Network Working Group T. Dierks Request for Comments: 2246 Certicom Category: Standards Track C. Allen Certicom January 1999 The TLS Protocol Version 1.0 Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (1999). All Rights Reserved. Abstract This document specifies Version 1.0 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications privacy over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. Table of Contents 1. Introduction 3 2. Goals 4 3. Goals of this document 5 4. Presentation language 5 4.1. Basic block size 6 4.2. Miscellaneous 6 4.3. Vectors 6 4.4. Numbers 7 4.5. Enumerateds 7 4.6. Constructed types 8 4.6.1. Variants 9 4.7. Cryptographic attributes 10 4.8. Constants 11 5. HMAC and the pseudorandom function 11 6. The TLS Record Protocol 13 6.1. Connection states 14
6.2. Record layer 16 6.2.1. Fragmentation 16 6.2.2. Record compression and decompression 17 6.2.3. Record payload protection 18 6.2.3.1. Null or standard stream cipher 19 6.2.3.2. CBC block cipher 19 6.3. Key calculation 21 6.3.1. Export key generation example 22 7. The TLS Handshake Protocol 23 7.1. Change cipher spec protocol 24 7.2. Alert protocol 24 7.2.1. Closure alerts 25 7.2.2. Error alerts 26 7.3. Handshake Protocol overview 29 7.4. Handshake protocol 32 7.4.1. Hello messages 33 7.4.1.1. Hello request 33 7.4.1.2. Client hello 34 7.4.1.3. Server hello 36 7.4.2. Server certificate 37 7.4.3. Server key exchange message 39 7.4.4. Certificate request 41 7.4.5. Server hello done 42 7.4.6. Client certificate 43 7.4.7. Client key exchange message 43 7.4.7.1. RSA encrypted premaster secret message 44 7.4.7.2. Client Diffie-Hellman public value 45 7.4.8. Certificate verify 45 7.4.9. Finished 46 8. Cryptographic computations 47 8.1. Computing the master secret 47 8.1.1. RSA 48 8.1.2. Diffie-Hellman 48 9. Mandatory Cipher Suites 48 10. Application data protocol 48 A. Protocol constant values 49 A.1. Record layer 49 A.2. Change cipher specs message 50 A.3. Alert messages 50 A.4. Handshake protocol 51 A.4.1. Hello messages 51 A.4.2. Server authentication and key exchange messages 52 A.4.3. Client authentication and key exchange messages 53 A.4.4. Handshake finalization message 54 A.5. The CipherSuite 54 A.6. The Security Parameters 56 B. Glossary 57 C. CipherSuite definitions 61
D. Implementation Notes 64 D.1. Temporary RSA keys 64 D.2. Random Number Generation and Seeding 64 D.3. Certificates and authentication 65 D.4. CipherSuites 65 E. Backward Compatibility With SSL 66 E.1. Version 2 client hello 67 E.2. Avoiding man-in-the-middle version rollback 68 F. Security analysis 69 F.1. Handshake protocol 69 F.1.1. Authentication and key exchange 69 F.1.1.1. Anonymous key exchange 69 F.1.1.2. RSA key exchange and authentication 70 F.1.1.3. Diffie-Hellman key exchange with authentication 71 F.1.2. Version rollback attacks 71 F.1.3. Detecting attacks against the handshake protocol 72 F.1.4. Resuming sessions 72 F.1.5. MD5 and SHA 72 F.2. Protecting application data 72 F.3. Final notes 73 G. Patent Statement 74 Security Considerations 75 References 75 Credits 77 Comments 78 Full Copyright Statement 80 1. Introduction The primary goal of the TLS Protocol is to provide privacy and data integrity between two communicating applications. The protocol is composed of two layers: the TLS Record Protocol and the TLS Handshake Protocol. At the lowest level, layered on top of some reliable transport protocol (e.g., TCP[TCP]), is the TLS Record Protocol. The TLS Record Protocol provides connection security that has two basic properties: - The connection is private. Symmetric cryptography is used for data encryption (e.g., DES [DES], RC4 [RC4], etc.) The keys for this symmetric encryption are generated uniquely for each connection and are based on a secret negotiated by another protocol (such as the TLS Handshake Protocol). The Record Protocol can also be used without encryption. - The connection is reliable. Message transport includes a message integrity check using a keyed MAC. Secure hash functions (e.g., SHA, MD5, etc.) are used for MAC computations. The Record Protocol can operate without a MAC, but is generally only used in
