Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 2668

Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs)

Pages: 56
Obsoletes:  2239
Obsoleted by:  3636
Part 1 of 2 – Pages 1 to 26
None   None   Next

ToP   noToC   RFC2668 - Page 1
Network Working Group                                           A. Smith
Request for Comments: 2668                        Extreme Networks, Inc.
Obsoletes: 2239                                                 J. Flick
Category: Standards Track                        Hewlett-Packard Company
                                                             K. de Graaf
                                                          Argon Networks
                                                            D. Romascanu
                                                     Lucent Technologies
                                                             D. McMaster
                                                     Cisco Systems, Inc.
                                                           K. McCloghrie
                                                     Cisco Systems, Inc.
                                                              S. Roberts
                                                Farallon Computing, Inc.
                                                             August 1999


                   Definitions of Managed Objects for
               IEEE 802.3 Medium Attachment Units (MAUs)

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. This memo obsoletes RFC 2239, "Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs) using SMIv2". This memo extends that specification by including management information useful for the management of 1000 Mb/s MAUs. Ethernet technology, as defined by the 802.3 Working Group of the IEEE, continues to evolve, with scalable increases in speed, new types of cabling and interfaces, and new features. This evolution may require changes in the managed objects in order to reflect this new functionality. This document, as with other documents issued by this working group, reflects a certain stage in the evolution of Ethernet technology. In the future, this document might be revised,
ToP   noToC   RFC2668 - Page 2
   or new documents might be issued by the Ethernet Interfaces and Hub
   MIB Working Group, in order to reflect the evolution of Ethernet
   technology.

Table of Contents

1. Introduction ............................................... 2 2. The SNMP Management Framework .............................. 3 3. Overview ................................................... 4 3.1. Relationship to RFC 2239 ................................. 4 3.2. Relationship to RFC 1515 ................................. 4 3.3. MAU Management ........................................... 4 3.4. Relationship to Other MIBs ............................... 5 3.4.1. Relationship to the Interfaces MIB ..................... 5 3.4.2. Relationship to the 802.3 Repeater MIB ................. 5 3.5. Management of Internal MAUs .............................. 5 4. Definitions ................................................ 6 5. Intellectual Property ...................................... 49 6. Acknowledgements ........................................... 49 7. References ................................................. 50 8. Security Considerations .................................... 52 9. Authors' Addresses ......................................... 53 10. Appendix: Change Log ....................................... 55 11. Full Copyright Statement .................................. 56

1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines objects for managing IEEE 802.3 Medium Attachment Units (MAUs). This memo also includes a MIB module. This MIB module extends the list of managed objects specified in the earlier version of this MIB: RFC 2239 [21]. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [20].
ToP   noToC   RFC2668 - Page 3

2. The SNMP Management Framework

The SNMP Management Framework presently consists of five major components: o An overall architecture, described in RFC 2571 [1]. o Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The second version, called SMIv2, is described in STD 58, RFC 2578 [5], STD 58, RFC 2579 [6] and STD 58, RFC 2580 [7]. o Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in STD 15, RFC 1157 [8]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [10], RFC 2572 [11] and RFC 2574 [12]. o Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [8]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [13]. o A set of fundamental applications described in RFC 2573 [14] and the view-based access control mechanism described in RFC 2575 [15]. Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI. This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64). Some machine readable information in SMIv2 will be converted into textual descriptions in SMIv1 during the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB.
ToP   noToC   RFC2668 - Page 4

3. Overview

3.1. Relationship to RFC 2239

This MIB is intended to be a superset of that defined by RFC 2239 [21], which will go to historic status. This MIB includes all of the objects contained in that MIB, plus several new ones which provide additional capabilities. Implementors are encouraged to support all applicable conformance groups in order to make the best use of the new functionality provided by this MIB. The new objects provide management support for: o management of 1000 Mb/s devices o management of PAUSE negotiation o management of remote fault status

3.2. Relationship to RFC 1515

RFC 2239 was a replacement for RFC 1515 [22], which is now historic. RFC 2239 defined a superset of RFC 1515 which contained all of the objects defined in RFC 1515, plus several new ones which provided additional capabilities. The new objects in RFC 2239 provided management support for: o management of 100 Mb/s devices o auto-negotiation on interface MAUs o jack management

3.3. MAU Management

Instances of these object types represent attributes of an IEEE 802.3 MAU. Several types of MAUs are defined in the IEEE 802.3 CSMA/CD standard [16]. These MAUs may be connected to IEEE 802.3 repeaters or to 802.3 (Ethernet-like) interfaces. For convenience this document refers to these devices as "repeater MAUs" and "interface MAUs." The definitions presented here are based on Section 30.5, "Layer Management for 10, 100 & 1000 Mb/s Medium Attachment Units (MAUs)", and Annex 30A, "GDMO Specifications for 802.3 managed object classes" of IEEE Std. 802.3, 1998 edition [16]. That specification includes definitions for 10Mb/s, 100Mb/s and 1000Mb/s devices. This specification is intended to serve the same purpose: to provide for management of all types of Ethernet/802.3 MAUs.
ToP   noToC   RFC2668 - Page 5

3.4. Relationship to Other MIBs

It is assumed that an agent implementing this MIB will also implement (at least) the 'system' group defined in MIB-II [18]. The following sections identify other MIBs that such an agent should implement.

