS receive link fault
           excessiveBER(16)     - PCS Bit Error Ratio monitor
                                  reporting excessive error ratio
           dxsLinkFault(17)     - DTE XGXS receive link fault, XAUI only
           pxsLinkFault(18)     - PHY XGXS receive link fault, XAUI only
           availableReduced(19) - link normal, reduced bandwidth,
                                  2BASE-TL / 10PASS-TS only
           ready(20)            - at least one PME in the aggregation
                                  group is detecting handshake tones,
                                  2BASE-TL / 10PASS-TS only

         If the MAU is a 10M b/s link or fiber type (FOIRL, 10BASE-T,
         10BASE-F), then this is equivalent to the link test fail
         state/low light function.  For an AUI, 10BASE2, 10BASE5, or
         10BROAD36 MAU, this indicates whether loopback is detected on
         the DI circuit.  The value of this attribute persists between
         packets for MAU types AUI, 10BASE5, 10BASE2, 10BROAD36, and
         10BASEFP.

         At power-up or following a reset, the Media Available state
         will be unknown(2) for AUI, 10BASE5, 10BASE2, 10BROAD36, and
         10BASE-FP MAUs.  For these MAUs loopback will be tested on each
         transmission during which no collision is detected.
         If DI is receiving input when DO returns to IDL after a
         transmission and there has been no collision during the
         transmission, then loopback will be detected.  The Media
         Available state will only change during noncollided
         transmissions for AUI, 10BASE2, 10BASE5, 10BROAD36, and
         10BASE-FP MAUs.

         For 100BASE-T2, 100BASE-T4, 100BASE-TX, 100BASE-FX,
         100BASE-LX10, and 100BASE-BX10 PHYs the enumerations match the
         states within the link integrity state diagram.
         Any MAU that implements management of [IEEE802.3] Clause
         28 Auto-Negotiation, will map remote fault indication to
         remoteFault(5).
Top   ToC   RFC4836 - Page 51
         Any MAU that implements management of Clause 37
         Auto-Negotiation, will map the received RF1 and RF2 bits as
         follows: Offline maps to offline(10), Link_Failure maps to
         remoteFault(5), and Auto-Negotiation Error maps to
         autoNegError(11).

         The value remoteFault(5) applies to 10BASE-FB remote
         fault indication, the 100BASE-X far-end fault indication, and
         nonspecified remote faults from a system running Clause 28
         Auto-Negotiation.

         The value remoteJabber(7), remoteLink loss(8), or remoteTest(9)
         SHOULD be used instead of remoteFault(5) where the reason for
         remote fault is identified in the remote signaling protocol.
         Where a Clause 22 MII or Clause 35 GMII is present, a logic
         one in the remote fault bit maps to the value remoteFault(5),
         a logic zero in the link status bit maps to the enumeration
         notAvailable(4).  The value notAvailable(4) takes precedence
         over remoteFault(5).

         For 2BASE-TL and 10PASS-TS PHYs, the value unknown(2) maps to
         the condition where the PHY (PCS with connected PMEs) is
         initializing, the value ready(20) maps to the condition where
         the interface is down and at least one PME in the aggregation
         group is ready for handshake, the value available(3) maps to
         the condition where all the PMEs in the aggregation group are
         up, the value notAvailable(4) maps to the condition where all
         the PMEs in the aggregation group are down and no handshake
         tones are detected, the value availableReduced(19) maps to the
         condition where the interface is up, a link fault is detected
         at the receive direction by one or more PMEs in the
         aggregation group, but at least one PME is up and the
         enumeration pmdLinkFault(12) maps to the condition where a link
         fault is detected at the receive direction by all of the PMEs
         in the aggregation group.

         For 10 Gb/s the enumerations map to value of the link_fault
         variable within the Link Fault Signaling state diagram
         as follows: the value OK maps to the value available(3),
         the value Local Fault maps to the value notAvailable(4),
         and the value Remote Fault maps to the value remoteFault(5).
         The value pmdLinkFault(12), wisFrameLoss(13),
         wisSignalLoss(14), pcsLinkFault(15), excessiveBER(16), or
         dxsLinkFault(17) SHOULD be used instead of the value
         notAvailable(4), where the reason for the Local Fault state can
         be identified through the use of the Clause 45 MDIO Interface.
         Where multiple reasons for the Local Fault state can be
         identified, only the highest precedence error SHOULD be
Top   ToC   RFC4836 - Page 52
         reported.  This precedence in descending order is as follows:

           pxsLinkFault
           pmdLinkFault
           wisFrameLoss
           wisSignalLoss
           pcsLinkFault
           excessiveBER
           dxsLinkFault.