this mode while another protocol is using the Record Protocol as a transport for negotiating security parameters. The TLS Record Protocol is used for encapsulation of various higher level protocols. One such encapsulated protocol, the TLS Handshake Protocol, allows the server and client to authenticate each other and to negotiate an encryption algorithm and cryptographic keys before the application protocol transmits or receives its first byte of data. The TLS Handshake Protocol provides connection security that has three basic properties: - The peer's identity can be authenticated using asymmetric, or public key, cryptography (e.g., RSA [RSA], DSS [DSS], etc.). This authentication can be made optional, but is generally required for at least one of the peers. - The negotiation of a shared secret is secure: the negotiated secret is unavailable to eavesdroppers, and for any authenticated connection the secret cannot be obtained, even by an attacker who can place himself in the middle of the connection. - The negotiation is reliable: no attacker can modify the negotiation communication without being detected by the parties to the communication. One advantage of TLS is that it is application protocol independent. Higher level protocols can layer on top of the TLS Protocol transparently. The TLS standard, however, does not specify how protocols add security with TLS; the decisions on how to initiate TLS handshaking and how to interpret the authentication certificates exchanged are left up to the judgment of the designers and implementors of protocols which run on top of TLS. 2. Goals The goals of TLS Protocol, in order of their priority, are: 1. Cryptographic security: TLS should be used to establish a secure connection between two parties. 2. Interoperability: Independent programmers should be able to develop applications utilizing TLS that will then be able to successfully exchange cryptographic parameters without knowledge of one another's code. 3. Extensibility: TLS seeks to provide a framework into which new public key and bulk encryption methods can be incorporated as necessary. This will also accomplish two sub-goals: to prevent
the need to create a new protocol (and risking the introduction of possible new weaknesses) and to avoid the need to implement an entire new security library. 4. Relative efficiency: Cryptographic operations tend to be highly CPU intensive, particularly public key operations. For this reason, the TLS protocol has incorporated an optional session caching scheme to reduce the number of connections that need to be established from scratch. Additionally, care has been taken to reduce network activity. 3. Goals of this document This document and the TLS protocol itself are based on the SSL 3.0 Protocol Specification as published by Netscape. The differences between this protocol and SSL 3.0 are not dramatic, but they are significant enough that TLS 1.0 and SSL 3.0 do not interoperate (although TLS 1.0 does incorporate a mechanism by which a TLS implementation can back down to SSL 3.0). This document is intended primarily for readers who will be implementing the protocol and those doing cryptographic analysis of it. The specification has been written with this in mind, and it is intended to reflect the needs of those two groups. For that reason, many of the algorithm-dependent data structures and rules are included in the body of the text (as opposed to in an appendix), providing easier access to them. This document is not intended to supply any details of service definition nor interface definition, although it does cover select areas of policy as they are required for the maintenance of solid security. 4. Presentation language This document deals with the formatting of data in an external representation. The following very basic and somewhat casually defined presentation syntax will be used. The syntax draws from several sources in its structure. Although it resembles the programming language "C" in its syntax and XDR [XDR] in both its syntax and intent, it would be risky to draw too many parallels. The purpose of this presentation language is to document TLS only, not to have general application beyond that particular goal.
