Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 4031

Service Requirements for Layer 3 Provider Provisioned Virtual Private Networks (PPVPNs)

Pages: 50
Informational
Part 1 of 3 – Pages 1 to 15
None   None   Next

Top   ToC   RFC4031 - Page 1
Network Working Group                                     M. Carugi, Ed.
Request for Comments: 4031                               Nortel Networks
Category: Informational                                  D. McDysan, Ed.
                                                                     MCI
                                                              April 2005


                    Service Requirements for Layer 3
         Provider Provisioned Virtual Private Networks (PPVPNs)

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

This document provides requirements for Layer 3 Virtual Private Networks (L3VPNs). It identifies requirements applicable to a number of individual approaches that a Service Provider may use to provision a Virtual Private Network (VPN) service. This document expresses a service provider perspective, based upon past experience with IP- based service offerings and the ever-evolving needs of the customers of such services. Toward this end, it first defines terminology and states general requirements. Detailed requirements are expressed from a customer perspective as well as that of a service provider.

Table of Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Scope of This Document. . . . . . . . . . . . . . . . . 4 1.2. Outline . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Contributing Authors. . . . . . . . . . . . . . . . . . . . . 5 3. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1. Virtual Private Network . . . . . . . . . . . . . . . . 6 3.2. Users, Sites, Customers, and Agents . . . . . . . . . . 6 3.3. Intranets, Extranets, and VPNs. . . . . . . . . . . . . 6 3.4. Networks of Customer and Provider Devices . . . . . . . 7 3.5. Access Networks, Tunnels, and Hierarchical Tunnels. . . 7 3.6. Use of Tunnels and Roles of CE and PE in L3VPNs . . . . 8 3.6.1. PE-Based L3VPNs and Virtual Forwarding Instances . . . . . . . . . . . . . . . . . . . 8 3.6.2. CE-Based L3VPN Tunnel Endpoints and Functions . 10
Top   ToC   RFC4031 - Page 2
        3.7.  Customer and Provider Network Management. . . . . . . . 10
   4.   Service Requirements Common to Customers and Service
        Providers . . . . . . . . . . . . . . . . . . . . . . . . . . 11
        4.1.  Isolated Exchange of Data and Routing Information . . . 11
        4.2.  Addressing. . . . . . . . . . . . . . . . . . . . . . . 12
        4.3.  Quality of Service. . . . . . . . . . . . . . . . . . . 12
              4.3.1.  QoS Standards . . . . . . . . . . . . . . . . . 12
              4.3.2.  Service Models. . . . . . . . . . . . . . . . . 13
        4.4.  Service Level Specification and Agreements. . . . . . . 14
        4.5.  Management. . . . . . . . . . . . . . . . . . . . . . . 14
        4.6.  Interworking. . . . . . . . . . . . . . . . . . . . . . 15
   5.   Customer Requirements . . . . . . . . . . . . . . . . . . . . 15
        5.1.  VPN Membership (Intranet/Extranet). . . . . . . . . . . 15
        5.2.  Service Provider Independence . . . . . . . . . . . . . 16
        5.3.  Addressing. . . . . . . . . . . . . . . . . . . . . . . 16
        5.4.  Routing Protocol Support. . . . . . . . . . . . . . . . 16
        5.5.  Quality of Service and Traffic Parameters . . . . . . . 16
              5.5.1.  Application Level QoS Objectives. . . . . . . . 17
              5.5.2.  DSCP Transparency . . . . . . . . . . . . . . . 17
        5.6.  Service Level Specification/Agreement . . . . . . . . . 18
        5.7.  Customer Management of a VPN. . . . . . . . . . . . . . 18
        5.8.  Isolation . . . . . . . . . . . . . . . . . . . . . . . 18
        5.9.  Security. . . . . . . . . . . . . . . . . . . . . . . . 19
        5.10. Migration Impact. . . . . . . . . . . . . . . . . . . . 19
        5.11. Network Access. . . . . . . . . . . . . . . . . . . . . 19
              5.11.1. Physical/Link Layer Technology. . . . . . . . . 20
              5.11.2. Temporary Access. . . . . . . . . . . . . . . . 20
              5.11.3. Sharing of the Access Network . . . . . . . . . 20