         Where a Clause 45 MDIO interface is present a logic zero in
         the PMA/PMD Receive link status bit ([IEEE802.3]
         Section 45.2.1.2.2) maps to the value pmdLinkFault(12),
         logic one in the LOF status bit (Section 45.2.2.10.4) maps
         to the value wisFrameLoss(13), a logic one in the LOS
         status bit (Section 45.2.2.10.5) maps to the value
         wisSignalLoss, a logic zero in the PCS Receive
         link status bit (Section 45.2.3.2.2) maps to the value
         pcsLinkFault(15), a logic one in the 10GBASE-R PCS Latched
         high BER status bit (Section 45.2.3.12.2) maps to the value
         excessiveBER, a logic zero in the DTE XS receive link status
         bit (Section 45.2.5.2.2) maps to the value dxsLinkFault(17)
         and a logic zero in the PHY XS transmit link status bit
         (Section 45.2.4.2.2) maps to the value pxsLinkFault(18).

         The most recent version of this textual convention is available
         in the online version of this MIB module on the IANA web site.

         Requests for new values should be made to IANA via email
         (iana@iana.org)."
       REFERENCE
         "[IEEE802.3], Section 30.5.1.1.4"
       SYNTAX       INTEGER {
              other(1),
              unknown(2),
              available(3),
              notAvailable(4),
              remoteFault(5),
              invalidSignal(6),
              remoteJabber(7),
              remoteLinkLoss(8),
              remoteTest(9),
              offline(10),
              autoNegError(11),
              pmdLinkFault(12),
              wisFrameLoss(13),
              wisSignalLoss(14),
              pcsLinkFault(15),
Top   ToC   RFC4836 - Page 53
              excessiveBER(16),
              dxsLinkFault(17),
              pxsLinkFault(18),
              availableReduced(19),
              ready(20)
         }

     IANAifMauAutoNegCapBits ::= TEXTUAL-CONVENTION
       STATUS       current
       DESCRIPTION
         "This data type is used as the syntax of the
         ifMauAutoNegCapabilityBits, ifMauAutoNegCapAdvertisedBits, and
         ifMauAutoNegCapReceivedBits objects in the (updated) definition
         of MAU-MIB's ifMauAutoNegTable.

         The most recent version of this textual convention is available
         in the online version of this MIB module on the IANA web site.

         Requests for new values should be made to IANA via email
         (iana@iana.org)."
       REFERENCE
         "[IEEE802.3], Section 30.6.1.1.5"
       SYNTAX       BITS {
              bOther(0),          -- other or unknown
              b10baseT(1),        -- 10BASE-T  half duplex mode
              b10baseTFD(2),      -- 10BASE-T  full duplex mode
              b100baseT4(3),      -- 100BASE-T4
              b100baseTX(4),      -- 100BASE-TX half duplex mode
              b100baseTXFD(5),    -- 100BASE-TX full duplex mode
              b100baseT2(6),      -- 100BASE-T2 half duplex mode
              b100baseT2FD(7),    -- 100BASE-T2 full duplex mode
              bFdxPause(8),       -- PAUSE for full-duplex links
              bFdxAPause(9),      -- Asymmetric PAUSE for full-duplex
                                  --     links
              bFdxSPause(10),     -- Symmetric PAUSE for full-duplex
                                  --     links
              bFdxBPause(11),     -- Asymmetric and Symmetric PAUSE for
                                  --     full-duplex links
              b1000baseX(12),     -- 1000BASE-X, -LX, -SX, -CX half
                                  --     duplex mode
              b1000baseXFD(13),   -- 1000BASE-X, -LX, -SX, -CX full
                                  --     duplex mode
              b1000baseT(14),     -- 1000BASE-T half duplex mode
              b1000baseTFD(15)    -- 1000BASE-T full duplex mode
         }

     IANAifJackType ::= TEXTUAL-CONVENTION
       STATUS       current
Top   ToC   RFC4836 - Page 54
       DESCRIPTION
         "Common enumeration values for repeater and interface MAU
         jack types.  This data type is used as the syntax of the
         ifJackType and rpJackType objects in the (updated) definition
         of MAU-MIB's ifJackTable and rpJackTable respectively.