4.1. Basic block size The representation of all data items is explicitly specified. The basic data block size is one byte (i.e. 8 bits). Multiple byte data items are concatenations of bytes, from left to right, from top to bottom. From the bytestream a multi-byte item (a numeric in the example) is formed (using C notation) by: value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) | ... | byte[n-1]; This byte ordering for multi-byte values is the commonplace network byte order or big endian format. 4.2. Miscellaneous Comments begin with "/*" and end with "*/". Optional components are denoted by enclosing them in "[[ ]]" double brackets. Single byte entities containing uninterpreted data are of type opaque. 4.3. Vectors A vector (single dimensioned array) is a stream of homogeneous data elements. The size of the vector may be specified at documentation time or left unspecified until runtime. In either case the length declares the number of bytes, not the number of elements, in the vector. The syntax for specifying a new type T' that is a fixed length vector of type T is T T'[n]; Here T' occupies n bytes in the data stream, where n is a multiple of the size of T. The length of the vector is not included in the encoded stream. In the following example, Datum is defined to be three consecutive bytes that the protocol does not interpret, while Data is three consecutive Datum, consuming a total of nine bytes. opaque Datum[3]; /* three uninterpreted bytes */ Datum Data[9]; /* 3 consecutive 3 byte vectors */
Variable length vectors are defined by specifying a subrange of legal lengths, inclusively, using the notation <floor..ceiling>. When encoded, the actual length precedes the vector's contents in the byte stream. The length will be in the form of a number consuming as many bytes as required to hold the vector's specified maximum (ceiling) length. A variable length vector with an actual length field of zero is referred to as an empty vector. T T'<floor..ceiling>; In the following example, mandatory is a vector that must contain between 300 and 400 bytes of type opaque. It can never be empty. The actual length field consumes two bytes, a uint16, sufficient to represent the value 400 (see Section 4.4). On the other hand, longer can represent up to 800 bytes of data, or 400 uint16 elements, and it may be empty. Its encoding will include a two byte actual length field prepended to the vector. The length of an encoded vector must be an even multiple of the length of a single element (for example, a 17 byte vector of uint16 would be illegal). opaque mandatory<300..400>; /* length field is 2 bytes, cannot be empty */ uint16 longer<0..800>; /* zero to 400 16-bit unsigned integers */ 4.4. Numbers The basic numeric data type is an unsigned byte (uint8). All larger numeric data types are formed from fixed length series of bytes concatenated as described in Section 4.1 and are also unsigned. The following numeric types are predefined. uint8 uint16[2]; uint8 uint24[3]; uint8 uint32[4]; uint8 uint64[8]; All values, here and elsewhere in the specification, are stored in "network" or "big-endian" order; the uint32 represented by the hex bytes 01 02 03 04 is equivalent to the decimal value 16909060. 4.5. Enumerateds An additional sparse data type is available called enum. A field of type enum can only assume the values declared in the definition. Each definition is a different type. Only enumerateds of the same type may be assigned or compared. Every element of an enumerated must
be assigned a value, as demonstrated in the following example. Since the elements of the enumerated are not ordered, they can be assigned any unique value, in any order. enum { e1(v1), e2(v2), ... , en(vn) [[, (n)]] } Te; Enumerateds occupy as much space in the byte stream as would its maximal defined ordinal value. The following definition would cause one byte to be used to carry fields of type Color. enum { red(3), blue(5), white(7) } Color; One may optionally specify a value without its associated tag to force the width definition without defining a superfluous element. In the following example, Taste will consume two bytes in the data stream but can only assume the values 1, 2 or 4. enum { sweet(1), sour(2), bitter(4), (32000) } Taste; The names of the elements of an enumeration are scoped within the defined type. In the first example, a fully qualified reference to the second element of the enumeration would be Color.blue. Such qualification is not required if the target of the assignment is well specified. Color color = Color.blue; /* overspecified, legal */ Color color = blue; /* correct, type implicit */ For enumerateds that are never converted to external representation, the numerical information may be omitted. enum { low, medium, high } Amount; 4.6. Constructed types Structure types may be constructed from primitive types for convenience. Each specification declares a new, unique type. The syntax for definition is much like that of C. struct { T1 f1; T2 f2; ... Tn fn; } [[T]];