3.4.1. Relationship to the Interfaces MIB.

The sections of this document that define interface MAU-related objects specify an extension to the Interfaces MIB [19]. An agent implementing these interface-MAU related objects MUST also implement the relevant groups of Interface MIB. The value of the object ifMauIfIndex is the same as the value of 'ifIndex' used to instantiate the interface to which the given MAU is connected. It is expected that an agent implementing the interface-MAU related objects in this MIB will also implement the Ethernet-like Interfaces MIB, [23]. (Note that repeater ports are not represented as interfaces in the Interface MIB.)

3.4.2. Relationship to the 802.3 Repeater MIB

The section of this document that defines repeater MAU-related objects specifies an extension to the 802.3 Repeater MIB defined in [17]. An agent implementing these repeater-MAU related objects MUST also implement the 802.3 Repeater MIB. The values of 'rpMauGroupIndex' and 'rpMauPortIndex' used to instantiate a repeater MAU variable SHALL be the same as the values of 'rptrPortGroupIndex' and 'rptrPortIndex' used to instantiate the port to which the given MAU is connected.

3.5. Management of Internal MAUs

In some situations, a MAU can be "internal" -- i.e., its functionality is implemented entirely within a device. For example, a managed repeater may contain an internal repeater-MAU and/or an internal interface-MAU through which management communications originating on one of the repeater's external ports pass in order to reach the management agent associated with the repeater. Such internal MAUs may or may not be managed. If they are managed, objects describing their attributes should appear in the appropriate MIB subtree: dot3RpMauBasicGroup for internal repeater-MAUs and dot3IfMauBasicGroup for internal interface-MAUs.
ToP   noToC   RFC2668 - Page 6

4. Definitions

MAU-MIB DEFINITIONS ::= BEGIN IMPORTS Counter32, Integer32, OBJECT-TYPE, MODULE-IDENTITY, NOTIFICATION-TYPE, OBJECT-IDENTITY, mib-2 FROM SNMPv2-SMI TruthValue, TEXTUAL-CONVENTION FROM SNMPv2-TC OBJECT-GROUP, MODULE-COMPLIANCE, NOTIFICATION-GROUP FROM SNMPv2-CONF; mauMod MODULE-IDENTITY LAST-UPDATED "9908240400Z" -- August 24, 1999 ORGANIZATION "IETF Ethernet Interfaces and Hub MIB Working Group" CONTACT-INFO "WG E-mail: hubmib@hprnd.rose.hp.com To subscribe: hubmib-request@hprnd.rose.hp.com Chair: Dan Romascanu Postal: Lucent Technologies Atidim Technology Park, Bldg. 3 Tel Aviv 61131 Israel Tel: +972 3 645 8414, 6458458 Fax: +972 3 648 7146 E-mail: dromasca@lucent.com Editors: Andrew Smith Postal: Extreme Networks, Inc. 10460 Bandley Drive Cupertino, CA 95014 USA Tel: +1 408 579-2821 E-mail: andrew@extremenetworks.com John Flick Postal: Hewlett-Packard Company 8000 Foothills Blvd. M/S 5557 Roseville, CA 95747-5557 USA Tel: +1 916 785 4018 Fax: +1 916 785 1199 E-mail: johnf@rose.hp.com
ToP   noToC   RFC2668 - Page 7
                          Kathryn de Graaf
                  Postal: Argon Networks
                          25 Porter Road
                          Littleton, MA  01460
                          USA
                     Tel: +1 978 486 0665 x163
                     Fax: +1 978 486 9379
                  E-mail: kdegraaf@argon.com"
          DESCRIPTION "Management information for 802.3 MAUs.

                      The following reference is used throughout
                      this MIB module:

                      [IEEE 802.3 Std] refers to
                         IEEE Std 802.3, 1998 Edition: 'Information
                         technology - Telecommunications and
                         information exchange between systems -
                         Local and metropolitan area networks -
                         Specific requirements - Part 3: Carrier
                         sense multiple access with collision
                         detection (CSMA/CD) access method and
                         physical layer specifications',
                         September 1998.

                      Of particular interest is Clause 30, '10Mb/s,
                      100Mb/s and 1000Mb/s Management'."

          REVISION    "9908240400Z" -- August 24, 1999
          DESCRIPTION "This version published as RFC 2668. Updated
                       to include support for 1000 Mb/sec
                       MAUs and flow control negotiation."

          REVISION    "9710310000Z" -- October 31, 1997
          DESCRIPTION "This version published as RFC 2239."

          REVISION    "9309300000Z" -- September 30, 1993
          DESCRIPTION "Initial version, published as RFC 1515."

