4. Security Services and Procedures This chapter guides the reader through a number of topics that should be addressed when securing a site. Each section touches on a security service or capability that may be required to protect the information and systems at a site. The topics are presented at a fairly high-level to introduce the reader to the concepts. Throughout the chapter, you will find significant mention of cryptography. It is outside the scope of this document to delve into details concerning cryptography, but the interested reader can obtain more information from books and articles listed in the reference section of this document. 4.1 Authentication For many years, the prescribed method for authenticating users has been through the use of standard, reusable passwords. Originally, these passwords were used by users at terminals to authenticate themselves to a central computer. At the time, there were no networks (internally or externally), so the risk of disclosure of the clear text password was minimal. Today, systems are connected together through local networks, and these local networks are further connected together and to the Internet. Users are logging in from all over the globe; their reusable passwords are often transmitted across those same networks in clear text, ripe for anyone in-between to capture. And indeed, the CERT* Coordination Center and other response teams are seeing a tremendous number of incidents involving packet sniffers which are capturing the clear text passwords. With the advent of newer technologies like one-time passwords (e.g., S/Key), PGP, and token-based authentication devices, people are using password-like strings as secret tokens and pins. If these secret tokens and pins are not properly selected and protected, the authentication will be easily subverted.
4.1.1 One-Time passwords As mentioned above, given today's networked environments, it is recommended that sites concerned about the security and integrity of their systems and networks consider moving away from standard, reusable passwords. There have been many incidents involving Trojan network programs (e.g., telnet and rlogin) and network packet sniffing programs. These programs capture clear text hostname/account name/password triplets. Intruders can use the captured information for subsequent access to those hosts and accounts. This is possible because 1) the password is used over and over (hence the term "reusable"), and 2) the password passes across the network in clear text. Several authentication techniques have been developed that address this problem. Among these techniques are challenge-response technologies that provide passwords that are only used once (commonly called one-time passwords). There are a number of products available that sites should consider using. The decision to use a product is the responsibility of each organization, and each organization should perform its own evaluation and selection. 4.1.2 Kerberos Kerberos is a distributed network security system which provides for authentication across unsecured networks. If requested by the application, integrity and encryption can also be provided. Kerberos was originally developed at the Massachusetts Institute of Technology (MIT) in the mid 1980s. There are two major releases of Kerberos, version 4 and 5, which are for practical purposes, incompatible. Kerberos relies on a symmetric key database using a key distribution center (KDC) which is known as the Kerberos server. A user or service (known as "principals") are granted electronic "tickets" after properly communicating with the KDC. These tickets are used for authentication between principals. All tickets include a time stamp which limits the time period for which the ticket is valid. Therefore, Kerberos clients and server must have a secure time source, and be able to keep time accurately. The practical side of Kerberos is its integration with the application level. Typical applications like FTP, telnet, POP, and NFS have been integrated with the Kerberos system. There are a variety of implementations which have varying levels of integration. Please see the Kerberos FAQ available at http://www.ov.com/misc/krb- faq.html for the latest information.
4.1.3 Choosing and Protecting Secret Tokens and PINs When selecting secret tokens, take care to choose them carefully. Like the selection of passwords, they should be robust against brute force efforts to guess them. That is, they should not be single words in any language, any common, industry, or cultural acronyms, etc. Ideally, they will be longer rather than shorter and consist of pass phrases that combine upper and lower case character, digits, and other characters. Once chosen, the protection of these secret tokens is very important. Some are used as pins to hardware devices (like token cards) and these should not be written down or placed in the same location as the device with which they are associated. Others, such as a secret Pretty Good Privacy (PGP) key, should be protected from unauthorized access. One final word on this subject. When using cryptography products, like PGP, take care to determine the proper key length and ensure that your users are trained to do likewise. As technology advances, the minimum safe key length continues to grow. Make sure your site keeps up with the latest knowledge on the technology so that you can ensure that any cryptography in use is providing the protection you believe it is. 4.1.4 Password Assurance While the need to eliminate the use of standard, reusable passwords cannot be overstated, it is recognized that some organizations may still be using them. While it's recommended that these organizations transition to the use of better technology, in the mean time, we have the following advice to help with the selection and maintenance of traditional passwords. But remember, none of these measures provides protection against disclosure due to sniffer programs. (1) The importance of robust passwords - In many (if not most) cases of system penetration, the intruder needs to gain access to an account on the system. One way that goal is typically accomplished is through guessing the password of a legitimate user. This is often accomplished by running an automated password cracking program, which utilizes a very large dictionary, against the system's password file. The only way to guard against passwords being disclosed in this manner is through the careful selection of passwords which cannot be easily guessed (i.e., combinations of numbers, letters, and punctuation characters). Passwords should also be as long as the system supports and users can tolerate.