              5.11.4. Access Connectivity . . . . . . . . . . . . . . 20
        5.12. Service Access. . . . . . . . . . . . . . . . . . . . . 23
              5.12.1. Internet Access . . . . . . . . . . . . . . . . 23
              5.12.2. Hosting, Application Service Provider . . . . . 24
              5.12.3. Other Services. . . . . . . . . . . . . . . . . 24
        5.13. Hybrid VPN Service Scenarios. . . . . . . . . . . . . . 24
   6.   Service Provider Network Requirements . . . . . . . . . . . . 24
        6.1.  Scalability . . . . . . . . . . . . . . . . . . . . . . 24
        6.2.  Addressing. . . . . . . . . . . . . . . . . . . . . . . 25
        6.3.  Identifiers . . . . . . . . . . . . . . . . . . . . . . 25
        6.4.  Discovering VPN Related Information . . . . . . . . . . 26
        6.5.  SLA and SLS Support . . . . . . . . . . . . . . . . . . 26
        6.6.  Quality of Service (QoS) and Traffic Engineering. . . . 27
        6.7.  Routing . . . . . . . . . . . . . . . . . . . . . . . . 27
        6.8.  Isolation of Traffic and Routing. . . . . . . . . . . . 28
        6.9.  Security. . . . . . . . . . . . . . . . . . . . . . . . 28
              6.9.1.  Support for Securing Customer Flows . . . . . . 28
              6.9.2.  Authentication Services . . . . . . . . . . . . 29
              6.9.3.  Resource Protection . . . . . . . . . . . . . . 30
        6.10. Inter-AS (SP)VPNs . . . . . . . . . . . . . . . . . . . 30
Top   ToC   RFC4031 - Page 3
              6.10.1. Routing Protocols . . . . . . . . . . . . . . . 31
              6.10.2. Management. . . . . . . . . . . . . . . . . . . 31
              6.10.3. Bandwidth and QoS Brokering . . . . . . . . . . 31
              6.10.4. Security Considerations . . . . . . . . . . . . 32
        6.11. L3VPN Wholesale . . . . . . . . . . . . . . . . . . . . 32
        6.12. Tunneling Requirements. . . . . . . . . . . . . . . . . 33
        6.13. Support for Access and Backbone Technologies. . . . . . 33
              6.13.1. Dedicated Access Networks . . . . . . . . . . . 34
              6.13.2. On-Demand Access Networks . . . . . . . . . . . 34
              6.13.3. Backbone Networks . . . . . . . . . . . . . . . 35
        6.14. Protection, Restoration . . . . . . . . . . . . . . . . 35
        6.15. Interoperability. . . . . . . . . . . . . . . . . . . . 35
        6.16. Migration Support . . . . . . . . . . . . . . . . . . . 36
   7.   Service Provider Management Requirements. . . . . . . . . . . 36
        7.1.  Fault Management. . . . . . . . . . . . . . . . . . . . 37
        7.2.  Configuration Management. . . . . . . . . . . . . . . . 37
              7.2.1.  Configuration Management for PE-Based VPNs. . . 38
              7.2.2.  Configuration Management for CE-Based VPNs. . . 39
              7.2.3.  Provisioning Routing. . . . . . . . . . . . . . 39
              7.2.4.  Provisioning Network Access . . . . . . . . . . 39
              7.2.5.  Provisioning Security Services. . . . . . . . . 40
              7.2.6.  Provisioning VPN Resource Parameters. . . . . . 40
              7.2.7.  Provisioning Value-Added Service Access . . . . 40
              7.2.8.  Provisioning Hybrid VPN Services. . . . . . . . 41
        7.3.  Accounting. . . . . . . . . . . . . . . . . . . . . . . 41
        7.4.  Performance Management. . . . . . . . . . . . . . . . . 42
              7.4.1.  Performance Monitoring. . . . . . . . . . . . . 42
              7.4.2.  SLA and QoS Management Features . . . . . . . . 42
        7.5.  Security Management . . . . . . . . . . . . . . . . . . 43
              7.5.1.  Resource Access Control . . . . . . . . . . . . 43
              7.5.2.  Authentication. . . . . . . . . . . . . . . . . 43
        7.6.  Network Management Techniques . . . . . . . . . . . . . 44
   8.   Security Considerations . . . . . . . . . . . . . . . . . . . 44
   9.   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 45
   10.  References. . . . . . . . . . . . . . . . . . . . . . . . . . 45
        10.1. Normative References. . . . . . . . . . . . . . . . . . 45
        10.2. Informative References. . . . . . . . . . . . . . . . . 46
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 49
   Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 50