         Possible values are:
              other(1)          - undefined or unknown
              rj45(2)           - RJ45
              rj45S(3)          - RJ45 shielded
              db9(4)            - DB9
              bnc(5)            - BNC
              fAUI(6)           - AUI female
              mAUI(7)           - AUI male
              fiberSC(8)        - SC fiber
              fiberMIC(9)       - MIC fiber
              fiberST(10)       - ST fiber
              telco(11)         - Telco
              mtrj(12)          - MT-RJ fiber
              hssdc(13)         - fiber channel style-2
              fiberLC(14)       - LC fiber
              cx4(15)           - IB4X for 10GBASE-CX4

         The most recent version of this textual convention is available
         in the online version of this MIB module on the IANA web site.

         Requests for new values should be made to IANA via email
         (iana@iana.org)."
       SYNTAX       INTEGER {
              other(1),
              rj45(2),
              rj45S(3),
              db9(4),
              bnc(5),
              fAUI(6),
              mAUI(7),
              fiberSC(8),
              fiberMIC(9),
              fiberST(10),
              telco(11),
              mtrj(12),
              hssdc(13),
              fiberLC(14),
              -- new since RFC 3636
              cx4(15)
         }

     -- OBJECT IDENTITIES for MAU types
Top   ToC   RFC4836 - Page 55
     --  (see rpMauType and ifMauType of MAU-MIB for usage)
     -- The following definitions has been moved from RFC 3636 and
     -- no longer appear in its revision.

     dot3MauType OBJECT IDENTIFIER ::= { mib-2 snmpDot3MauMgt(26) 4 }

     dot3MauTypeAUI OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "no internal MAU, view from AUI"
       REFERENCE   "[IEEE802.3], Section 7"
       ::= { dot3MauType 1 }

     dot3MauType10Base5 OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "thick coax MAU"
       REFERENCE   "[IEEE802.3], Section 7"
       ::= { dot3MauType 2 }

     dot3MauTypeFoirl OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "FOIRL MAU"
       REFERENCE   "[IEEE802.3], Section 9.9"
       ::= { dot3MauType 3 }

     dot3MauType10Base2 OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "thin coax MAU"
       REFERENCE   "[IEEE802.3], Section 10"
       ::= { dot3MauType 4 }

     dot3MauType10BaseT OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "UTP MAU.
                   Note that it is strongly recommended that
                   agents return either dot3MauType10BaseTHD or
                   dot3MauType10BaseTFD if the duplex mode is
                   known.  However, management applications should
                   be prepared to receive this MAU type value from
                   older agent implementations."
       REFERENCE   "[IEEE802.3], Section 14"
       ::= { dot3MauType 5 }

     dot3MauType10BaseFP OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "passive fiber MAU"
       REFERENCE   "[IEEE802.3], Section 16"
       ::= { dot3MauType 6 }
Top   ToC   RFC4836 - Page 56
     dot3MauType10BaseFB OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "sync fiber MAU"
       REFERENCE   "[IEEE802.3], Section 17"
       ::= { dot3MauType 7 }

     dot3MauType10BaseFL OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "async fiber MAU.
                   Note that it is strongly recommended that
                   agents return either dot3MauType10BaseFLHD or
                   dot3MauType10BaseFLFD if the duplex mode is
                   known.  However, management applications should
                   be prepared to receive this MAU type value from
                   older agent implementations."
       REFERENCE   "[IEEE802.3], Section 18"
       ::= { dot3MauType 8 }

     dot3MauType10Broad36 OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "broadband DTE MAU.
                   Note that 10BROAD36 MAUs can be attached to
                   interfaces but not to repeaters."
       REFERENCE   "[IEEE802.3], Section 11"
       ::= { dot3MauType 9 }