The fields within a structure may be qualified using the type's name using a syntax much like that available for enumerateds. For example, T.f2 refers to the second field of the previous declaration. Structure definitions may be embedded. 4.6.1. Variants Defined structures may have variants based on some knowledge that is available within the environment. The selector must be an enumerated type that defines the possible variants the structure defines. There must be a case arm for every element of the enumeration declared in the select. The body of the variant structure may be given a label for reference. The mechanism by which the variant is selected at runtime is not prescribed by the presentation language. struct { T1 f1; T2 f2; .... Tn fn; select (E) { case e1: Te1; case e2: Te2; .... case en: Ten; } [[fv]]; } [[Tv]]; For example: enum { apple, orange } VariantTag; struct { uint16 number; opaque string<0..10>; /* variable length */ } V1; struct { uint32 number; opaque string[10]; /* fixed length */ } V2; struct { select (VariantTag) { /* value of selector is implicit */ case apple: V1; /* VariantBody, tag = apple */ case orange: V2; /* VariantBody, tag = orange */ } variant_body; /* optional label on variant */ } VariantRecord; Variant structures may be qualified (narrowed) by specifying a value for the selector prior to the type. For example, a
orange VariantRecord is a narrowed type of a VariantRecord containing a variant_body of type V2. 4.7. Cryptographic attributes The four cryptographic operations digital signing, stream cipher encryption, block cipher encryption, and public key encryption are designated digitally-signed, stream-ciphered, block-ciphered, and public-key-encrypted, respectively. A field's cryptographic processing is specified by prepending an appropriate key word designation before the field's type specification. Cryptographic keys are implied by the current session state (see Section 6.1). In digital signing, one-way hash functions are used as input for a signing algorithm. A digitally-signed element is encoded as an opaque vector <0..2^16-1>, where the length is specified by the signing algorithm and key. In RSA signing, a 36-byte structure of two hashes (one SHA and one MD5) is signed (encrypted with the private key). It is encoded with PKCS #1 block type 0 or type 1 as described in [PKCS1]. In DSS, the 20 bytes of the SHA hash are run directly through the Digital Signing Algorithm with no additional hashing. This produces two values, r and s. The DSS signature is an opaque vector, as above, the contents of which are the DER encoding of: Dss-Sig-Value ::= SEQUENCE { r INTEGER, s INTEGER } In stream cipher encryption, the plaintext is exclusive-ORed with an identical amount of output generated from a cryptographically-secure keyed pseudorandom number generator. In block cipher encryption, every block of plaintext encrypts to a block of ciphertext. All block cipher encryption is done in CBC (Cipher Block Chaining) mode, and all items which are block-ciphered will be an exact multiple of the cipher block length. In public key encryption, a public key algorithm is used to encrypt data in such a way that it can be decrypted only with the matching private key. A public-key-encrypted element is encoded as an opaque vector <0..2^16-1>, where the length is specified by the signing algorithm and key.
An RSA encrypted value is encoded with PKCS #1 block type 2 as described in [PKCS1]. In the following example: stream-ciphered struct { uint8 field1; uint8 field2; digitally-signed opaque hash[20]; } UserType; The contents of hash are used as input for the signing algorithm, then the entire structure is encrypted with a stream cipher. The length of this structure, in bytes would be equal to 2 bytes for field1 and field2, plus two bytes for the length of the signature, plus the length of the output of the signing algorithm. This is known due to the fact that the algorithm and key used for the signing are known prior to encoding or decoding this structure. 4.8. Constants Typed constants can be defined for purposes of specification by declaring a symbol of the desired type and assigning values to it. Under-specified types (opaque, variable length vectors, and structures that contain opaque) cannot be assigned values. No fields of a multi-element structure or vector may be elided. For example, struct { uint8 f1; uint8 f2; } Example1; Example1 ex1 = {1, 4}; /* assigns f1 = 1, f2 = 4 */ 5. HMAC and the pseudorandom function A number of operations in the TLS record and handshake layer required a keyed MAC; this is a secure digest of some data protected by a secret. Forging the MAC is infeasible without knowledge of the MAC secret. The construction we use for this operation is known as HMAC, described in [HMAC]. HMAC can be used with a variety of different hash algorithms. TLS uses it in the handshake with two different algorithms: MD5 and SHA- 1, denoting these as HMAC_MD5(secret, data) and HMAC_SHA(secret,