1. Introduction

This section describes the scope and outline of the document. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 ([RFC2119]).
Top   ToC   RFC4031 - Page 4

1.1. Scope of This Document

This document provides requirements specific to Layer 3 Virtual Private Networks (L3VPN). (Requirements that are generic to L2 and L3 VPNs are contained in [RFC3809].) This document identifies requirements that may apply to one or more individual approaches that a Service Provider may use to provision a Layer 3 (e.g., IP) VPN service. It makes use of the terminology and common components for Layer 3 VPNs as defined in [L3VPN-FR] and of the generic VPN terminology defined in [PPVPN-TERM]. The specification of technical means to provide L3VPN services is outside the scope of this document. Other documents are intended to cover this aspect, such as the L3 VPN framework document [L3VPN-FR] and several sets of documents, one for each technical approach for providing L3VPN services. Technical approaches targeted by this document include the network- based (PE-based) L3VPN category (aggregated routing VPNs [2547bis] and virtual routers [PPVPN-VR]) and the CE-based L3VPNs category [CE-PPVPN][IPSEC-PPVPN]. The document distinguishes L3VPN categories as to where the endpoints of tunnels exist, as detailed in the L3VPN framework document [L3VPN-FR]. Terminology describing whether equipment faces a customer or the service provider network is used to define the various types of L3VPN solutions. This document is intended as a "checklist" of requirements, providing a consistent way to evaluate and document how well each approach satisfies specific requirements. The applicability statement documents for each approach should present the results of this evaluation. This document is not intended to compare one approach to another. This document provides requirements from several points of view. It begins with some considerations from a point of view common to customers and service providers not covered in the generic provider provisioned VPN requirement document [RFC3809], continues with a customer perspective, and concludes with specific needs of a Service Provider (SP). The following L3VPN deployment scenarios are considered within this document: 1. Internet-wide: VPN sites attached to arbitrary points in the Internet.
Top   ToC   RFC4031 - Page 5
   2.  Single SP/single AS: VPN sites attached to the network of a
       single provider within the scope of a single AS.

   3.  Single SP/multiple ASes: VPN sites attached to the network of a
       single provider consisting of multiple ASes.

   4.  Cooperating SPs: VPN sites attached to networks of different
       providers that cooperate with each other to provide the VPN
       service.

   The above deployment scenarios have many requirements in common.
   These include SP requirements for security, privacy, manageability,
   interoperability, and scalability, including service provider
   projections for number, complexity, and rate of change of customer
   VPNs over the next several years.  When requirements apply to a
   specific deployment scenario, the above terminology is used to state
   the context of those particular requirements.