     ------ new since RFC 1515:
     dot3MauType10BaseTHD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "UTP MAU, half duplex mode"
       REFERENCE   "[IEEE802.3], Section 14"
       ::= { dot3MauType 10 }

     dot3MauType10BaseTFD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "UTP MAU, full duplex mode"
       REFERENCE   "[IEEE802.3], Section 14"
       ::= { dot3MauType 11 }

     dot3MauType10BaseFLHD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "async fiber MAU, half duplex mode"
       REFERENCE   "[IEEE802.3], Section 18"
       ::= { dot3MauType 12 }

     dot3MauType10BaseFLFD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "async fiber MAU, full duplex mode"
Top   ToC   RFC4836 - Page 57
       REFERENCE   "[IEEE802.3], Section 18"
       ::= { dot3MauType 13 }

     dot3MauType100BaseT4 OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "4 pair category 3 UTP"
       REFERENCE   "[IEEE802.3], Section 23"
       ::= { dot3MauType 14 }

     dot3MauType100BaseTXHD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "2 pair category 5 UTP, half duplex mode"
       REFERENCE   "[IEEE802.3], Section 25"
       ::= { dot3MauType 15 }

     dot3MauType100BaseTXFD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "2 pair category 5 UTP, full duplex mode"
       REFERENCE   "[IEEE802.3], Section 25"
       ::= { dot3MauType 16 }

     dot3MauType100BaseFXHD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "X fiber over PMT, half duplex mode"
       REFERENCE   "[IEEE802.3], Section 26"
       ::= { dot3MauType 17 }

     dot3MauType100BaseFXFD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "X fiber over PMT, full duplex mode"
       REFERENCE   "[IEEE802.3], Section 26"
       ::= { dot3MauType 18 }

     dot3MauType100BaseT2HD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "2 pair category 3 UTP, half duplex mode"
       REFERENCE   "[IEEE802.3], Section 32"
       ::= { dot3MauType 19 }

     dot3MauType100BaseT2FD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "2 pair category 3 UTP, full duplex mode"
       REFERENCE   "[IEEE802.3], Section 32"
       ::= { dot3MauType 20 }

     ------ new since RFC 2239:
     dot3MauType1000BaseXHD OBJECT-IDENTITY
       STATUS      current
Top   ToC   RFC4836 - Page 58
       DESCRIPTION "PCS/PMA, unknown PMD, half duplex mode"
       REFERENCE   "[IEEE802.3], Section 36"
       ::= { dot3MauType 21 }

     dot3MauType1000BaseXFD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "PCS/PMA, unknown PMD, full duplex mode"
       REFERENCE   "[IEEE802.3], Section 36"
       ::= { dot3MauType 22 }

     dot3MauType1000BaseLXHD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "Fiber over long-wavelength laser, half duplex
                   mode"
       REFERENCE   "[IEEE802.3], Section 38"
       ::= { dot3MauType 23 }

     dot3MauType1000BaseLXFD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "Fiber over long-wavelength laser, full duplex
                   mode"
       REFERENCE   "[IEEE802.3], Section 38"
       ::= { dot3MauType 24 }

     dot3MauType1000BaseSXHD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "Fiber over short-wavelength laser, half
                   duplex mode"
       REFERENCE   "[IEEE802.3], Section 38"
       ::= { dot3MauType 25 }

     dot3MauType1000BaseSXFD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "Fiber over short-wavelength laser, full
                   duplex mode"
       REFERENCE   "[IEEE802.3], Section 38"
       ::= { dot3MauType 26 }

     dot3MauType1000BaseCXHD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "Copper over 150-Ohm balanced cable, half
                   duplex mode"
       REFERENCE   "[IEEE802.3], Section 39"
       ::= { dot3MauType 27 }

     dot3MauType1000BaseCXFD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "Copper over 150-Ohm balanced cable, full
Top   ToC   RFC4836 - Page 59
                   duplex mode"
       REFERENCE   "[IEEE802.3], Section 39"
       ::= { dot3MauType 28 }

     dot3MauType1000BaseTHD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "Four-pair Category 5 UTP, half duplex mode"
       REFERENCE   "[IEEE802.3], Section 40"
       ::= { dot3MauType 29 }

     dot3MauType1000BaseTFD OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "Four-pair Category 5 UTP, full duplex mode"
       REFERENCE   "[IEEE802.3], Section 40"
       ::= { dot3MauType 30 }