          ::= { snmpDot3MauMgt 6 }

      snmpDot3MauMgt OBJECT IDENTIFIER ::= { mib-2 26 }

      -- textual conventions

      JackType ::= TEXTUAL-CONVENTION
          STATUS      current
          DESCRIPTION "Common enumeration values for repeater
                      and interface MAU jack types."
ToP   noToC   RFC2668 - Page 8
          SYNTAX      INTEGER {
                          other(1),
                          rj45(2),
                          rj45S(3), -- rj45 shielded
                          db9(4),
                          bnc(5),
                          fAUI(6),  -- female aui
                          mAUI(7),  -- male aui
                          fiberSC(8),
                          fiberMIC(9),
                          fiberST(10),
                          telco(11),
                          mtrj(12),  -- fiber MT-RJ
                          hssdc(13)  -- fiber channel style-2
                      }

      dot3RpMauBasicGroup
          OBJECT IDENTIFIER ::= { snmpDot3MauMgt 1 }
      dot3IfMauBasicGroup
          OBJECT IDENTIFIER ::= { snmpDot3MauMgt 2 }
      dot3BroadMauBasicGroup
          OBJECT IDENTIFIER ::= { snmpDot3MauMgt 3 }

      dot3IfMauAutoNegGroup
          OBJECT IDENTIFIER ::= { snmpDot3MauMgt 5 }

      -- object identities for MAU types
      --  (see rpMauType and ifMauType for usage)

      dot3MauType
          OBJECT IDENTIFIER ::= { snmpDot3MauMgt 4 }

      dot3MauTypeAUI OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "no internal MAU, view from AUI"
          ::= { dot3MauType 1 }

      dot3MauType10Base5 OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "thick coax MAU (per 802.3 section 8)"
          ::= { dot3MauType 2 }
      dot3MauTypeFoirl OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "FOIRL MAU (per 802.3 section 9.9)"
          ::= { dot3MauType 3 }

      dot3MauType10Base2 OBJECT-IDENTITY
          STATUS      current
ToP   noToC   RFC2668 - Page 9
          DESCRIPTION "thin coax MAU (per 802.3 section 10)"
          ::= { dot3MauType 4 }

      dot3MauType10BaseT OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "UTP MAU (per 802.3 section 14).
                      Note that it is strongly recommended that
                      agents return either dot3MauType10BaseTHD or
                      dot3MauType10BaseTFD if the duplex mode is
                      known.  However, management applications should
                      be prepared to receive this MAU type value from
                      older agent implementations."
          ::= { dot3MauType 5 }

      dot3MauType10BaseFP OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "passive fiber MAU (per 802.3 section 16)"
          ::= { dot3MauType 6 }

      dot3MauType10BaseFB OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "sync fiber MAU (per 802.3 section 17)"
          ::= { dot3MauType 7 }

      dot3MauType10BaseFL OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "async fiber MAU (per 802.3 section 18)
                      Note that it is strongly recommended that
                      agents return either dot3MauType10BaseFLHD or
                      dot3MauType10BaseFLFD if the duplex mode is
                      known.  However, management applications should
                      be prepared to receive this MAU type value from
                      older agent implementations."
          ::= { dot3MauType 8 }

      dot3MauType10Broad36 OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "broadband DTE MAU (per 802.3 section 11).
                      Note that 10BROAD36 MAUs can be attached to
                      interfaces but not to repeaters."
          ::= { dot3MauType 9 }
      ------ new since RFC 1515:
      dot3MauType10BaseTHD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "UTP MAU (per 802.3 section 14), half duplex
                      mode"
          ::= { dot3MauType 10 }
ToP   noToC   RFC2668 - Page 10
      dot3MauType10BaseTFD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "UTP MAU (per 802.3 section 14), full duplex
                      mode"
          ::= { dot3MauType 11 }

      dot3MauType10BaseFLHD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "async fiber MAU (per 802.3 section 18), half
                      duplex mode"
          ::= { dot3MauType 12 }

      dot3MauType10BaseFLFD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "async fiber MAU (per 802.3 section 18), full
                      duplex mode"
          ::= { dot3MauType 13 }

      dot3MauType100BaseT4 OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "4 pair categ. 3 UTP (per 802.3 section 23)"
          ::= { dot3MauType 14 }

      dot3MauType100BaseTXHD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "2 pair categ. 5 UTP (per 802.3 section 25),
                      half duplex mode"
          ::= { dot3MauType 15 }

      dot3MauType100BaseTXFD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "2 pair categ. 5 UTP (per 802.3 section 25),
                      full duplex mode"
          ::= { dot3MauType 16 }

      dot3MauType100BaseFXHD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "X fiber over PMT (per 802.3 section 26), half
                      duplex mode"
          ::= { dot3MauType 17 }
      dot3MauType100BaseFXFD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "X fiber over PMT (per 802.3 section 26), full
                      duplex mode"
          ::= { dot3MauType 18 }

      dot3MauType100BaseT2HD OBJECT-IDENTITY
          STATUS      current
ToP   noToC   RFC2668 - Page 11
          DESCRIPTION "2 pair categ. 3 UTP (per 802.3 section 32),
                      half duplex mode"
          ::= { dot3MauType 19 }

      dot3MauType100BaseT2FD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "2 pair categ. 3 UTP (per 802.3 section 32),
                      full duplex mode"
          ::= { dot3MauType 20 }