1.2. Outline

The outline of the rest of the document is as follows: Section 2 lists the contributing authors. Section 3 provides definitions of terms and concepts. Section 4 provides requirements common to both customers and service providers that are not covered in the generic provider provisioned VPN requirement document [RFC3809]. Section 5 states requirements from a customer perspective. Section 6 states network requirements from a service provider perspective. Section 7 states service provider management requirements. Section 8 describes security considerations. Section 9 lists acknowledgments. Section 10 provides a list of references cited herein. Section 11 lists the authors' addresses.

2. Contributing Authors

This document is the combined effort of the two co-editors and the following contributing authors: Luyuan Fang Ananth Nagarajan Junichi Sumimoto Rick Wilder

3. Definitions

This section provides the definition of terms and concepts used throughout the document. Terminology used herein is taken from [PPVPN-TERM] and [L3VPN-FR].
Top   ToC   RFC4031 - Page 6

3.1. Virtual Private Network

"L3 Virtual Private Network" (L3VPN) refers to the L3 communication between a set of sites making use of a shared network infrastructure. "Provider Provisioned VPN" (PPVPN) refers to VPNs for which the service provider participates in management and provisioning of the VPN.

3.2. Users, Sites, Customers, and Agents

User: A user is an entity (e.g., a human being using a host, a server, or a system) authorized to use a VPN service. Site: A site is a set of users that have mutual L3 (i.e., IP) reachability without use of a specific service provider network. A site may consist of a set of users that are in geographic proximity. Note that a topological definition of a site (e.g., all users at a specific geographic location) may not always conform to this definition. For example, two geographic locations connected via another provider's network would also constitute a single site as communication between the two locations does not involve the use of the service provider offering the L3 VPN service. Customer: A single organization, corporation, or enterprise that administratively controls a set of sites. Agent: A set of users designated by a customer who has the authorization to manage a customer's VPN service offering.

3.3. Intranets, Extranets, and VPNs

Intranet: An intranet restricts communication to a set of sites that belong to one customer. An example is branch offices at different sites that require communication with a headquarters site. Extranet: An extranet allows the specification of communication between a set of sites that belong to different customers. In other words, two or more organizations have access to a specified set of each other's sites. Examples of extranets include multiple companies cooperating in joint software development, a service provider having access to information from the vendors' corporate sites, different companies, or universities participating in a consortium. An extranet often has further restrictions on reachability, for example, at a host and individual transport level.
Top   ToC   RFC4031 - Page 7
   Note that an intranet or extranet can exist across a single service
   provider network with one or more ASes, or across multiple service
   provider networks.

   L3 Virtual Private Network (L3VPN): An alternative definition of VPN
   refers to a specific set of sites that have been configured to allow
   communication as either an intranet or an extranet.  Note that a site
   is a member of at least one VPN and may be a member of many VPNs.

3.4. Networks of Customer and Provider Devices

L3VPNs are composed of the following types of devices. Customer Edge (CE) device: A CE device faces the users at a customer site. The CE has an access connection to a PE device. It may be a router or a switch that allows users at a customer site to communicate over the access network with other sites in the VPN. In a CE-based L3VPN, as intended in this document (provider-provisioned CE-based VPN), the service provider manages (at least partially) the CE device. Provider Edge (PE) device: A PE device faces the provider network on one side and attaches via an access connection over one or more access networks to one or more CE devices. It participates in the Packet Switched Network (PSN) in performing routing and forwarding functions. Note that the definitions of Customer Edge and Provider Edge do not necessarily describe the physical deployment of equipment on customer premises or a provider point of presence. Provider (P) device: A device within a provider network that interconnects PE (or other P) devices but does not have any direct attachment to CE devices. The P router does not keep VPN state and is VPN unaware [PPVPN-TERM]. Packet Switched Network (PSN): A (IP or MPLS [RFC3031]) network through which the tunnels supporting the VPN services are set up [PPVPN-TERM]. Service Provider (SP) network: An SP network is a set of interconnected PE and P devices administered by a single service provider in one or more ASes.