data). Additional hash algorithms can be defined by cipher suites and used to protect record data, but MD5 and SHA-1 are hard coded into the description of the handshaking for this version of the protocol. In addition, a construction is required to do expansion of secrets into blocks of data for the purposes of key generation or validation. This pseudo-random function (PRF) takes as input a secret, a seed, and an identifying label and produces an output of arbitrary length. In order to make the PRF as secure as possible, it uses two hash algorithms in a way which should guarantee its security if either algorithm remains secure. First, we define a data expansion function, P_hash(secret, data) which uses a single hash function to expand a secret and seed into an arbitrary quantity of output: P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) + HMAC_hash(secret, A(2) + seed) + HMAC_hash(secret, A(3) + seed) + ... Where + indicates concatenation. A() is defined as: A(0) = seed A(i) = HMAC_hash(secret, A(i-1)) P_hash can be iterated as many times as is necessary to produce the required quantity of data. For example, if P_SHA-1 was being used to create 64 bytes of data, it would have to be iterated 4 times (through A(4)), creating 80 bytes of output data; the last 16 bytes of the final iteration would then be discarded, leaving 64 bytes of output data. TLS's PRF is created by splitting the secret into two halves and using one half to generate data with P_MD5 and the other half to generate data with P_SHA-1, then exclusive-or'ing the outputs of these two expansion functions together. S1 and S2 are the two halves of the secret and each is the same length. S1 is taken from the first half of the secret, S2 from the second half. Their length is created by rounding up the length of the overall secret divided by two; thus, if the original secret is an odd number of bytes long, the last byte of S1 will be the same as the first byte of S2. L_S = length in bytes of secret; L_S1 = L_S2 = ceil(L_S / 2);
The secret is partitioned into two halves (with the possibility of one shared byte) as described above, S1 taking the first L_S1 bytes and S2 the last L_S2 bytes. The PRF is then defined as the result of mixing the two pseudorandom streams by exclusive-or'ing them together. PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed); The label is an ASCII string. It should be included in the exact form it is given without a length byte or trailing null character. For example, the label "slithy toves" would be processed by hashing the following bytes: 73 6C 69 74 68 79 20 74 6F 76 65 73 Note that because MD5 produces 16 byte outputs and SHA-1 produces 20 byte outputs, the boundaries of their internal iterations will not be aligned; to generate a 80 byte output will involve P_MD5 being iterated through A(5), while P_SHA-1 will only iterate through A(4). 6. The TLS Record Protocol The TLS Record Protocol is a layered protocol. At each layer, messages may include fields for length, description, and content. The Record Protocol takes messages to be transmitted, fragments the data into manageable blocks, optionally compresses the data, applies a MAC, encrypts, and transmits the result. Received data is decrypted, verified, decompressed, and reassembled, then delivered to higher level clients. Four record protocol clients are described in this document: the handshake protocol, the alert protocol, the change cipher spec protocol, and the application data protocol. In order to allow extension of the TLS protocol, additional record types can be supported by the record protocol. Any new record types should allocate type values immediately beyond the ContentType values for the four record types described here (see Appendix A.2). If a TLS implementation receives a record type it does not understand, it should just ignore it. Any protocol designed for use over TLS must be carefully designed to deal with all possible attacks against it. Note that because the type and length of a record are not protected by encryption, care should be take to minimize the value of traffic analysis of these values.
6.1. Connection states A TLS connection state is the operating environment of the TLS Record Protocol. It specifies a compression algorithm, encryption algorithm, and MAC algorithm. In addition, the parameters for these algorithms are known: the MAC secret and the bulk encryption keys and IVs for the connection in both the read and the write directions. Logically, there are always four connection states outstanding: the current read and write states, and the pending read and write states. All records are processed under the current read and write states. The security parameters for the pending states can be set by the TLS Handshake Protocol, and the Handshake Protocol can selectively make either of the pending states current, in which case the appropriate current state is disposed of and replaced with the pending state; the pending state is then reinitialized to an empty state. It is illegal to make a state which has not been initialized with security parameters a current state. The initial current state always specifies that no encryption, compression, or MAC will be used. The security parameters for a TLS Connection read and write state are set by providing the following values: connection end Whether this entity is considered the "client" or the "server" in this connection. bulk encryption algorithm An algorithm to be used for bulk encryption. This specification includes the key size of this algorithm, how much of that key is secret, whether it is a block or stream cipher, the block size of the cipher (if appropriate), and whether it is considered an "export" cipher. MAC algorithm An algorithm to be used for message authentication. This specification includes the size of the hash which is returned by the MAC algorithm. compression algorithm An algorithm to be used for data compression. This specification must include all information the algorithm requires to do compression. master secret A 48 byte secret shared between the two peers in the connection. client random A 32 byte value provided by the client.