     ------ new since RFC 2668:
     dot3MauType10GigBaseX OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "X PCS/PMA, unknown PMD."
       REFERENCE   "[IEEE802.3], Section 48"
       ::= { dot3MauType 31 }

     dot3MauType10GigBaseLX4 OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "X fiber over WWDM optics"
       REFERENCE   "[IEEE802.3], Section 53"
       ::= { dot3MauType 32 }

     dot3MauType10GigBaseR OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "R PCS/PMA, unknown PMD."
       REFERENCE   "[IEEE802.3], Section 49"
       ::= { dot3MauType 33 }

     dot3MauType10GigBaseER OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "R fiber over 1550 nm optics"
       REFERENCE   "[IEEE802.3], Section 52"
       ::= { dot3MauType 34 }

     dot3MauType10GigBaseLR OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "R fiber over 1310 nm optics"
       REFERENCE   "[IEEE802.3], Section 52"
       ::= { dot3MauType 35 }

     dot3MauType10GigBaseSR OBJECT-IDENTITY
Top   ToC   RFC4836 - Page 60
       STATUS      current
       DESCRIPTION "R fiber over 850 nm optics"
       REFERENCE   "[IEEE802.3], Section 52"
       ::= { dot3MauType 36 }

     dot3MauType10GigBaseW OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "W PCS/PMA, unknown PMD."
       REFERENCE   "[IEEE802.3], Section 49 and 50"
       ::= { dot3MauType 37 }

     dot3MauType10GigBaseEW OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "W fiber over 1550 nm optics"
       REFERENCE   "[IEEE802.3], Section 52"
       ::= { dot3MauType 38 }

     dot3MauType10GigBaseLW OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "W fiber over 1310 nm optics"
       REFERENCE   "[IEEE802.3], Section 52"
       ::= { dot3MauType 39 }

     dot3MauType10GigBaseSW OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "W fiber over 850 nm optics"
       REFERENCE   "[IEEE802.3], Section 52"
       ::= { dot3MauType 40 }

     ------ new since RFC 3636:
     dot3MauType10GigBaseCX4 OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "X copper over 8 pair 100-Ohm balanced cable"
       REFERENCE   "[IEEE802.3], Section 54"
       ::= { dot3MauType 41 }

     dot3MauType2BaseTL OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "Voice grade UTP copper, up to 2700m, optional PAF"
       REFERENCE   "[IEEE802.3], Sections 61 and 63"
       ::= { dot3MauType 42 }

     dot3MauType10PassTS OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "Voice grade UTP copper, up to 750m, optional PAF"
       REFERENCE   "[IEEE802.3], Sections 61 and 62"
       ::= { dot3MauType 43 }
Top   ToC   RFC4836 - Page 61
     dot3MauType100BaseBX10D OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "One single-mode fiber OLT, long wavelength, 10km"
       REFERENCE   "[IEEE802.3], Section 58"
       ::= { dot3MauType 44 }

     dot3MauType100BaseBX10U OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "One single-mode fiber ONU, long wavelength, 10km"
       REFERENCE   "[IEEE802.3], Section 58"
       ::= { dot3MauType 45 }

     dot3MauType100BaseLX10 OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "Two single-mode fibers, long wavelength, 10km"
       REFERENCE   "[IEEE802.3], Section 58"
       ::= { dot3MauType 46 }

     dot3MauType1000BaseBX10D OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "One single-mode fiber OLT, long wavelength, 10km"
       REFERENCE   "[IEEE802.3], Section 59"
       ::= { dot3MauType 47 }

     dot3MauType1000BaseBX10U OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "One single-mode fiber ONU, long wavelength, 10km"
       REFERENCE   "[IEEE802.3], Section 59"
       ::= { dot3MauType 48 }

     dot3MauType1000BaseLX10 OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "Two sigle-mode fiber, long wavelength, 10km"
       REFERENCE   "[IEEE802.3], Section 59"
       ::= { dot3MauType 49 }

     dot3MauType1000BasePX10D OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "One single-mode fiber EPON OLT, 10km"
       REFERENCE   "[IEEE802.3], Section 60"
       ::= { dot3MauType 50 }

     dot3MauType1000BasePX10U OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "One single-mode fiber EPON ONU, 10km"
       REFERENCE   "[IEEE802.3], Section 60"
       ::= { dot3MauType 51 }
Top   ToC   RFC4836 - Page 62
     dot3MauType1000BasePX20D OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "One single-mode fiber EPON OLT, 20km"
       REFERENCE   "[IEEE802.3], Section 60"
       ::= { dot3MauType 52 }

     dot3MauType1000BasePX20U OBJECT-IDENTITY
       STATUS      current
       DESCRIPTION "One single-mode fiber EPON ONU, 20km"
       REFERENCE   "[IEEE802.3], Section 60"
       ::= { dot3MauType 53 }