3.5. Access Networks, Tunnels, and Hierarchical Tunnels

VPNs are built between CEs by using access networks, tunnels, and hierarchical tunnels across a PSN.
Top   ToC   RFC4031 - Page 8
   Access connection: An access connection provides connectivity between
   a CE and a PE.  This includes dedicated physical circuits, virtual
   circuits (such as Frame Relay), ATM, Ethernet (V)LAN, or IP tunnels
   (e.g., IPsec, L2TP [RFC2661]).

   Access network: An access network provides access connections between
   CE and PE devices.  It may be a TDM network, an L2 network (e.g., FR,
   ATM, and Ethernet), or an IP network over which access is tunneled
   (e.g., by using L2TP).

   Tunnel: A tunnel between two entities is formed by encapsulating
   packets within another encapsulating header for the purposes of
   transmission between those two entities in support of a VPN
   application.  Examples of protocols commonly used for tunneling are
   GRE, IPsec, IP-in-IP tunnels, and MPLS.

   Hierarchical Tunnel: Encapsulating one tunnel within another forms a
   hierarchical tunnel.  The innermost tunnel protocol header defines a
   logical association between two entities (e.g., between CEs or PEs)
   [VPNTUNNEL].  Note that the tunneling protocols need not be the same
   at different levels in a hierarchical tunnel.

3.6. Use of Tunnels and Roles of CE and PE in L3 VPNs

This section summarizes the points where tunnels terminate and the functions implemented in the CE and PE devices that differentiate the two major categories of L3VPNs for which requirements are stated, namely PE-based and CE-based L3VPNs. See the L3VPN framework document for more detail [L3VPN-FR].

3.6.1. PE-Based L3VPNs and Virtual Forwarding Instances

In a PE-based L3VPN service, a customer site receives IP layer (i.e., layer 3) service from the SP. The PE is attached via an access connection to one or more CEs. The PE forwards user data packets based on information in the IP layer header, such as an IPv4 or IPv6 destination address. The CE sees the PE as a layer 3 device such as an IPv4 or IPv6 router. Virtual Forwarding Instance (VFI): In a PE-based L3VPN service, the PE contains a VFI for each L3 VPN that it serves. The VFI terminates tunnels for interconnection with other VFIs and also terminates access connections for accommodating CEs. VFI contains information regarding how to forward data received over the CE-PE access connection to VFIs in other PEs supporting the same L3VPN. The VFI includes the router information base and the forwarding information base for an L3VPN [L3VPN-FR]. A VFI enables router functions dedicated to serving a particular VPN, such as separation of
Top   ToC   RFC4031 - Page 9
   forwarding and routing and support for overlapping address spaces.
   Routing protocols in the PEs and the CEs interact to populate the
   VFI.

   The following narrative and figures provide further explanation of
   the way PE devices use tunnels and hierarchical tunnels.  Figure 1.1
   illustrates the case where a PE uses a separate tunnel for each VPN.
   As shown in the figure, the tunnels provide communication between the
   VFIs in each of the PE devices.

                  +----------+              +----------+
   +-----+        |PE device |              |PE device |        +-----+
   | CE  |        |          |              |          |        | CE  |
   | dev | Access | +------+ |              | +------+ | Access | dev |
   | of  |  conn. | |VFI of| |    Tunnel    | |VFI of| |  conn. | of  |
   |VPN A|----------|VPN A |==================|VPN A |----------|VPN A|
   +-----+        | +------+ |              | +------+ |        +-----+
                  |          |              |          |
   +-----+ Access | +------+ |              | +------+ | Access +-----+
   |CE   |  conn. | |VFI of| |    Tunnel    | |VFI of| |  conn. | CE  |
   | dev |----------|VPN B |==================|VPN B |----------| dev |
   | of  |        | +------+ |              | +------+ |        | of  |
   |VPN B|        |          |              |          |        |VPN B|
   +-----+        +----------+              +----------+        +-----+

        Figure 1.1.  PE Usage of Separate Tunnels to Support VPNs

   Figure 1.2 illustrates the case where a single hierarchical tunnel is
   used between PE devices to support communication for VPNs.  The
   innermost encapsulating protocol header provides the means for the PE
   to determine the VPN for which the packet is directed.