server random A 32 byte value provided by the server. These parameters are defined in the presentation language as: enum { server, client } ConnectionEnd; enum { null, rc4, rc2, des, 3des, des40 } BulkCipherAlgorithm; enum { stream, block } CipherType; enum { true, false } IsExportable; enum { null, md5, sha } MACAlgorithm; enum { null(0), (255) } CompressionMethod; /* The algorithms specified in CompressionMethod, BulkCipherAlgorithm, and MACAlgorithm may be added to. */ struct { ConnectionEnd entity; BulkCipherAlgorithm bulk_cipher_algorithm; CipherType cipher_type; uint8 key_size; uint8 key_material_length; IsExportable is_exportable; MACAlgorithm mac_algorithm; uint8 hash_size; CompressionMethod compression_algorithm; opaque master_secret[48]; opaque client_random[32]; opaque server_random[32]; } SecurityParameters; The record layer will use the security parameters to generate the following six items: client write MAC secret server write MAC secret client write key server write key client write IV (for block ciphers only) server write IV (for block ciphers only) The client write parameters are used by the server when receiving and processing records and vice-versa. The algorithm used for generating these items from the security parameters is described in section 6.3.
Once the security parameters have been set and the keys have been generated, the connection states can be instantiated by making them the current states. These current states must be updated for each record processed. Each connection state includes the following elements: compression state The current state of the compression algorithm. cipher state The current state of the encryption algorithm. This will consist of the scheduled key for that connection. In addition, for block ciphers running in CBC mode (the only mode specified for TLS), this will initially contain the IV for that connection state and be updated to contain the ciphertext of the last block encrypted or decrypted as records are processed. For stream ciphers, this will contain whatever the necessary state information is to allow the stream to continue to encrypt or decrypt data. MAC secret The MAC secret for this connection as generated above. sequence number Each connection state contains a sequence number, which is maintained separately for read and write states. The sequence number must be set to zero whenever a connection state is made the active state. Sequence numbers are of type uint64 and may not exceed 2^64-1. A sequence number is incremented after each record: specifically, the first record which is transmitted under a particular connection state should use sequence number 0. 6.2. Record layer The TLS Record Layer receives uninterpreted data from higher layers in non-empty blocks of arbitrary size. 6.2.1. Fragmentation The record layer fragments information blocks into TLSPlaintext records carrying data in chunks of 2^14 bytes or less. Client message boundaries are not preserved in the record layer (i.e., multiple client messages of the same ContentType may be coalesced into a single TLSPlaintext record, or a single message may be fragmented across several records). struct { uint8 major, minor; } ProtocolVersion;
enum { change_cipher_spec(20), alert(21), handshake(22), application_data(23), (255) } ContentType; struct { ContentType type; ProtocolVersion version; uint16 length; opaque fragment[TLSPlaintext.length]; } TLSPlaintext; type The higher level protocol used to process the enclosed fragment. version The version of the protocol being employed. This document describes TLS Version 1.0, which uses the version { 3, 1 }. The version value 3.1 is historical: TLS version 1.0 is a minor modification to the SSL 3.0 protocol, which bears the version value 3.0. (See Appendix A.1). length The length (in bytes) of the following TLSPlaintext.fragment. The length should not exceed 2^14. fragment The application data. This data is transparent and treated as an independent block to be dealt with by the higher level protocol specified by the type field. Note: Data of different TLS Record layer content types may be interleaved. Application data is generally of lower precedence for transmission than other content types. 6.2.2. Record compression and decompression All records are compressed using the compression algorithm defined in the current session state. There is always an active compression algorithm; however, initially it is defined as CompressionMethod.null. The compression algorithm translates a TLSPlaintext structure into a TLSCompressed structure. Compression functions are initialized with default state information whenever a connection state is made active.