   END

6. Security Considerations

The IANA-MAU-MIB does not define any management objects. Instead, it defines a set of textual conventions which are used by the MAU-MIB and may be used by other MIB modules to define management objects. Meaningful security considerations can only be written for MIB modules that define management objects. There are a number of management objects defined in the MAU-MIB that have a MAX-ACCESS clause of read-write. Setting these objects can have a serious effect on the operation of the network, including: o enabling or disabling a MAU o changing a MAU's default type o enabling, disabling, or restarting autonegotiation o modifying the capabilities that a MAU advertizes during autonegotiation. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. Some of the readable objects in the MAU-MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. In some environments, it may be undesirable to allow unauthorized parties to access statistics or status information about individual links in a network. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP.
Top   ToC   RFC4836 - Page 63
   SNMP versions prior to SNMPv3 did not include adequate security.
   Even if the network itself is secure (for example by using IPsec),
   even then, there is no control as to who on the secure network is
   allowed to access and GET/SET (read/change/create/delete) the objects
   in the MAU-MIB module.

   It is RECOMMENDED that the implementors consider the security
   features as provided by the SNMPv3 framework (see [RFC3410], section
   8), including full support for the SNMPv3 cryptographic mechanisms
   (for authentication and privacy).

   Furthermore, deployment of SNMP versions prior to SNMPv3 is NOT
   RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
   enable cryptographic security.  It is then a customer/operator
   responsibility to ensure that the SNMP entity giving access to an
   instance of the MAU-MIB module is properly configured to give access
   to the objects only to those principals (users) that have legitimate
   rights to indeed GET or SET (change/create/delete) them.

7. IANA Considerations

This document defines first version of the IANA-maintained IANA-MAU- MIB module. It is intended that each new MAU type, Media Available state, Auto Negotiation capability, and/or Jack type defined by the IEEE 802.3 working group and approved for publication in a revision of IEEE Std 802.3 will be added to the IANA-maintaned MIB module, provided that it is suitable for being managed by the base objects in the MAU-MIB module. For each new MAU type added, a short description of the MAU technology and, wherever possible, a reference to a publicly available specification SHOULD be specified. An Expert Review, as defined in RFC 2434 [RFC2434], is REQUIRED, for each modification.

8. Acknowledgments

This document was produced by the IETF Ethernet Interfaces and Hub MIB Working Group, whose efforts were greatly advanced by the contributions of the following people: Mike Heard John Flick Dan Romascanu This document is based on the Proposed Standard MAU MIB, RFC 3636 [RFC3636], edited by John Flick of Hewlett-Packard, and produced by
Top   ToC   RFC4836 - Page 64
   the Ethernet Interfaces and Hub MIB Working Group.  It extends that
   document by moving the object identities and textual conventions for
   MAU types into a IANA-maintained MIB module.  In addition, support is
   provided for the EFM and 10GBASE-CX4 MAUs as defined in [IEEE802.3ah]
   and [IEEE802.3ak] respectively.

   RFC 3636, in turn, was based on the Proposed Standard MAU MIB, RFC
   2668 [RFC2668], edited by John Flick of Hewlett-Packard and Andrew
   Smith, then of Extreme Networks, and produced by the Ethernet
   Interfaces and Hub MIB Working Group.  It extends that document by
   providing support for 10 Gb/s MAUs as defined in [IEEE802.3ae].

   RFC 2668, in turn, was based on the Proposed Standard MAU MIB, RFC
   2239 [RFC2239], edited by Kathryn de Graaf, then of 3Com, and Dan
   Romascanu, then of Madge Networks, and produced by the Ethernet
   Interfaces and Hub MIB Working Group.  It extended that document by
   providing support for 1000 Mb/sec MAUs, PAUSE negotiation and remote
   fault status as defined in [IEEE802.3].