                  +----------+              +----------+
   +-----+        |PE device |              |PE device |        +-----+
   | CE  |        |          |              |          |        | CE  |
   | dev | Access | +------+ |              | +------+ | Access | dev |
   | of  |  conn. | |VFI of| |              | |VFI of| |  conn. | of  |
   |VPN A|----------|VPN A | | Hierarchical | |VPN A |----------|VPN A|
   +-----+        | +------+\|   Tunnel     |/+------+ |        +-----+
                  |          >==============<          |
   +-----+ Access | +------+/|              |\+------+ | Access +-----+
   | CE  |  conn. | |VFI of| |              | |VFI of| |  conn. | CE  |
   | dev |----------|VPN B | |              | |VPN B |----------| dev |
   | of  |        | +------+ |              | +------+ |        | of  |
   |VPN B|        |          |              |          |        |VPN B|
   +-----+        +----------+              +----------+        +-----+

   Figure 1.2. PE Usage of Shared Hierarchical Tunnels to Support VPNs
Top   ToC   RFC4031 - Page 10

3.6.2. CE-Based L3VPN Tunnel Endpoints and Functions

Figure 1.3 illustrates the CE-based L3VPN reference model. In this configuration, typically a single level of tunnel (e.g., IPsec) terminates at pairs of CEs. Usually, a CE serves a single customer site, and therefore the forwarding and routing is physically separate from all other customers. Furthermore, the PE is not aware of the membership of specific CE devices to a particular VPN. Hence, the VPN functions are implemented with provisioned configurations on the CE devices, and the shared PE and P network is used to only provide the routing and forwarding that supports the tunnel endpoints on between CE devices. The tunnel topology connecting the CE devices may be a full or partial mesh, depending on VPN customer requirements and traffic patterns. +---------+ +--------------------------------+ +---------+ | | | | | | | | | +------+ +------+ : +------+ +------+ : | | | | | | : | CE | | CE | : | | | P | | PE | : |device| |device| : +------+ Tunnel |router| |device| : | of | | of |=:================================================:=|VPN A| |VPN A| : | | +------+ +------+ : +------+ +------+ : | PE | | | : | +------+ : |device| | | : | | CE | : | | Tunnel +------+ : +------+ |device|=:================================================:=| CE | | of | : +------+ | PE | : |device| |VPN B| : | | |device| : | of | +------+ : | | +----------+ +----------+ | | : |VPN B| | : | | | Customer | | Network | +------+ : +------+ |Customer | | |management| |management| | | : | |interface| | | function | | function | | |Customer | | | | +----------+ +----------+ | |interface| | | | | | | +---------+ +--------------------------------+ +---------+ | Access | |<-------- SP network(s) ------->| | Access | | network | | | | network | Figure 1.3. CE-Based L3VPN

3.7. Customer and Provider Network Management

Customer Network Management Function: A customer network management function provides the means for a customer agent to query or configure customer-specific information, or to receive alarms regarding his or her VPN. Customer-specific information includes data related to contact, billing, site, access network, IP address,
Top   ToC   RFC4031 - Page 11
   and routing protocol parameters.  It may use a combination of
   proprietary network management system, SNMP manager, or directory
   service (e.g., LDAP [RFC3377] [RFC2251]).

   Provider Network Management Function: A provider network management
   function provides many of the same capabilities as a customer network
   management system across all customers.  This would not include
   customer confidential information, such as keying material.  The
   intent of giving the provider a view comparable to that of the
   customer is to aid in troubleshooting and problem resolution.  Such a
   system also provides the means to query, configure, or receive alarms
   regarding any infrastructure supporting the L3VPN service.  It may
   use a combination of proprietary network management system, SNMP
   manager, or directory service (e.g., LDAP [RFC3377] [RFC2251]).