      ------ new since RFC 2239:

      dot3MauType1000BaseXHD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "PCS/PMA (per 802.3 section 36), unknown PMD,
                      half duplex mode"
          ::= { dot3MauType 21 }

      dot3MauType1000BaseXFD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "PCS/PMA (per 802.3 section 36), unknown PMD,
                      full duplex mode"
          ::= { dot3MauType 22 }

      dot3MauType1000BaseLXHD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "Fiber over long-wavelength laser (per 802.3
                      section 38), half duplex mode"
          ::= { dot3MauType 23 }

      dot3MauType1000BaseLXFD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "Fiber over long-wavelength laser (per 802.3
                      section 38), full duplex mode"
          ::= { dot3MauType 24 }

      dot3MauType1000BaseSXHD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "Fiber over short-wavelength laser (per 802.3
                      section 38), half duplex mode"
          ::= { dot3MauType 25 }

      dot3MauType1000BaseSXFD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "Fiber over short-wavelength laser (per 802.3
                      section 38), full duplex mode"
          ::= { dot3MauType 26 }
ToP   noToC   RFC2668 - Page 12
      dot3MauType1000BaseCXHD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "Copper over 150-Ohm balanced cable (per 802.3
                      section 39), half duplex mode"
          ::= { dot3MauType 27 }

      dot3MauType1000BaseCXFD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "Copper over 150-Ohm balanced cable (per 802.3
                      section 39), full duplex mode"
          ::= { dot3MauType 28 }

      dot3MauType1000BaseTHD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "Four-pair Category 5 UTP (per 802.3 section
                      40), half duplex mode"
          ::= { dot3MauType 29 }

      dot3MauType1000BaseTFD OBJECT-IDENTITY
          STATUS      current
          DESCRIPTION "Four-pair Category 5 UTP (per 802.3 section
                      40), full duplex mode"
          ::= { dot3MauType 30 }

      --
      -- The Basic Repeater MAU Table
      --

      rpMauTable OBJECT-TYPE
          SYNTAX      SEQUENCE OF RpMauEntry
          MAX-ACCESS  not-accessible
          STATUS      current
          DESCRIPTION "Table of descriptive and status information
                      about the MAU(s) attached to the ports of a
                      repeater."
          ::= { dot3RpMauBasicGroup 1 }

      rpMauEntry OBJECT-TYPE
          SYNTAX      RpMauEntry
          MAX-ACCESS  not-accessible
          STATUS      current
          DESCRIPTION "An entry in the table, containing information
                      about a single MAU."
          INDEX       { rpMauGroupIndex,
                        rpMauPortIndex,
                        rpMauIndex
                      }
          ::= { rpMauTable 1 }
ToP   noToC   RFC2668 - Page 13
      RpMauEntry ::=
          SEQUENCE {
              rpMauGroupIndex                     Integer32,
              rpMauPortIndex                      Integer32,
              rpMauIndex                          Integer32,
              rpMauType                           OBJECT IDENTIFIER,
              rpMauStatus                         INTEGER,
              rpMauMediaAvailable                 INTEGER,
              rpMauMediaAvailableStateExits       Counter32,
              rpMauJabberState                    INTEGER,
              rpMauJabberingStateEnters           Counter32,
              rpMauFalseCarriers                  Counter32
      }

      rpMauGroupIndex OBJECT-TYPE
          SYNTAX      Integer32 (1..2147483647)
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "This variable uniquely identifies the group
                      containing the port to which the MAU described
                      by this entry is connected.

                      Note:  In practice, a group will generally be
                      a field-replaceable unit (i.e., module, card,
                      or board) that can fit in the physical system
                      enclosure, and the group number will correspond
                      to a number marked on the physical enclosure.

                      The group denoted by a particular value of this
                      object is the same as the group denoted by the
                      same value of rptrGroupIndex."
          REFERENCE   "Reference RFC 2108, rptrGroupIndex."
          ::= { rpMauEntry 1 }

      rpMauPortIndex OBJECT-TYPE
          SYNTAX      Integer32 (1..2147483647)
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "This variable uniquely identifies the repeater
                      port within group rpMauGroupIndex to which the
                      MAU described by this entry is connected."
          REFERENCE   "Reference RFC 2108, rptrPortIndex."
          ::= { rpMauEntry 2 }

      rpMauIndex OBJECT-TYPE
          SYNTAX      Integer32 (1..2147483647)
          MAX-ACCESS  read-only
          STATUS      current
ToP   noToC   RFC2668 - Page 14
          DESCRIPTION "This variable uniquely identifies the MAU
                      described by this entry from among other
                      MAUs connected to the same port
                      (rpMauPortIndex)."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.1, aMAUID."
          ::= { rpMauEntry 3 }

      rpMauType OBJECT-TYPE
          SYNTAX      OBJECT IDENTIFIER
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "This object identifies the MAU type.  An
                      initial set of MAU types are defined above.  The
                      assignment of OBJECT IDENTIFIERs to new types of
                      MAUs is managed by the IANA.  If the MAU type is
                      unknown, the object identifier

                      unknownMauType OBJECT IDENTIFIER ::= { 0 0 }

                      is returned.  Note that unknownMauType is a
                      syntactically valid object identifier, and any
                      conformant implementation of ASN.1 and the BER
                      must be able to generate and recognize this
                      value."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.2, aMAUType."
          ::= { rpMauEntry 4 }

      rpMauStatus OBJECT-TYPE
          SYNTAX      INTEGER {
                          other(1),
                          unknown(2),
                          operational(3),
                          standby(4),
                          shutdown(5),
                          reset(6)
                      }
          MAX-ACCESS  read-write
          STATUS      current
          DESCRIPTION "The current state of the MAU.  This object MAY
                      be implemented as a read-only object by those
                      agents and MAUs that do not implement software
                      control of the MAU state.  Some agents may not
                      support setting the value of this object to some
                      of the enumerated values.