(2) Changing default passwords - Many operating systems and application programs are installed with default accounts and passwords. These must be changed immediately to something that cannot be guessed or cracked. (3) Restricting access to the password file - In particular, a site wants to protect the encrypted password portion of the file so that would-be intruders don't have them available for cracking. One effective technique is to use shadow passwords where the password field of the standard file contains a dummy or false password. The file containing the legitimate passwords are protected elsewhere on the system. (4) Password aging - When and how to expire passwords is still a subject of controversy among the security community. It is generally accepted that a password should not be maintained once an account is no longer in use, but it is hotly debated whether a user should be forced to change a good password that's in active use. The arguments for changing passwords relate to the prevention of the continued use of penetrated accounts. However, the opposition claims that frequent password changes lead to users writing down their passwords in visible areas (such as pasting them to a terminal), or to users selecting very simple passwords that are easy to guess. It should also be stated that an intruder will probably use a captured or guessed password sooner rather than later, in which case password aging provides little if any protection. While there is no definitive answer to this dilemma, a password policy should directly address the issue and provide guidelines for how often a user should change the password. Certainly, an annual change in their password is usually not difficult for most users, and you should consider requiring it. It is recommended that passwords be changed at least whenever a privileged account is compromised, there is a critical change in personnel (especially if it is an administrator!), or when an account has been compromised. In addition, if a privileged account password is compromised, all passwords on the system should be changed. (5) Password/account blocking - Some sites find it useful to disable accounts after a predefined number of failed attempts to authenticate. If your site decides to employ this mechanism, it is recommended that the mechanism not "advertise" itself. After
disabling, even if the correct password is presented, the message displayed should remain that of a failed login attempt. Implementing this mechanism will require that legitimate users contact their system administrator to request that their account be reactivated. (6) A word about the finger daemon - By default, the finger daemon displays considerable system and user information. For example, it can display a list of all users currently using a system, or all the contents of a specific user's .plan file. This information can be used by would-be intruders to identify usernames and guess their passwords. It is recommended that sites consider modifying finger to restrict the information displayed. 4.2 Confidentiality There will be information assets that your site will want to protect from disclosure to unauthorized entities. Operating systems often have built-in file protection mechanisms that allow an administrator to control who on the system can access, or "see," the contents of a given file. A stronger way to provide confidentiality is through encryption. Encryption is accomplished by scrambling data so that it is very difficult and time consuming for anyone other than the authorized recipients or owners to obtain the plain text. Authorized recipients and the owner of the information will possess the corresponding decryption keys that allow them to easily unscramble the text to a readable (clear text) form. We recommend that sites use encryption to provide confidentiality and protect valuable information. The use of encryption is sometimes controlled by governmental and site regulations, so we encourage administrators to become informed of laws or policies that regulate its use before employing it. It is outside the scope of this document to discuss the various algorithms and programs available for this purpose, but we do caution against the casual use of the UNIX crypt program as it has been found to be easily broken. We also encourage everyone to take time to understand the strength of the encryption in any given algorithm/product before using it. Most well-known products are well-documented in the literature, so this should be a fairly easy task. 4.3 Integrity As an administrator, you will want to make sure that information (e.g., operating system files, company data, etc.) has not been altered in an unauthorized fashion. This means you will want to provide some assurance as to the integrity of the information on your
