Network Working Group W. Townsley Request for Comments: 2661 A. Valencia Category: Standards Track cisco Systems A. Rubens Ascend Communications G. Pall G. Zorn Microsoft Corporation B. Palter Redback Networks August 1999 Layer Two Tunneling Protocol "L2TP" Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (1999). All Rights Reserved.Abstract
This document describes the Layer Two Tunneling Protocol (L2TP). STD 51, RFC 1661 specifies multi-protocol access via PPP [RFC1661]. L2TP facilitates the tunneling of PPP packets across an intervening network in a way that is as transparent as possible to both end-users and applications.Table of Contents
1.0 Introduction.......................................... 3 1.1 Specification of Requirements......................... 4 1.2 Terminology........................................... 4 2.0 Topology.............................................. 8 3.0 Protocol Overview..................................... 9 3.1 L2TP Header Format.................................... 9 3.2 Control Message Types................................. 11 4.0 Control Message Attribute Value Pairs................. 12 4.1 AVP Format............................................ 13 4.2 Mandatory AVPs........................................ 14 4.3 Hiding of AVP Attribute Values........................ 14
4.4 AVP Summary........................................... 17 4.4.1 AVPs Applicable To All Control Messages.......... 17 4.4.2 Result and Error Codes........................... 18 4.4.3 Control Connection Management AVPs............... 20 4.4.4 Call Management AVPs............................. 27 4.4.5 Proxy LCP and Authentication AVPs................ 34 4.4.6 Call Status AVPs................................. 39 5.0 Protocol Operation.................................... 41 5.1 Control Connection Establishment...................... 41 5.1.1 Tunnel Authentication............................ 42 5.2 Session Establishment................................. 42 5.2.1 Incoming Call Establishment...................... 42 5.2.2 Outgoing Call Establishment...................... 43 5.3 Forwarding PPP Frames................................. 43 5.4 Using Sequence Numbers on the Data Channel............ 44 5.5 Keepalive (Hello)..................................... 44 5.6 Session Teardown...................................... 45 5.7 Control Connection Teardown........................... 45 5.8 Reliable Delivery of Control Messages................. 46 6.0 Control Connection Protocol Specification............. 48 6.1 Start-Control-Connection-Request (SCCRQ).............. 48 6.2 Start-Control-Connection-Reply (SCCRP)................ 48 6.3 Start-Control-Connection-Connected (SCCCN)............ 49 6.4 Stop-Control-Connection-Notification (StopCCN)........ 49 6.5 Hello (HELLO)......................................... 49 6.6 Incoming-Call-Request (ICRQ).......................... 50 6.7 Incoming-Call-Reply (ICRP)............................ 51 6.8 Incoming-Call-Connected (ICCN)........................ 51 6.9 Outgoing-Call-Request (OCRQ).......................... 52 6.10 Outgoing-Call-Reply (OCRP)........................... 53 6.11 Outgoing-Call-Connected (OCCN)....................... 53 6.12 Call-Disconnect-Notify (CDN)......................... 53 6.13 WAN-Error-Notify (WEN)............................... 54 6.14 Set-Link-Info (SLI).................................. 54 7.0 Control Connection State Machines..................... 54 7.1 Control Connection Protocol Operation................. 55 7.2 Control Connection States............................. 56 7.2.1 Control Connection Establishment................. 56 7.3 Timing considerations................................. 58 7.4 Incoming calls........................................ 58 7.4.1 LAC Incoming Call States......................... 60 7.4.2 LNS Incoming Call States......................... 62 7.5 Outgoing calls........................................ 63 7.5.1 LAC Outgoing Call States......................... 64 7.5.2 LNS Outgoing Call States......................... 66 7.6 Tunnel Disconnection.................................. 67 8.0 L2TP Over Specific Media.............................. 67 8.1 L2TP over UDP/IP...................................... 68