                      The value other(1) is returned if the MAU is in
                      a state other than one of the states 2 through
                      6.
ToP   noToC   RFC2668 - Page 15
                      The value unknown(2) is returned when the MAU's
                      true state is unknown; for example, when it is
                      being initialized.

                      A MAU in the operational(3) state is fully
                      functional, operates, and passes signals to its
                      attached DTE or repeater port in accordance to
                      its specification.

                      A MAU in standby(4) state forces DI and CI to
                      idle and the media transmitter to idle or fault,
                      if supported.  Standby(4) mode only applies to
                      link type MAUs.  The state of
                      rpMauMediaAvailable is unaffected.

                      A MAU in shutdown(5) state assumes the same
                      condition on DI, CI, and the media transmitter
                      as though it were powered down or not connected.
                      The MAU MAY return other(1) value for the
                      rpMauJabberState and rpMauMediaAvailable objects
                      when it is in this state.  For an AUI, this
                      state will remove power from the AUI.

                      Setting this variable to the value reset(6)
                      resets the MAU in the same manner as a
                      power-off, power-on cycle of at least one-half
                      second would.  The agent is not required to
                      return the value reset (6).

                      Setting this variable to the value
                      operational(3), standby(4), or shutdown(5)
                      causes the MAU to assume the respective state
                      except that setting a mixing-type MAU or an AUI
                      to standby(4) will cause the MAU to enter the
                      shutdown state."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.7, aMAUAdminState,
                          30.5.1.2.2, acMAUAdminControl, and 30.5.1.2.1,
                      acResetMAU."
          ::= { rpMauEntry 5 }

      rpMauMediaAvailable OBJECT-TYPE
          SYNTAX      INTEGER {
                          other(1),
                          unknown(2),
                          available(3),
                          notAvailable(4),
                          remoteFault(5),
                          invalidSignal(6),
ToP   noToC   RFC2668 - Page 16
                          remoteJabber(7),
                          remoteLinkLoss(8),
                          remoteTest(9),
                          offline(10),
                          autoNegError(11)
                      }
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "If the MAU is a link or fiber type (FOIRL,
                      10BASE-T, 10BASE-F) then this is equivalent to
                      the link test fail state/low light function.
                      For an AUI or a coax (including broadband) MAU
                      this indicates whether or not loopback is
                      detected on the DI circuit.  The value of this
                      attribute persists between packets for MAU types
                      AUI, 10BASE5, 10BASE2, 10BROAD36, and 10BASE-FP.

                      The value other(1) is returned if the
                      mediaAvailable state is not one of 2 through 11.

                      The value unknown(2) is returned when the MAU's
                      true state is unknown; for example, when it is
                      being initialized.  At power-up or following a
                      reset, the value of this attribute will be
                      unknown for AUI, coax, and 10BASE-FP MAUs.  For
                      these MAUs loopback will be tested on each
                      transmission during which no collision is
                      detected.  If DI is receiving input when DO
                      returns to IDL after a transmission and there
                      has been no collision during the transmission
                      then loopback will be detected.  The value of
                      this attribute will only change during
                      non-collided transmissions for AUI, coax, and
                      10BASE-FP MAUs.

                      For 100Mbps and 1000Mbps MAUs, the enumerations
                      match the states within the respective link
                      integrity state diagrams, fig 32-16, 23-12 and
                      24-15 of sections 32, 23 and 24 of [16].  Any
                      MAU which implements management of
                      auto-negotiation will map remote fault
                      indication to remote fault.

                      The value available(3) indicates that the link,
                      light, or loopback is normal.  The value
                      notAvailable(4) indicates link loss, low light,
                      or no loopback.
ToP   noToC   RFC2668 - Page 17
                      The value remoteFault(5) indicates that a fault
                      has been detected at the remote end of the link.
                      This value applies to 10BASE-FB, 100BASE-T4 Far
                      End Fault Indication and non-specified remote
                      faults from a system running auto-negotiation.
                      The values remoteJabber(7), remoteLinkLoss(8),
                      and remoteTest(9) SHOULD be used instead of
                      remoteFault(5) where the reason for remote fault
                      is identified in the remote signaling protocol.

                      The value invalidSignal(6) indicates that an
                      invalid signal has been received from the other
                      end of the link.  InvalidSignal(6) applies only
                      to MAUs of type 10BASE-FB.

                      Where an IEEE Std 802.3u-1995 clause 22 MII
                      is present, a logic one in the remote fault bit
                      (reference section 22.2.4.2.8 of that document)
                      maps to the value remoteFault(5), and a logic
                      zero in the link status bit (reference section
                      22.2.4.2.10 of that document) maps to the value
                      notAvailable(4).  The value notAvailable(4)
                      takes precedence over the value remoteFault(5).

                      Any MAU that implements management of clause 37
                      Auto-Negotiation will map the received Remote
                      Fault (RF1 and RF2) bit values for Offline to
                      offline(10), Link Failure to remoteFault(5) and
                      Auto-Negotiation Error to autoNegError(11)."