systems. One way to provide this is to produce a checksum of the unaltered file, store that checksum offline, and periodically (or when desired) check to make sure the checksum of the online file hasn't changed (which would indicate the data has been modified). Some operating systems come with checksumming programs, such as the UNIX sum program. However, these may not provide the protection you actually need. Files can be modified in such a way as to preserve the result of the UNIX sum program! Therefore, we suggest that you use a cryptographically strong program, such as the message digesting program MD5 [ref], to produce the checksums you will be using to assure integrity. There are other applications where integrity will need to be assured, such as when transmitting an email message between two parties. There are products available that can provide this capability. Once you identify that this is a capability you need, you can go about identifying technologies that will provide it. 4.4 Authorization Authorization refers to the process of granting privileges to processes and, ultimately, users. This differs from authentication in that authentication is the process used to identify a user. Once identified (reliably), the privileges, rights, property, and permissible actions of the user are determined by authorization. Explicitly listing the authorized activities of each user (and user process) with respect to all resources (objects) is impossible in a reasonable system. In a real system certain techniques are used to simplify the process of granting and checking authorization(s). One approach, popularized in UNIX systems, is to assign to each object three classes of user: owner, group and world. The owner is either the creator of the object or the user assigned as owner by the super-user. The owner permissions (read, write and execute) apply only to the owner. A group is a collection of users which share access rights to an object. The group permissions (read, write and execute) apply to all users in the group (except the owner). The world refers to everybody else with access to the system. The world permissions (read, write and execute) apply to all users (except the owner and members of the group). Another approach is to attach to an object a list which explicitly contains the identity of all permitted users (or groups). This is an Access Control List (ACL). The advantage of ACLs are that they are
easily maintained (one central list per object) and it's very easy to visually check who has access to what. The disadvantages are the extra resources required to store such lists, as well as the vast number of such lists required for large systems. 4.5 Access 4.5.1 Physical Access Restrict physical access to hosts, allowing access only to those people who are supposed to use the hosts. Hosts include "trusted" terminals (i.e., terminals which allow unauthenticated use such as system consoles, operator terminals and terminals dedicated to special tasks), and individual microcomputers and workstations, especially those connected to your network. Make sure people's work areas mesh well with access restrictions; otherwise they will find ways to circumvent your physical security (e.g., jamming doors open). Keep original and backup copies of data and programs safe. Apart from keeping them in good condition for backup purposes, they must be protected from theft. It is important to keep backups in a separate location from the originals, not only for damage considerations, but also to guard against thefts. Portable hosts are a particular risk. Make sure it won't cause problems if one of your staff's portable computer is stolen. Consider developing guidelines for the kinds of data that should be allowed to reside on the disks of portable computers as well as how the data should be protected (e.g., encryption) when it is on a portable computer. Other areas where physical access should be restricted is the wiring closets and important network elements like file servers, name server hosts, and routers. 4.5.2 Walk-up Network Connections By "walk-up" connections, we mean network connection points located to provide a convenient way for users to connect a portable host to your network. Consider whether you need to provide this service, bearing in mind that it allows any user to attach an unauthorized host to your network. This increases the risk of attacks via techniques such as
IP address spoofing, packet sniffing, etc. Users and site management must appreciate the risks involved. If you decide to provide walk-up connections, plan the service carefully and define precisely where you will provide it so that you can ensure the necessary physical access security. A walk-up host should be authenticated before its user is permitted to access resources on your network. As an alternative, it may be possible to control physical access. For example, if the service is to be used by students, you might only provide walk-up connection sockets in student laboratories. If you are providing walk-up access for visitors to connect back to their home networks (e.g., to read e-mail, etc.) in your facility, consider using a separate subnet that has no connectivity to the internal network. Keep an eye on any area that contains unmonitored access to the network, such as vacant offices. It may be sensible to disconnect such areas at the wiring closet, and consider using secure hubs and monitoring attempts to connect unauthorized hosts. 4.5.3 Other Network Technologies Technologies considered here include X.25, ISDN, SMDS, DDS and Frame Relay. All are provided via physical links which go through telephone exchanges, providing the potential for them to be diverted. Crackers are certainly interested in telephone switches as well as in data networks! With switched technologies, use Permanent Virtual Circuits or Closed User Groups whenever this is possible. Technologies which provide authentication and/or encryption (such as IPv6) are evolving rapidly; consider using them on links where security is important. 4.5.4 Modems 4.5.4.1 Modem Lines Must Be Managed Although they provide convenient access to a site for its users, they can also provide an effective detour around the site's firewalls. For this reason it is essential to maintain proper control of modems. Don't allow users to install a modem line without proper authorization. This includes temporary installations (e.g., plugging a modem into a facsimile or telephone line overnight).