Compression must be lossless and may not increase the content length by more than 1024 bytes. If the decompression function encounters a TLSCompressed.fragment that would decompress to a length in excess of 2^14 bytes, it should report a fatal decompression failure error. struct { ContentType type; /* same as TLSPlaintext.type */ ProtocolVersion version;/* same as TLSPlaintext.version */ uint16 length; opaque fragment[TLSCompressed.length]; } TLSCompressed; length The length (in bytes) of the following TLSCompressed.fragment. The length should not exceed 2^14 + 1024. fragment The compressed form of TLSPlaintext.fragment. Note: A CompressionMethod.null operation is an identity operation; no fields are altered. Implementation note: Decompression functions are responsible for ensuring that messages cannot cause internal buffer overflows. 6.2.3. Record payload protection The encryption and MAC functions translate a TLSCompressed structure into a TLSCiphertext. The decryption functions reverse the process. The MAC of the record also includes a sequence number so that missing, extra or repeated messages are detectable. struct { ContentType type; ProtocolVersion version; uint16 length; select (CipherSpec.cipher_type) { case stream: GenericStreamCipher; case block: GenericBlockCipher; } fragment; } TLSCiphertext; type The type field is identical to TLSCompressed.type. version The version field is identical to TLSCompressed.version.
length The length (in bytes) of the following TLSCiphertext.fragment. The length may not exceed 2^14 + 2048. fragment The encrypted form of TLSCompressed.fragment, with the MAC. 6.2.3.1. Null or standard stream cipher Stream ciphers (including BulkCipherAlgorithm.null - see Appendix A.6) convert TLSCompressed.fragment structures to and from stream TLSCiphertext.fragment structures. stream-ciphered struct { opaque content[TLSCompressed.length]; opaque MAC[CipherSpec.hash_size]; } GenericStreamCipher; The MAC is generated as: HMAC_hash(MAC_write_secret, seq_num + TLSCompressed.type + TLSCompressed.version + TLSCompressed.length + TLSCompressed.fragment)); where "+" denotes concatenation. seq_num The sequence number for this record. hash The hashing algorithm specified by SecurityParameters.mac_algorithm. Note that the MAC is computed before encryption. The stream cipher encrypts the entire block, including the MAC. For stream ciphers that do not use a synchronization vector (such as RC4), the stream cipher state from the end of one record is simply used on the subsequent packet. If the CipherSuite is TLS_NULL_WITH_NULL_NULL, encryption consists of the identity operation (i.e., the data is not encrypted and the MAC size is zero implying that no MAC is used). TLSCiphertext.length is TLSCompressed.length plus CipherSpec.hash_size. 6.2.3.2. CBC block cipher For block ciphers (such as RC2 or DES), the encryption and MAC functions convert TLSCompressed.fragment structures to and from block TLSCiphertext.fragment structures.
block-ciphered struct { opaque content[TLSCompressed.length]; opaque MAC[CipherSpec.hash_size]; uint8 padding[GenericBlockCipher.padding_length]; uint8 padding_length; } GenericBlockCipher; The MAC is generated as described in Section 6.2.3.1. padding Padding that is added to force the length of the plaintext to be an integral multiple of the block cipher's block length. The padding may be any length up to 255 bytes long, as long as it results in the TLSCiphertext.length being an integral multiple of the block length. Lengths longer than necessary might be desirable to frustrate attacks on a protocol based on analysis of the lengths of exchanged messages. Each uint8 in the padding data vector must be filled with the padding length value. padding_length The padding length should be such that the total size of the GenericBlockCipher structure is a multiple of the cipher's block length. Legal values range from zero to 255, inclusive. This length specifies the length of the padding field exclusive of the padding_length field itself. The encrypted data length (TLSCiphertext.length) is one more than the sum of TLSCompressed.length, CipherSpec.hash_size, and padding_length. Example: If the block length is 8 bytes, the content length (TLSCompressed.length) is 61 bytes, and the MAC length is 20 bytes, the length before padding is 82 bytes. Thus, the padding length modulo 8 must be equal to 6 in order to make the total length an even multiple of 8 bytes (the block length). The padding length can be 6, 14, 22, and so on, through 254. If the padding length were the minimum necessary, 6, the padding would be 6 bytes, each containing the value 6. Thus, the last 8 octets of the GenericBlockCipher before block encryption would be xx 06 06 06 06 06 06 06, where xx is the last octet of the MAC. Note: With block ciphers in CBC mode (Cipher Block Chaining) the initialization vector (IV) for the first record is generated with the other keys and secrets when the security parameters are set. The IV for subsequent records is the last ciphertext block from the previous record.