   RFC 2239, in turn, was based on the Proposed Standard MAU MIB, RFC
   1515 [RFC1515], edited by Donna McMaster, then of SynOptics
   Communications, Keith McCloghrie, then of Hughes LAN Systems, and Sam
   Roberts, then of Farallon Computing, and produced by the Hub MIB
   Working Group.  It extends that document by providing support for 100
   Mb/sec MAUs, full duplex MAUs, auto-negotiation, and jack management
   as defined in [IEEE802.3].

9. References

9.1. Normative References

[IEEE802.3] IEEE, "IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications", IEEE Std 802.3-2005, December 2005. [IEEE802.3ae] IEEE, "IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications - Media Access Control (MAC) Parameters, Physical Layer and Management Parameters for 10 Gb/s Operation", IEEE Std 802.3ae-2002, August 2002.
Top   ToC   RFC4836 - Page 65
   [IEEE802.3ah]  IEEE, "Information technology - Telecommunications and
                  information exchange between systems - Local and
                  metropolitan area networks - Specific requirements -
                  Part 3: Carrier sense multiple access with collision
                  detection (CSMA/CD) access method and physical layer
                  specifications - Media Access Control Parameters,
                  Physical Layers and Management Parameters for
                  Subscriber Access Networks", IEEE Std 802.3ah-2004,
                  September 2004.

   [IEEE802.3ak]  IEEE, "IEEE Standard for Information technology -
                  Telecommunications and information exchange between
                  systems - Local and metropolitan area networks -
                  Specific requirements - Part 3: Carrier sense multiple
                  access with collision detection (CSMA/CD) access
                  method and physical layer specifications - Physical
                  Layer and Management Parameters for 10Gb/s Operation,
                  Type 10GBASE-CX4", IEEE Std 802.3ak-2004, March 2004.

   [RFC2108]      de Graaf, K., Romascanu, D., McMaster, D., and K.
                  McCloghrie, "Definitions of Managed Objects for IEEE
                  802.3 Repeater Devices using SMIv2", RFC 2108,
                  February 1997.

   [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2434]      Narten, T. and H. Alvestrand, "Guidelines for Writing
                  an IANA Considerations Section in RFCs", BCP 26,
                  RFC 2434, October 1998.

   [RFC2578]      McCloghrie, K., Ed., Perkins, D., Ed., and J.
                  Schoenwaelder, Ed., "Structure of Management
                  Information Version 2 (SMIv2)", STD 58, RFC 2578,
                  April 1999.

   [RFC2579]      McCloghrie, K., Ed., Perkins, D., Ed., and J.
                  Schoenwaelder, Ed., "Textual Conventions for SMIv2",
                  STD 58, RFC 2579, April 1999.

   [RFC2580]      McCloghrie, K., Perkins, D., and J. Schoenwaelder,
                  "Conformance Statements for SMIv2", STD 58, RFC 2580,
                  April 1999.

   [RFC2863]      McCloghrie, K. and F. Kastenholz, "The Interfaces
                  Group MIB", RFC 2863, June 2000.
Top   ToC   RFC4836 - Page 66
   [RFC3635]      Flick, J., "Definitions of Managed Objects for the
                  Ethernet-like Interface Types", RFC 3635,
                  September 2003.

9.2. Informative References

[RFC1515] McMaster, D., McCloghrie, K., and S. Roberts, "Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs)", RFC 1515, September 1993. [RFC2239] de Graaf, K., Romascanu, D., McMaster, D., McCloghrie, K., and S. Roberts, "Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs) using SMIv2", RFC 2239, November 1997. [RFC2668] Smith, A., Flick, J., de Graaf, K., Romascanu, D., McMaster, D., McCloghrie, K., and S. Roberts, "Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs)", RFC 2668, August 1999. [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet-Standard Management Framework", RFC 3410, December 2002. [RFC3418] Presuhn, R., "Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)", STD 62, RFC 3418, December 2002. [RFC3636] Flick, J., "Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs)", RFC 3636, September 2003. [RFC3637] Heard, C., "Definitions of Managed Objects for the Ethernet WAN Interface Sublayer", RFC 3637, September 2003.

Author's Address

Edward Beili Actelis Networks Bazel 25 Petach-Tikva Israel Phone: +972-3-924-3491 EMail: edward.beili@actelis.com
Top   ToC   RFC4836 - Page 67
Full Copyright Statement

   Copyright (C) The IETF Trust (2007).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.