Maintain a register of all your modem lines and keep your register up to date. Conduct regular (ideally automated) site checks for unauthorized modems. 4.5.4.2 Dial-in Users Must Be Authenticated A username and password check should be completed before a user can access anything on your network. Normal password security considerations are particularly important (see section 4.1.1). Remember that telephone lines can be tapped, and that it is quite easy to intercept messages to cellular phones. Modern high-speed modems use more sophisticated modulation techniques, which makes them somewhat more difficult to monitor, but it is prudent to assume that hackers know how to eavesdrop on your lines. For this reason, you should use one-time passwords if at all possible. It is helpful to have a single dial-in point (e.g., a single large modem pool) so that all users are authenticated in the same way. Users will occasionally mis-type a password. Set a short delay - say two seconds - after the first and second failed logins, and force a disconnect after the third. This will slow down automated password attacks. Don't tell the user whether the username, the password, or both, were incorrect. 4.5.4.3 Call-back Capability Some dial-in servers offer call-back facilities (i.e., the user dials in and is authenticated, then the system disconnects the call and calls back on a specified number). Call-back is useful since if someone were to guess a username and password, they are disconnected, and the system then calls back the actual user whose password was cracked; random calls from a server are suspicious, at best. This does mean users may only log in from one location (where the server is configured to dial them back), and of course there may be phone charges associated with there call-back location. This feature should be used with caution; it can easily be bypassed. At a minimum, make sure that the return call is never made from the same modem as the incoming one. Overall, although call-back can improve modem security, you should not depend on it alone. 4.5.4.4 All Logins Should Be Logged All logins, whether successful or unsuccessful should be logged. However, do not keep correct passwords in the log. Rather, log them simply as a successful login attempt. Since most bad passwords are
mistyped by authorized users, they only vary by a single character from the actual password. Therefore if you can't keep such a log secure, don't log it at all. If Calling Line Identification is available, take advantage of it by recording the calling number for each login attempt. Be sensitive to the privacy issues raised by Calling Line Identification. Also be aware that Calling Line Identification is not to be trusted (since intruders have been known to break into phone switches and forward phone numbers or make other changes); use the data for informational purposes only, not for authentication. 4.5.4.5 Choose Your Opening Banner Carefully Many sites use a system default contained in a message of the day file for their opening banner. Unfortunately, this often includes the type of host hardware or operating system present on the host. This can provide valuable information to a would-be intruder. Instead, each site should create its own specific login banner, taking care to only include necessary information. Display a short banner, but don't offer an "inviting" name (e.g., University of XYZ, Student Records System). Instead, give your site name, a short warning that sessions may be monitored, and a username/password prompt. Verify possible legal issues related to the text you put into the banner. For high-security applications, consider using a "blind" password (i.e., give no response to an incoming call until the user has typed in a password). This effectively simulates a dead modem. 4.5.4.6 Dial-out Authentication Dial-out users should also be authenticated, particularly since your site will have to pay their telephone charges. Never allow dial-out from an unauthenticated dial-in call, and consider whether you will allow it from an authenticated one. The goal here is to prevent callers using your modem pool as part of a chain of logins. This can be hard to detect, particularly if a hacker sets up a path through several hosts on your site. At a minimum, don't allow the same modems and phone lines to be used for both dial-in and dial-out. This can be implemented easily if you run separate dial-in and dial-out modem pools.
4.5.4.7 Make Your Modem Programming as "Bullet-proof" as Possible Be sure modems can't be reprogrammed while they're in service. At a minimum, make sure that three plus signs won't put your dial-in modems into command mode! Program your modems to reset to your standard configuration at the start of each new call. Failing this, make them reset at the end of each call. This precaution will protect you against accidental reprogramming of your modems. Resetting at both the end and the beginning of each call will assure an even higher level of confidence that a new caller will not inherit a previous caller's session. Check that your modems terminate calls cleanly. When a user logs out from an access server, verify that the server hangs up the phone line properly. It is equally important that the server forces logouts from whatever sessions were active if the user hangs up unexpectedly. 4.6 Auditing This section covers the procedures for collecting data generated by network activity, which may be useful in analyzing the security of a network and responding to security incidents. 4.6.1 What to Collect Audit data should include any attempt to achieve a different security level by any person, process, or other entity in the network. This includes login and logout, super user access (or the non-UNIX equivalent), ticket generation (for Kerberos, for example), and any other change of access or status. It is especially important to note "anonymous" or "guest" access to public servers. The actual data to collect will differ for different sites and for different types of access changes within a site. In general, the information you want to collect includes: username and hostname, for login and logout; previous and new access rights, for a change of access rights; and a timestamp. Of course, there is much more information which might be gathered, depending on what the system makes available and how much space is available to store that information. One very important note: do not gather passwords. This creates an enormous potential security breach if the audit records should be improperly accessed. Do not gather incorrect passwords either, as they often differ from valid passwords by only a single character or transposition.