8.2 IP.................................................... 69 9.0 Security Considerations............................... 69 9.1 Tunnel Endpoint Security.............................. 70 9.2 Packet Level Security................................. 70 9.3 End to End Security................................... 70 9.4 L2TP and IPsec........................................ 71 9.5 Proxy PPP Authentication.............................. 71 10.0 IANA Considerations.................................. 71 10.1 AVP Attributes....................................... 71 10.2 Message Type AVP Values.............................. 72 10.3 Result Code AVP Values............................... 72 10.3.1 Result Code Field Values........................ 72 10.3.2 Error Code Field Values......................... 72 10.4 Framing Capabilities & Bearer Capabilities........... 72 10.5 Proxy Authen Type AVP Values......................... 72 10.6 AVP Header Bits...................................... 73 11.0 References........................................... 73 12.0 Acknowledgments...................................... 74 13.0 Authors' Addresses................................... 75 Appendix A: Control Channel Slow Start and Congestion Avoidance..................................... 76 Appendix B: Control Message Examples...................... 77 Appendix C: Intellectual Property Notice.................. 79 Full Copyright Statement.................................. 801.0 Introduction
PPP [RFC1661] defines an encapsulation mechanism for transporting multiprotocol packets across layer 2 (L2) point-to-point links. Typically, a user obtains a L2 connection to a Network Access Server (NAS) using one of a number of techniques (e.g., dialup POTS, ISDN, ADSL, etc.) and then runs PPP over that connection. In such a configuration, the L2 termination point and PPP session endpoint reside on the same physical device (i.e., the NAS). L2TP extends the PPP model by allowing the L2 and PPP endpoints to reside on different devices interconnected by a packet-switched network. With L2TP, a user has an L2 connection to an access concentrator (e.g., modem bank, ADSL DSLAM, etc.), and the concentrator then tunnels individual PPP frames to the NAS. This allows the actual processing of PPP packets to be divorced from the termination of the L2 circuit. One obvious benefit of such a separation is that instead of requiring the L2 connection terminate at the NAS (which may require a long-distance toll charge), the connection may terminate at a (local) circuit concentrator, which then extends the logical PPP session over
a shared infrastructure such as frame relay circuit or the Internet. From the user's perspective, there is no functional difference between having the L2 circuit terminate in a NAS directly or using L2TP. L2TP may also solve the multilink hunt-group splitting problem. Multilink PPP [RFC1990] requires that all channels composing a multilink bundle be grouped at a single Network Access Server (NAS). Due to its ability to project a PPP session to a location other than the point at which it was physically received, L2TP can be used to make all channels terminate at a single NAS. This allows multilink operation even when the calls are spread across distinct physical NASs. This document defines the necessary control protocol for on-demand creation of tunnels between two nodes and the accompanying encapsulation for multiplexing multiple, tunneled PPP sessions.1.1 Specification of Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].1.2 Terminology
Analog Channel A circuit-switched communication path which is intended to carry 3.1 kHz audio in each direction. Attribute Value Pair (AVP) The variable length concatenation of a unique Attribute (represented by an integer) and a Value containing the actual value identified by the attribute. Multiple AVPs make up Control Messages which are used in the establishment, maintenance, and teardown of tunnels. Call A connection (or attempted connection) between a Remote System and LAC. For example, a telephone call through the PSTN. A Call (Incoming or Outgoing) which is successfully established between a Remote System and LAC results in a corresponding L2TP Session within a previously established Tunnel between the LAC and LNS. (See also: Session, Incoming Call, Outgoing Call).
Called Number An indication to the receiver of a call as to what telephone number the caller used to reach it. Calling Number An indication to the receiver of a call as to the telephone number of the caller. CHAP Challenge Handshake Authentication Protocol [RFC1994], a PPP cryptographic challenge/response authentication protocol in which the cleartext password is not passed over the line. Control Connection A control connection operates in-band over a tunnel to control the establishment, release, and maintenance of sessions and of the tunnel itself. Control Messages Control messages are exchanged between LAC and LNS pairs, operating in-band within the tunnel protocol. Control messages govern aspects of the tunnel and sessions within the tunnel. Digital Channel A circuit-switched communication path which is intended to carry digital information in each direction. DSLAM Digital Subscriber Line (DSL) Access Module. A network device used in the deployment of DSL service. This is typically a concentrator of individual DSL lines located in a central office (CO) or local exchange. Incoming Call A Call received at an LAC to be tunneled to an LNS (see Call, Outgoing Call).