4. Service Requirements Common to Customers and Service Providers

Many of the requirements that apply to both the customer and the provider and are of an otherwise general nature, or that apply to both L2 and L3VPNs, are described in [RFC3809]. This section contains requirements that are not covered in [RFC3809] and that are specific to L3VPNs.

4.1. Isolated Exchange of Data and Routing Information

A mechanism must be provided for isolating the distribution of reachability information to only those sites associated with a VPN. L3VPN solutions shall define means that prevent routers in a VPN from interacting with unauthorized entities and that avoid introducing undesired routing information that could corrupt the VPN routing information base [VPN-CRIT]. A means must be provided to constrain or isolate the distribution of addressed data to only those VPN sites determined by either routing data and/or configuration. A single site shall be capable of being in multiple VPNs. The VPN solution must ensure that traffic is exchanged only with sites in the same VPN. The internal structure of a VPN should not be advertised or discoverable from outside that VPN. Note that isolation of forwarded data or exchange of reachability information to only those sites that are part of a VPN may be viewed as a form of security - for example, [Y.1311.1], [MPLSSEC].
Top   ToC   RFC4031 - Page 12

4.2. Addressing

IP addresses must be unique within the set of sites reachable from the VPNs of which a particular site is a member. A VPN solution must support IPv4 and IPv6 as both the encapsulating and encapsulated protocol. If a customer has private or non-unique IP addresses, then a VPN service SHOULD be capable of translating such customer private or non-unique IP addresses for communicating with IP systems having public addresses.

4.3. Quality of Service

To the extent possible, L3VPN QoS should be independent of the access network technology.

4.3.1. QoS Standards

A non-goal of the L3VPN WG effort (as chartered) is the development of new protocols or extension of existing ones. An L3VPN shall be able to support QoS in one or more of the following already defined modes: - Best Effort (mandatory support for all L3VPN types) - Aggregate CE Interface Level QoS ("hose" level QoS) - Site-to-site ("pipe" level QoS) - Intserv (i.e., RSVP) signaled - Diffserv marked - Across packet-switched access networks Note that all cases involving QoS may require that the CE and/or PE perform shaping and/or policing. L3VPN CEs should be capable of supporting integrated services (Intserv) for certain customers in support of session applications, such as switched voice or video. Intserv-capable CE devices shall support the following Internet standards: - Resource reSerVation Protocol (RSVP) [RFC2205] - Guaranteed Quality of Service providing a strict delay bound [RFC2212] - Controlled Load Service providing performance equivalent to that of an unloaded network [RFC2211]
Top   ToC   RFC4031 - Page 13
   L3VPN CE and PE should be capable of supporting differentiated
   service (Diffserv).  Diffserv-capable L3VPN CE and PE shall support
   the following per hop behavior (PHB) [RFC2475] types:

   -  Expedited Forwarding (EF) - The departure rate of an aggregate
      class of traffic from a device that must equal or exceed a
      configured rate [RFC3246].

   -  Assured Forwarding (AF) - A means for a provider Diffserv (DS)
      domain to offer different levels of forwarding assurances for IP
      packets received from a customer DS domain.  Four AF classes are
      defined, where each AF class implies allocation in each DS node of
      a certain amount of forwarding resources (e.g., buffer space and
      bandwidth) [RFC2597].

   A CE or PE device supporting an L3VPN service may classify a packet
   for a particular Intserv or Diffserv service based on one or more of
   the following IP header fields: protocol ID, source port number,
   destination port number, destination address, or source address.

   For a specifiable set of Internet traffic, L3VPN devices should
   support Random Early Detection (RED) to provide graceful degradation
   in the event of network congestion.