4.6.2 Collection Process The collection process should be enacted by the host or resource being accessed. Depending on the importance of the data and the need to have it local in instances in which services are being denied, data could be kept local to the resource until needed or be transmitted to storage after each event. There are basically three ways to store audit records: in a read/write file on a host, on a write-once/read-many device (e.g., a CD-ROM or a specially configured tape drive), or on a write-only device (e.g., a line printer). Each method has advantages and disadvantages. File system logging is the least resource intensive of the three methods and the easiest to configure. It allows instant access to the records for analysis, which may be important if an attack is in progress. File system logging is also the least reliable method. If the logging host has been compromised, the file system is usually the first thing to go; an intruder could easily cover up traces of the intrusion. Collecting audit data on a write-once device is slightly more effort to configure than a simple file, but it has the significant advantage of greatly increased security because an intruder could not alter the data showing that an intrusion has occurred. The disadvantage of this method is the need to maintain a supply of storage media and the cost of that media. Also, the data may not be instantly available. Line printer logging is useful in system where permanent and immediate logs are required. A real time system is an example of this, where the exact point of a failure or attack must be recorded. A laser printer, or other device which buffers data (e.g., a print server), may suffer from lost data if buffers contain the needed data at a critical instant. The disadvantage of, literally, "paper trails" is the need to keep the printer fed and the need to scan records by hand. There is also the issue of where to store the, potentially, enormous volume of paper which may be generated. For each of the logging methods described, there is also the issue of securing the path between the device generating the log and actual logging device (i.e., the file server, tape/CD-ROM drive, printer). If that path is compromised, logging can be stopped or spoofed or both. In an ideal world, the logging device would be directly
attached by a single, simple, point-to-point cable. Since that is usually impractical, the path should pass through the minimum number of networks and routers. Even if logs can be blocked, spoofing can be prevented with cryptographic checksums (it probably isn't necessary to encrypt the logs because they should not contain sensitive information in the first place). 4.6.3 Collection Load Collecting audit data may result in a rapid accumulation of bytes so storage availability for this information must be considered in advance. There are a few ways to reduce the required storage space. First, data can be compressed, using one of many methods. Or, the required space can be minimized by keeping data for a shorter period of time with only summaries of that data kept in long-term archives. One major drawback to the latter method involves incident response. Often, an incident has been ongoing for some period of time when a site notices it and begins to investigate. At that point in time, it's very helpful to have detailed audit logs available. If these are just summaries, there may not be sufficient detail to fully handle the incident. 4.6.4 Handling and Preserving Audit Data Audit data should be some of the most carefully secured data at the site and in the backups. If an intruder were to gain access to audit logs, the systems themselves, in addition to the data, would be at risk. Audit data may also become key to the investigation, apprehension, and prosecution of the perpetrator of an incident. For this reason, it is advisable to seek the advice of legal council when deciding how audit data should be treated. This should happen before an incident occurs. If a data handling plan is not adequately defined prior to an incident, it may mean that there is no recourse in the aftermath of an event, and it may create liability resulting from improper treatment of the data. 4.6.5 Legal Considerations Due to the content of audit data, there are a number of legal questions that arise which might need to be addressed by your legal counsel. If you collect and save audit data, you need to be prepared for consequences resulting both from its existence and its content.