L2TP Access Concentrator (LAC) A node that acts as one side of an L2TP tunnel endpoint and is a peer to the L2TP Network Server (LNS). The LAC sits between an LNS and a remote system and forwards packets to and from each. Packets sent from the LAC to the LNS requires tunneling with the L2TP protocol as defined in this document. The connection from the LAC to the remote system is either local (see: Client LAC) or a PPP link. L2TP Network Server (LNS) A node that acts as one side of an L2TP tunnel endpoint and is a peer to the L2TP Access Concentrator (LAC). The LNS is the logical termination point of a PPP session that is being tunneled from the remote system by the LAC. Management Domain (MD) A network or networks under the control of a single administration, policy or system. For example, an LNS's Management Domain might be the corporate network it serves. An LAC's Management Domain might be the Internet Service Provider that owns and manages it. Network Access Server (NAS) A device providing local network access to users across a remote access network such as the PSTN. An NAS may also serve as an LAC, LNS or both. Outgoing Call A Call placed by an LAC on behalf of an LNS (see Call, Incoming Call). Peer When used in context with L2TP, peer refers to either the LAC or LNS. An LAC's Peer is an LNS and vice versa. When used in context with PPP, a peer is either side of the PPP connection. POTS Plain Old Telephone Service.
Remote System An end-system or router attached to a remote access network (i.e. a PSTN), which is either the initiator or recipient of a call. Also referred to as a dial-up or virtual dial-up client. Session L2TP is connection-oriented. The LNS and LAC maintain state for each Call that is initiated or answered by an LAC. An L2TP Session is created between the LAC and LNS when an end-to-end PPP connection is established between a Remote System and the LNS. Datagrams related to the PPP connection are sent over the Tunnel between the LAC and LNS. There is a one to one relationship between established L2TP Sessions and their associated Calls. (See also: Call). Tunnel A Tunnel exists between a LAC-LNS pair. The Tunnel consists of a Control Connection and zero or more L2TP Sessions. The Tunnel carries encapsulated PPP datagrams and Control Messages between the LAC and the LNS. Zero-Length Body (ZLB) Message A control packet with only an L2TP header. ZLB messages are used for explicitly acknowledging packets on the reliable control channel.
2.0 Topology
The following diagram depicts a typical L2TP scenario. The goal is to tunnel PPP frames between the Remote System or LAC Client and an LNS located at a Home LAN. [Home LAN] [LAC Client]----------+ | ____|_____ +--[Host] | | | [LAC]---------| Internet |-----[LNS]-----+ | |__________| | _____|_____ : | | | PSTN | [Remote]--| Cloud | [System] | | [Home LAN] |___________| | | ______________ +---[Host] | | | | [LAC]-------| Frame Relay |---[LNS]-----+ | or ATM Cloud | | |______________| : The Remote System initiates a PPP connection across the PSTN Cloud to an LAC. The LAC then tunnels the PPP connection across the Internet, Frame Relay, or ATM Cloud to an LNS whereby access to a Home LAN is obtained. The Remote System is provided addresses from the HOME LAN via PPP NCP negotiation. Authentication, Authorization and Accounting may be provided by the Home LAN's Management Domain as if the user were connected to a Network Access Server directly. A LAC Client (a Host which runs L2TP natively) may also participate in tunneling to the Home LAN without use of a separate LAC. In this case, the Host containing the LAC Client software already has a connection to the public Internet. A "virtual" PPP connection is then created and the local L2TP LAC Client software creates a tunnel to the LNS. As in the above case, Addressing, Authentication, Authorization and Accounting will be provided by the Home LAN's Management Domain.
3.0 Protocol Overview
L2TP utilizes two types of messages, control messages and data messages. Control messages are used in the establishment, maintenance and clearing of tunnels and calls. Data messages are used to encapsulate PPP frames being carried over the tunnel. Control messages utilize a reliable Control Channel within L2TP to guarantee delivery (see section 5.1 for details). Data messages are not retransmitted when packet loss occurs. +-------------------+ | PPP Frames | +-------------------+ +-----------------------+ | L2TP Data Messages| | L2TP Control Messages | +-------------------+ +-----------------------+ | L2TP Data Channel | | L2TP Control Channel | | (unreliable) | | (reliable) | +------------------------------------------------+ | Packet Transport (UDP, FR, ATM, etc.) | +------------------------------------------------+ Figure 3.0 L2TP Protocol Structure Figure 3.0 depicts the relationship of PPP frames and Control Messages over the L2TP Control and Data Channels. PPP Frames are passed over an unreliable Data Channel encapsulated first by an L2TP header and then a Packet Transport such as UDP, Frame Relay, ATM, etc. Control messages are sent over a reliable L2TP Control Channel which transmits packets in-band over the same Packet Transport. Sequence numbers are required to be present in all control messages and are used to provide reliable delivery on the Control Channel. Data Messages may use sequence numbers to reorder packets and detect lost packets. All values are placed into their respective fields and sent in network order (high order octets first).3.1 L2TP Header Format
L2TP packets for the control channel and data channel share a common header format. In each case where a field is optional, its space does not exist in the message if the field is marked not present. Note that while optional on data messages, the Length, Ns, and Nr fields marked as optional below, are required to be present on all control messages.