6.3. Key calculation The Record Protocol requires an algorithm to generate keys, IVs, and MAC secrets from the security parameters provided by the handshake protocol. The master secret is hashed into a sequence of secure bytes, which are assigned to the MAC secrets, keys, and non-export IVs required by the current connection state (see Appendix A.6). CipherSpecs require a client write MAC secret, a server write MAC secret, a client write key, a server write key, a client write IV, and a server write IV, which are generated from the master secret in that order. Unused values are empty. When generating keys and MAC secrets, the master secret is used as an entropy source, and the random values provide unencrypted salt material and IVs for exportable ciphers. To generate the key material, compute key_block = PRF(SecurityParameters.master_secret, "key expansion", SecurityParameters.server_random + SecurityParameters.client_random); until enough output has been generated. Then the key_block is partitioned as follows: client_write_MAC_secret[SecurityParameters.hash_size] server_write_MAC_secret[SecurityParameters.hash_size] client_write_key[SecurityParameters.key_material_length] server_write_key[SecurityParameters.key_material_length] client_write_IV[SecurityParameters.IV_size] server_write_IV[SecurityParameters.IV_size] The client_write_IV and server_write_IV are only generated for non- export block ciphers. For exportable block ciphers, the initialization vectors are generated later, as described below. Any extra key_block material is discarded. Implementation note: The cipher spec which is defined in this document which requires the most material is 3DES_EDE_CBC_SHA: it requires 2 x 24 byte keys, 2 x 20 byte MAC secrets, and 2 x 8 byte IVs, for a total of 104 bytes of key material.
Exportable encryption algorithms (for which CipherSpec.is_exportable is true) require additional processing as follows to derive their final write keys: final_client_write_key = PRF(SecurityParameters.client_write_key, "client write key", SecurityParameters.client_random + SecurityParameters.server_random); final_server_write_key = PRF(SecurityParameters.server_write_key, "server write key", SecurityParameters.client_random + SecurityParameters.server_random); Exportable encryption algorithms derive their IVs solely from the random values from the hello messages: iv_block = PRF("", "IV block", SecurityParameters.client_random + SecurityParameters.server_random); The iv_block is partitioned into two initialization vectors as the key_block was above: client_write_IV[SecurityParameters.IV_size] server_write_IV[SecurityParameters.IV_size] Note that the PRF is used without a secret in this case: this just means that the secret has a length of zero bytes and contributes nothing to the hashing in the PRF. 6.3.1. Export key generation example TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 requires five random bytes for each of the two encryption keys and 16 bytes for each of the MAC keys, for a total of 42 bytes of key material. The PRF output is stored in the key_block. The key_block is partitioned, and the write keys are salted because this is an exportable encryption algorithm. key_block = PRF(master_secret, "key expansion", server_random + client_random)[0..41] client_write_MAC_secret = key_block[0..15] server_write_MAC_secret = key_block[16..31] client_write_key = key_block[32..36] server_write_key = key_block[37..41]
final_client_write_key = PRF(client_write_key, "client write key", client_random + server_random)[0..15] final_server_write_key = PRF(server_write_key, "server write key", client_random + server_random)[0..15] iv_block = PRF("", "IV block", client_random + server_random)[0..15] client_write_IV = iv_block[0..7] server_write_IV = iv_block[8..15]