One area concerns the privacy of individuals. In certain instances, audit data may contain personal information. Searching through the data, even for a routine check of the system's security, could represent an invasion of privacy. A second area of concern involves knowledge of intrusive behavior originating from your site. If an organization keeps audit data, is it responsible for examining it to search for incidents? If a host in one organization is used as a launching point for an attack against another organization, can the second organization use the audit data of the first organization to prove negligence on the part of that organization? The above examples are meant to be comprehensive, but should motivate your organization to consider the legal issues involved with audit data. 4.7 Securing Backups The procedure of creating backups is a classic part of operating a computer system. Within the context of this document, backups are addressed as part of the overall security plan of a site. There are several aspects to backups that are important within this context: (1) Make sure your site is creating backups (2) Make sure your site is using offsite storage for backups. The storage site should be carefully selected for both its security and its availability. (3) Consider encrypting your backups to provide additional protection of the information once it is off-site. However, be aware that you will need a good key management scheme so that you'll be able to recover data at any point in the future. Also, make sure you will have access to the necessary decryption programs at such time in the future as you need to perform the decryption. (4) Don't always assume that your backups are good. There have been many instances of computer security incidents that have gone on for long periods of time before a site has noticed the incident. In such cases, backups of the affected systems are also tainted. (5) Periodically verify the correctness and completeness of your backups. 5. Security Incident Handling This chapter of the document will supply guidance to be used before, during, and after a computer security incident occurs on a host, network, site, or multi-site environment. The operative philosophy in the event of a breach of computer security is to react according
to a plan. This is true whether the breach is the result of an external intruder attack, unintentional damage, a student testing some new program to exploit a software vulnerability, or a disgruntled employee. Each of the possible types of events, such as those just listed, should be addressed in advance by adequate contingency plans. Traditional computer security, while quite important in the overall site security plan, usually pays little attention to how to actually handle an attack once one occurs. The result is that when an attack is in progress, many decisions are made in haste and can be damaging to tracking down the source of the incident, collecting evidence to be used in prosecution efforts, preparing for the recovery of the system, and protecting the valuable data contained on the system. One of the most important, but often overlooked, benefits for efficient incident handling is an economic one. Having both technical and managerial personnel respond to an incident requires considerable resources. If trained to handle incidents efficiently, less staff time is required when one occurs. Due to the world-wide network most incidents are not restricted to a single site. Operating systems vulnerabilities apply (in some cases) to several millions of systems, and many vulnerabilities are exploited within the network itself. Therefore, it is vital that all sites with involved parties be informed as soon as possible. Another benefit is related to public relations. News about computer security incidents tends to be damaging to an organization's stature among current or potential clients. Efficient incident handling minimizes the potential for negative exposure. A final benefit of efficient incident handling is related to legal issues. It is possible that in the near future organizations may be held responsible because one of their nodes was used to launch a network attack. In a similar vein, people who develop patches or workarounds may be sued if the patches or workarounds are ineffective, resulting in compromise of the systems, or, if the patches or workarounds themselves damage systems. Knowing about operating system vulnerabilities and patterns of attacks, and then taking appropriate measures to counter these potential threats, is critical to circumventing possible legal problems.
The sections in this chapter provide an outline and starting point for creating your site's policy for handling security incidents. The sections are: (1) Preparing and planning (what are the goals and objectives in handling an incident). (2) Notification (who should be contacted in the case of an incident). - Local managers and personnel - Law enforcement and investigative agencies - Computer security incidents handling teams - Affected and involved sites - Internal communications - Public relations and press releases (3) Identifying an incident (is it an incident and how serious is it). (4) Handling (what should be done when an incident occurs). - Notification (who should be notified about the incident) - Protecting evidence and activity logs (what records should be kept from before, during, and after the incident) - Containment (how can the damage be limited) - Eradication (how to eliminate the reasons for the incident) - Recovery (how to reestablish service and systems) - Follow Up (what actions should be taken after the incident) (5) Aftermath (what are the implications of past incidents). (6) Administrative response to incidents. The remainder of this chapter will detail the issues involved in each of the important topics listed above, and provide some guidance as to what should be included in a site policy for handling incidents. 5.1 Preparing and Planning for Incident Handling Part of handling an incident is being prepared to respond to an incident before the incident occurs in the first place. This includes establishing a suitable level of protections as explained in the preceding chapters. Doing this should help your site prevent incidents as well as limit potential damage resulting from them when they do occur. Protection also includes preparing incident handling guidelines as part of a contingency plan for your organization or site. Having written plans eliminates much of the ambiguity which occurs during an incident, and will lead to a more appropriate and thorough set of responses. It is vitally important to test the proposed plan before an incident occurs through "dry runs". A team might even consider hiring a tiger team to act in parallel with the dry run. (Note: a tiger team is a team of specialists that try to penetrate the security of a system.)