4.3.2. Service Models

A service provider must be able to offer QoS service to a customer for at least the following generic service types: managed-access VPN service or edge-to-edge QoS VPN service [RFC3809]. More detail specific to L3VPNs is provided below. A managed-access L3VPN service provides QoS on the access connection between the CE and the PE. For example, diffserv would be enabled only on the CE router and the customer-facing ports of the PE router. Note that this service would not require Diffserv implementation in the SP backbone. The SP may use policing for inbound traffic at the PE. The CE may perform shaping for outbound traffic. Another example of a managed-access L3VPN service is when the SP performs the packet classification and diffserv marking. An SP may provide several packet classification profiles that customers may select or may offer custom profiles based on customer specific requirements. In general, more complex QoS policies should be left to the customer for implementation. An edge-to-edge QoS VPN service provides QoS from edge device to edge device. The edge device may be either PE or CE, depending on the service demarcation point between the provider and the customer. Such a service may be provided across one or more provider backbones.
Top   ToC   RFC4031 - Page 14
   The CE requirements for this service model are the same as the
   managed access VPN service.  However, in this service QoS is provided
   from one edge of the SP network(s) to the other.

4.4. Service-Level Specification and Agreements

A generic discussion of SLAs is provided in [RFC3809]. Additionally, SLS measurements for quality based on the DiffServ scheme SHOULD be based on the following classification: - A Point-to-Point SLS [Y.1311.1], sometimes also referred to as the "Pipe" model, defines traffic parameters in conjunction with the QoS objectives for traffic exchanged between a pair of VPN sites (i.e., points). A Point-to-Point SLS is analogous to the SLS typically supported over point-to-point Frame Relay or ATM PVCs or an edge-to-edge MPLS tunnel. The set of SLS specifications to all other reachable VPN sites would define the overall Point-to-Point SLS for a specific site. - A Point-to-Cloud SLS [Y.1311.1], sometimes also referred to as the "Hose" model, defines traffic parameters in conjunction with the QoS objectives for traffic exchanged between a CE and a PE for traffic destined to a set (either all or a subset) of other sites in the VPN (i.e., the cloud), as applicable. In other words, a point-to-cloud SLS defines compliance in terms of all packets transmitted from a given VPN site toward the SP network on an aggregate basis (i.e., regardless of the destination VPN site of each packet). - A Cloud-to-Point SLS (a case not covered by this SLS is where flows originating from multiple sources may congest the interface toward a specific site). Traffic parameters and actions SHOULD be defined for packets to and from the demarcation between the service provider and the site. For example, policing may be defined on ingress, and shaping on egress.

4.5. Management

An SP and its customers MUST be able to manage the capabilities and characteristics of their VPN services. To the extent possible, automated operations and interoperability with standard management platforms SHOULD be supported.
Top   ToC   RFC4031 - Page 15
   The ITU-T Telecommunications Management Network (TMN) model has the
   following generic requirements structure:

   O  Engineer, deploy, and manage the switching, routing, and
      transmission resources supporting the service, from a network
      perspective (network element management).

   O  Manage the VPN networks deployed over these resources (network
      management).

      o  Manage the VPN service (service management).
      o  Manage the VPN business, mainly provisioning administrative and
         accounting information related to the VPN service customers
         (business management).

   Service management should include the TMN 'FCAPS' functionalities, as
   follows: Fault, Configuration, Accounting, Provisioning, and
   Security, as detailed in section 7.

4.6. Interworking

Interworking scenarios among different solutions providing L3VPN services is highly desirable. See the L3VPN framework document for more details on interworking scenarios [L3VPN-FR]. Interworking SHOULD be supported in a scalable manner. Interworking scenarios MUST at least consider traffic and routing isolation, security, QoS, access, and management aspects. This requirement is essential of network migration, to ensure service continuity among sites belonging to different portions of the network.


(page 15 continued on part 2)

Next Section