          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.4, aMediaAvailable."
          ::= { rpMauEntry 6 }

      rpMauMediaAvailableStateExits OBJECT-TYPE
          SYNTAX      Counter32
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "A count of the number of times that
                      rpMauMediaAvailable for this MAU instance leaves
                      the state available(3).

                      Discontinuities in the value of this counter can
                      occur at re-initialization of the management
                      system, and at other times as indicated by the
                      value of rptrMonitorPortLastChange."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.5,
                      aLoseMediaCounter.
                      RFC 2108, rptrMonitorPortLastChange"
ToP   noToC   RFC2668 - Page 18
          ::= { rpMauEntry 7 }

      rpMauJabberState OBJECT-TYPE
          SYNTAX      INTEGER {
                          other(1),
                          unknown(2),
                          noJabber(3),
                          jabbering(4)
                      }
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "The value other(1) is returned if the jabber
                      state is not 2, 3, or 4.  The agent MUST always
                      return other(1) for MAU type dot3MauTypeAUI.

                      The value unknown(2) is returned when the MAU's
                      true state is unknown; for example, when it is
                      being initialized.

                      If the MAU is not jabbering the agent returns
                      noJabber(3).  This is the 'normal' state.

                      If the MAU is in jabber state the agent returns
                      the jabbering(4) value."
          REFERENCE "[IEEE 802.3 Std], 30.5.1.1.6,
                    aJabber.jabberFlag."
          ::= { rpMauEntry 8 }

      rpMauJabberingStateEnters OBJECT-TYPE
          SYNTAX      Counter32
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "A count of the number of times that
                      mauJabberState for this MAU instance enters the
                      state jabbering(4).  For MAUs of type
                      dot3MauTypeAUI, dot3MauType100BaseT4,
                      dot3MauType100BaseTX, dot3MauType100BaseFX and
                          all 1000Mbps types, this counter will always
                          indicate zero.

                          Discontinuities in the value of this counter
                          can occur at re-initialization of the
                          management system, and at other times as
                          indicated by the value of
                          rptrMonitorPortLastChange."
              REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.6,
                          aJabber.jabberCounter.
                          RFC 2108, rptrMonitorPortLastChange"
ToP   noToC   RFC2668 - Page 19
          ::= { rpMauEntry 9 }

      rpMauFalseCarriers OBJECT-TYPE
          SYNTAX      Counter32
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "A count of the number of false carrier events
                      during IDLE in 100BASE-X links.  This counter
                      does not increment at the symbol rate.  It can
                      increment after a valid carrier completion at a
                      maximum rate of once per 100 ms until the next
                      carrier event.

                      This counter increments only for MAUs of type
                      dot3MauType100BaseT4, dot3MauType100BaseTX, and
                      dot3MauType100BaseFX and all 1000Mbps types.
                      For all other MAU types, this counter will
                      always indicate zero.

                      The approximate minimum time for rollover of
                      this counter is 7.4 hours.

                      Discontinuities in the value of this counter can
                      occur at re-initialization of the management
                      system, and at other times as indicated by the
                      value of rptrMonitorPortLastChange."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.10, aFalseCarriers.
                      RFC 2108, rptrMonitorPortLastChange"
          ::= { rpMauEntry 10 }

      -- The rpJackTable applies to MAUs attached to repeaters
      -- which have one or more external jacks (connectors).

      rpJackTable OBJECT-TYPE
          SYNTAX      SEQUENCE OF RpJackEntry
          MAX-ACCESS  not-accessible
          STATUS      current
          DESCRIPTION "Information about the external jacks attached
                      to MAUs attached to the ports of a repeater."
          ::= { dot3RpMauBasicGroup 2 }

      rpJackEntry OBJECT-TYPE
          SYNTAX      RpJackEntry
          MAX-ACCESS  not-accessible
          STATUS      current
          DESCRIPTION "An entry in the table, containing information
                      about a particular jack."
          INDEX       { rpMauGroupIndex,
ToP   noToC   RFC2668 - Page 20
                        rpMauPortIndex,
                        rpMauIndex,
                        rpJackIndex
                      }
          ::= { rpJackTable 1 }

      RpJackEntry ::=
          SEQUENCE {
              rpJackIndex                         Integer32,
              rpJackType                          JackType
          }

      rpJackIndex OBJECT-TYPE
          SYNTAX      Integer32 (1..2147483647)
          MAX-ACCESS  not-accessible
          STATUS      current
          DESCRIPTION "This variable uniquely identifies the jack
                      described by this entry from among other jacks
                      attached to the same MAU (rpMauIndex)."
          ::= { rpJackEntry 1 }

      rpJackType OBJECT-TYPE
          SYNTAX      JackType
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "The jack connector type, as it appears on the
                      outside of the system."
          ::= { rpJackEntry 2 }

      --
      -- The Basic Interface MAU Table
      --

      ifMauTable OBJECT-TYPE
          SYNTAX      SEQUENCE OF IfMauEntry
          MAX-ACCESS  not-accessible
          STATUS      current
          DESCRIPTION "Table of descriptive and status information
                      about MAU(s) attached to an interface."
          ::= { dot3IfMauBasicGroup 1 }

      ifMauEntry OBJECT-TYPE
          SYNTAX      IfMauEntry
          MAX-ACCESS  not-accessible
          STATUS      current
          DESCRIPTION "An entry in the table, containing information
                      about a single MAU."
          INDEX       { ifMauIfIndex,
ToP   noToC   RFC2668 - Page 21
                        ifMauIndex
                      }
          ::= { ifMauTable 1 }