Learning to respond efficiently to an incident is important for a number of reasons: (1) Protecting the assets which could be compromised (2) Protecting resources which could be utilized more profitably if an incident did not require their services (3) Complying with (government or other) regulations (4) Preventing the use of your systems in attacks against other systems (which could cause you to incur legal liability) (5) Minimizing the potential for negative exposure As in any set of pre-planned procedures, attention must be paid to a set of goals for handling an incident. These goals will be prioritized differently depending on the site. A specific set of objectives can be identified for dealing with incidents: (1) Figure out how it happened. (2) Find out how to avoid further exploitation of the same vulnerability. (3) Avoid escalation and further incidents. (4) Assess the impact and damage of the incident. (5) Recover from the incident. (6) Update policies and procedures as needed. (7) Find out who did it (if appropriate and possible). Due to the nature of the incident, there might be a conflict between analyzing the original source of a problem and restoring systems and services. Overall goals (like assuring the integrity of critical systems) might be the reason for not analyzing an incident. Of course, this is an important management decision; but all involved parties must be aware that without analysis the same incident may happen again. It is also important to prioritize the actions to be taken during an incident well in advance of the time an incident occurs. Sometimes an incident may be so complex that it is impossible to do everything at once to respond to it; priorities are essential. Although priorities will vary from institution to institution, the following suggested priorities may serve as a starting point for defining your organization's response: (1) Priority one -- protect human life and people's safety; human life always has precedence over all other considerations. (2) Priority two -- protect classified and/or sensitive data. Prevent exploitation of classified and/or sensitive systems, networks or sites. Inform affected
classified and/or sensitive systems, networks or sites about already occurred penetrations. (Be aware of regulations by your site or by government) (3) Priority three -- protect other data, including proprietary, scientific, managerial and other data, because loss of data is costly in terms of resources. Prevent exploitations of other systems, networks or sites and inform already affected systems, networks or sites about successful penetrations. (4) Priority four -- prevent damage to systems (e.g., loss or alteration of system files, damage to disk drives, etc.). Damage to systems can result in costly down time and recovery. (5) Priority five -- minimize disruption of computing resources (including processes). It is better in many cases to shut a system down or disconnect from a network than to risk damage to data or systems. Sites will have to evaluate the trade-offs between shutting down and disconnecting, and staying up. There may be service agreements in place that may require keeping systems up even in light of further damage occurring. However, the damage and scope of an incident may be so extensive that service agreements may have to be over-ridden. An important implication for defining priorities is that once human life and national security considerations have been addressed, it is generally more important to save data than system software and hardware. Although it is undesirable to have any damage or loss during an incident, systems can be replaced. However, the loss or compromise of data (especially classified or proprietary data) is usually not an acceptable outcome under any circumstances. Another important concern is the effect on others, beyond the systems and networks where the incident occurs. Within the limits imposed by government regulations it is always important to inform affected parties as soon as possible. Due to the legal implications of this topic, it should be included in the planned procedures to avoid further delays and uncertainties for the administrators. Any plan for responding to security incidents should be guided by local policies and regulations. Government and private sites that deal with classified material have specific rules that they must follow.
The policies chosen by your site on how it reacts to incidents will shape your response. For example, it may make little sense to create mechanisms to monitor and trace intruders if your site does not plan to take action against the intruders if they are caught. Other organizations may have policies that affect your plans. Telephone companies often release information about telephone traces only to law enforcement agencies. Handling incidents can be tedious and require any number of routine tasks that could be handled by support personnel. To free the technical staff it may be helpful to identify support staff who will help with tasks like: photocopying, fax'ing, etc. 5.2 Notification and Points of Contact It is important to establish contacts with various personnel before a real incident occurs. Many times, incidents are not real emergencies. Indeed, often you will be able to handle the activities internally. However, there will also be many times when others outside your immediate department will need to be included in the incident handling. These additional contacts include local managers and system administrators, administrative contacts for other sites on the Internet, and various investigative organizations. Getting to know these contacts before incidents occurs will help to make your incident handling process more efficient. For each type of communication contact, specific "Points of Contact" (POC) should be defined. These may be technical or administrative in nature and may include legal or investigative agencies as well as service providers and vendors. When establishing these contact, it is important to decide how much information will be shared with each class of contact. It is especially important to define, ahead of time, what information will be shared with the users at a site, with the public (including the press), and with other sites. Settling these issues are especially important for the local person responsible for handling the incident, since that is the person responsible for the actual notification of others. A list of contacts in each of these categories is an important time saver for this person during an incident. It can be quite difficult to find an appropriate person during an incident when many urgent events are ongoing. It is strongly recommended that all relevant telephone numbers (also electronic mail addresses and fax numbers) be included in the site security policy. The names and contact information of all individuals who will be directly involved in the handling of an incident should be placed at the top of this list.