This header is formatted: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |T|L|x|x|S|x|O|P|x|x|x|x| Ver | Length (opt) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tunnel ID | Session ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ns (opt) | Nr (opt) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Offset Size (opt) | Offset pad... (opt) +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 3.1 L2TP Message Header The Type (T) bit indicates the type of message. It is set to 0 for a data message and 1 for a control message. If the Length (L) bit is 1, the Length field is present. This bit MUST be set to 1 for control messages. The x bits are reserved for future extensions. All reserved bits MUST be set to 0 on outgoing messages and ignored on incoming messages. If the Sequence (S) bit is set to 1 the Ns and Nr fields are present. The S bit MUST be set to 1 for control messages. If the Offset (O) bit is 1, the Offset Size field is present. The O bit MUST be set to 0 (zero) for control messages. If the Priority (P) bit is 1, this data message should receive preferential treatment in its local queuing and transmission. LCP echo requests used as a keepalive for the link, for instance, should generally be sent with this bit set to 1. Without it, a temporary interval of local congestion could result in interference with keepalive messages and unnecessary loss of the link. This feature is only for use with data messages. The P bit MUST be set to 0 for all control messages. Ver MUST be 2, indicating the version of the L2TP data message header described in this document. The value 1 is reserved to permit detection of L2F [RFC2341] packets should they arrive intermixed with L2TP packets. Packets received with an unknown Ver field MUST be discarded. The Length field indicates the total length of the message in octets.
Tunnel ID indicates the identifier for the control connection. L2TP tunnels are named by identifiers that have local significance only. That is, the same tunnel will be given different Tunnel IDs by each end of the tunnel. Tunnel ID in each message is that of the intended recipient, not the sender. Tunnel IDs are selected and exchanged as Assigned Tunnel ID AVPs during the creation of a tunnel. Session ID indicates the identifier for a session within a tunnel. L2TP sessions are named by identifiers that have local significance only. That is, the same session will be given different Session IDs by each end of the session. Session ID in each message is that of the intended recipient, not the sender. Session IDs are selected and exchanged as Assigned Session ID AVPs during the creation of a session. Ns indicates the sequence number for this data or control message, beginning at zero and incrementing by one (modulo 2**16) for each message sent. See Section 5.8 and 5.4 for more information on using this field. Nr indicates the sequence number expected in the next control message to be received. Thus, Nr is set to the Ns of the last in-order message received plus one (modulo 2**16). In data messages, Nr is reserved and, if present (as indicated by the S-bit), MUST be ignored upon receipt. See section 5.8 for more information on using this field in control messages. The Offset Size field, if present, specifies the number of octets past the L2TP header at which the payload data is expected to start. Actual data within the offset padding is undefined. If the offset field is present, the L2TP header ends after the last octet of the offset padding.3.2 Control Message Types
The Message Type AVP (see section 4.4.1) defines the specific type of control message being sent. Recall from section 3.1 that this is only for control messages, that is, messages with the T-bit set to 1.
This document defines the following control message types (see Section 6.1 through 6.14 for details on the construction and use of each message): Control Connection Management 0 (reserved) 1 (SCCRQ) Start-Control-Connection-Request 2 (SCCRP) Start-Control-Connection-Reply 3 (SCCCN) Start-Control-Connection-Connected 4 (StopCCN) Stop-Control-Connection-Notification 5 (reserved) 6 (HELLO) Hello Call Management 7 (OCRQ) Outgoing-Call-Request 8 (OCRP) Outgoing-Call-Reply 9 (OCCN) Outgoing-Call-Connected 10 (ICRQ) Incoming-Call-Request 11 (ICRP) Incoming-Call-Reply 12 (ICCN) Incoming-Call-Connected 13 (reserved) 14 (CDN) Call-Disconnect-Notify Error Reporting 15 (WEN) WAN-Error-Notify PPP Session Control 16 (SLI) Set-Link-Info