      IfMauEntry ::=
          SEQUENCE {
              ifMauIfIndex                        Integer32,
              ifMauIndex                          Integer32,
              ifMauType                           OBJECT IDENTIFIER,
              ifMauStatus                         INTEGER,
              ifMauMediaAvailable                 INTEGER,
              ifMauMediaAvailableStateExits       Counter32,
              ifMauJabberState                    INTEGER,
              ifMauJabberingStateEnters           Counter32,
              ifMauFalseCarriers                  Counter32,
              ifMauTypeList                       Integer32,
              ifMauDefaultType                    OBJECT IDENTIFIER,
              ifMauAutoNegSupported               TruthValue,
              ifMauTypeListBits                   BITS
          }

      ifMauIfIndex OBJECT-TYPE
          SYNTAX      Integer32 (1..2147483647)
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "This variable uniquely identifies the interface
                      to which the MAU described by this entry is
                      connected."
          REFERENCE   "RFC 1213, ifIndex"
          ::= { ifMauEntry 1 }

      ifMauIndex OBJECT-TYPE
          SYNTAX      Integer32 (1..2147483647)
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "This variable uniquely identifies the MAU
                      described by this entry from among other MAUs
                      connected to the same interface (ifMauIfIndex)."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.1, aMAUID."
          ::= { ifMauEntry 2 }

      ifMauType OBJECT-TYPE
          SYNTAX      OBJECT IDENTIFIER
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "This object identifies the MAU type.  An
                      initial set of MAU types are defined above.  The
                      assignment of OBJECT IDENTIFIERs to new types of
ToP   noToC   RFC2668 - Page 22
                      MAUs is managed by the IANA.  If the MAU type is
                      unknown, the object identifier

                      unknownMauType OBJECT IDENTIFIER ::= { 0 0 }

                      is returned.  Note that unknownMauType is a
                      syntactically valid object identifier, and any
                      conformant implementation of ASN.1 and the BER
                      must be able to generate and recognize this
                      value.

                      This object represents the operational type of
                      the MAU, as determined by either (1) the result
                      of the auto-negotiation function or (2) if
                      auto-negotiation is not enabled or is not
                      implemented for this MAU, by the value of the
                      object ifMauDefaultType.  In case (2), a set to
                      the object ifMauDefaultType will force the MAU
                      into the new operating mode."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.2, aMAUType."
          ::= { ifMauEntry 3 }

      ifMauStatus OBJECT-TYPE
          SYNTAX      INTEGER {
                          other(1),
                          unknown(2),
                          operational(3),
                          standby(4),
                          shutdown(5),
                          reset(6)
                      }
          MAX-ACCESS  read-write
          STATUS      current
          DESCRIPTION "The current state of the MAU.  This object MAY
                      be implemented as a read-only object by those
                      agents and MAUs that do not implement software
                      control of the MAU state.  Some agents may not
                      support setting the value of this object to some
                      of the enumerated values.

                      The value other(1) is returned if the MAU is in
                      a state other than one of the states 2 through
                      6.

                      The value unknown(2) is returned when the MAU's
                      true state is unknown; for example, when it is
                      being initialized.
ToP   noToC   RFC2668 - Page 23
                      A MAU in the operational(3) state is fully
                      functional, operates, and passes signals to its
                      attached DTE or repeater port in accordance to
                      its specification.

                      A MAU in standby(4) state forces DI and CI to
                      idle and the media transmitter to idle or fault,
                      if supported.  Standby(4) mode only applies to
                      link type MAUs.  The state of
                      ifMauMediaAvailable is unaffected.

                      A MAU in shutdown(5) state assumes the same
                      condition on DI, CI, and the media transmitter
                      as though it were powered down or not connected.
                      The MAU MAY return other(1) value for the
                      ifMauJabberState and ifMauMediaAvailable objects
                      when it is in this state.  For an AUI, this
                      state will remove power from the AUI.

                      Setting this variable to the value reset(6)
                      resets the MAU in the same manner as a
                      power-off, power-on cycle of at least one-half
                      second would.  The agent is not required to
                      return the value reset (6).

                      Setting this variable to the value
                      operational(3), standby(4), or shutdown(5)
                      causes the MAU to assume the respective state
                      except that setting a mixing-type MAU or an AUI
                      to standby(4) will cause the MAU to enter the
                      shutdown state."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.7, aMAUAdminState,
                      30.5.1.2.2, acMAUAdminControl, and 30.5.1.2.1,
                      acResetMAU."
          ::= { ifMauEntry 4 }
      ifMauMediaAvailable OBJECT-TYPE
          SYNTAX      INTEGER {
                          other(1),
                          unknown(2),
                          available(3),
                          notAvailable(4),
                          remoteFault(5),
                          invalidSignal(6),
                          remoteJabber(7),
                          remoteLinkLoss(8),
                          remoteTest(9),
                          offline(10),
                          autoNegError(11)
ToP   noToC   RFC2668 - Page 24
                      }
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "If the MAU is a link or fiber type (FOIRL,
                      10BASE-T, 10BASE-F) then this is equivalent to
                      the link test fail state/low light function.
                      For an AUI or a coax (including broadband) MAU
                      this indicates whether or not loopback is
                      detected on the DI circuit.  The value of this
                      attribute persists between packets for MAU types
                      AUI, 10BASE5, 10BASE2, 10BROAD36, and 10BASE-FP.

                      The value other(1) is returned if the
                      mediaAvailable state is not one of 2 through 11.

                      The value unknown(2) is returned when the MAU's
                      true state is unknown; for example, when it is
                      being initialized.  At power-up or following a
                      reset, the value of this attribute will be
                      unknown for AUI, coax, and 10BASE-FP MAUs.  For
                      these MAUs loopback will be tested on each
                      transmission during which no collision is
                      detected.  If DI is receiving input when DO
                      returns to IDL after a transmission and there
                      has been no collision during the transmission
                      then loopback will be detected.  The value of
                      this attribute will only change during
                      non-collided transmissions for AUI, coax, and
                      10BASE-FP MAUs.

                      For 100Mbps and 1000Mbps MAUs, the enumerations
                      match the states within the respective link
                      integrity state diagrams, fig 32-16, 23-12 and
                      24-15 of sections 32, 23 and 24 of [16].  Any
                      MAU which implements management of
                      auto-negotiation will map remote fault
                      indication to remote fault.

                      The value available(3) indicates that the link,
                      light, or loopback is normal.  The value
                      notAvailable(4) indicates link loss, low light,
                      or no loopback.

                      The value remoteFault(5) indicates that a fault
                      has been detected at the remote end of the link.
                      This value applies to 10BASE-FB, 100BASE-T4 Far
                      End Fault Indication and non-specified remote
                      faults from a system running auto-negotiation.
ToP   noToC   RFC2668 - Page 25
                      The values remoteJabber(7), remoteLinkLoss(8),
                      and remoteTest(9) SHOULD be used instead of
                      remoteFault(5) where the reason for remote fault
                      is identified in the remote signaling protocol.

                      The value invalidSignal(6) indicates that an
                      invalid signal has been received from the other
                      end of the link.  InvalidSignal(6) applies only
                      to MAUs of type 10BASE-FB.

                      Where an IEEE Std 802.3u-1995 clause 22 MII
                      is present, a logic one in the remote fault bit
                      (reference section 22.2.4.2.8 of that document)
                      maps to the value remoteFault(5), and a logic
                      zero in the link status bit (reference section
                      22.2.4.2.10 of that document) maps to the value
                      notAvailable(4).  The value notAvailable(4)
                      takes precedence over the value remoteFault(5).

                      Any MAU that implements management of clause 37
                      Auto-Negotiation will map the received RF1 and
                      RF2 bit values for Offline to offline(10), Link
                      Failure to remoteFault(5) and Auto-Negotiation
                      Error to autoNegError(11)."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.4, aMediaAvailable."
          ::= { ifMauEntry 5 }

      ifMauMediaAvailableStateExits OBJECT-TYPE
          SYNTAX      Counter32
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "A count of the number of times that
                      ifMauMediaAvailable for this MAU instance leaves
                      the state available(3).
                      Discontinuities in the value of this counter can
                      occur at re-initialization of the management
                      system, and at other times as indicated by the
                      value of ifCounterDiscontinuityTime."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.5,
                      aLoseMediaCounter.
                      RFC 2233, ifCounterDiscontinuityTime."
          ::= { ifMauEntry 6 }

      ifMauJabberState OBJECT-TYPE
          SYNTAX      INTEGER {
                          other(1),
                          unknown(2),
                          noJabber(3),
ToP   noToC   RFC2668 - Page 26
                          jabbering(4)
                      }
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "The value other(1) is returned if the jabber
                      state is not 2, 3, or 4.  The agent MUST always
                      return other(1) for MAU type dot3MauTypeAUI.

                      The value unknown(2) is returned when the MAU's
                      true state is unknown; for example, when it is
                      being initialized.

                      If the MAU is not jabbering the agent returns
                      noJabber(3).  This is the 'normal' state.

                      If the MAU is in jabber state the agent returns
                      the jabbering(4) value."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.6,
                      aJabber.jabberFlag."
          ::= { ifMauEntry 7 }

      ifMauJabberingStateEnters OBJECT-TYPE
          SYNTAX      Counter32
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "A count of the number of times that
                      mauJabberState for this MAU instance enters the
                      state jabbering(4). This counter will always
                      indicate zero for MAUs of type dot1MauTypeAUI
                      and those of speeds above 10Mbps.

                      Discontinuities in the value of this counter can
                      occur at re-initialization of the management
                      system, and at other times as indicated by the
                      value of ifCounterDiscontinuityTime."
          REFERENCE   "[IEEE 802.3 Std], 30.5.1.1.6,
                      aJabber.jabberCounter.
                      RFC 2233, ifCounterDiscontinuityTime."
          ::= { ifMauEntry 8 }

      ifMauFalseCarriers OBJECT-TYPE
          SYNTAX      Counter32
          MAX-ACCESS  read-only
          STATUS      current
          DESCRIPTION "A count of the number of false carrier events
                      during IDLE in 100BASE-X and 1000BASE-X links.

                      For all other MAU types, this counter will


(next page on part 2)

Next Section