5.2.1 Local Managers and Personnel When an incident is under way, a major issue is deciding who is in charge of coordinating the activity of the multitude of players. A major mistake that can be made is to have a number of people who are each working independently, but are not working together. This will only add to the confusion of the event and will probably lead to wasted or ineffective effort. The single POC may or may not be the person responsible for handling the incident. There are two distinct roles to fill when deciding who shall be the POC and who will be the person in charge of the incident. The person in charge of the incident will make decisions as to the interpretation of policy applied to the event. In contrast, the POC must coordinate the effort of all the parties involved with handling the event. The POC must be a person with the technical expertise to successfully coordinate the efforts of the system managers and users involved in monitoring and reacting to the attack. Care should be taken when identifying who this person will be. It should not necessarily be the same person who has administrative responsibility for the compromised systems since often such administrators have knowledge only sufficient for the day to day use of the computers, and lack in depth technical expertise. Another important function of the POC is to maintain contact with law enforcement and other external agencies to assure that multi-agency involvement occurs. The level of involvement will be determined by management decisions as well as legal constraints. A single POC should also be the single person in charge of collecting evidence, since as a rule of thumb, the more people that touch a potential piece of evidence, the greater the possibility that it will be inadmissible in court. To ensure that evidence will be acceptable to the legal community, collecting evidence should be done following predefined procedures in accordance with local laws and legal regulations. One of the most critical tasks for the POC is the coordination of all relevant processes. Responsibilities may be distributed over the whole site, involving multiple independent departments or groups. This will require a well coordinated effort in order to achieve overall success. The situation becomes even more complex if multiple sites are involved. When this happens, rarely will a single POC at one site be able to adequately coordinate the handling of the entire incident. Instead, appropriate incident response teams should be involved.
The incident handling process should provide some escalation mechanisms. In order to define such a mechanism, sites will need to create an internal classification scheme for incidents. Associated with each level of incident will be the appropriate POC and procedures. As an incident is escalated, there may be a change in the POC which will need to be communicated to all others involved in handling the incident. When a change in the POC occurs, old POC should brief the new POC in all background information. Lastly, users must know how to report suspected incidents. Sites should establish reporting procedures that will work both during and outside normal working hours. Help desks are often used to receive these reports during normal working hours, while beepers and telephones can be used for out of hours reporting. 5.2.2 Law Enforcement and Investigative Agencies In the event of an incident that has legal consequences, it is important to establish contact with investigative agencies (e.g, the FBI and Secret Service in the U.S.) as soon as possible. Local law enforcement, local security offices, and campus police departments should also be informed as appropriate. This section describes many of the issues that will be confronted, but it is acknowledged that each organization will have its own local and governmental laws and regulations that will impact how they interact with law enforcement and investigative agencies. The most important point to make is that each site needs to work through these issues. A primary reason for determining these point of contact well in advance of an incident is that once a major attack is in progress, there is little time to call these agencies to determine exactly who the correct point of contact is. Another reason is that it is important to cooperate with these agencies in a manner that will foster a good working relationship, and that will be in accordance with the working procedures of these agencies. Knowing the working procedures in advance, and the expectations of your point of contact is a big step in this direction. For example, it is important to gather evidence that will be admissible in any subsequent legal proceedings, and this will require prior knowledge of how to gather such evidence. A final reason for establishing contacts as soon as possible is that it is impossible to know the particular agency that will assume jurisdiction in any given incident. Making contacts and finding the proper channels early on will make responding to an incident go considerably more smoothly.
If your organization or site has a legal counsel, you need to notify this office soon after you learn that an incident is in progress. At a minimum, your legal counsel needs to be involved to protect the legal and financial interests of your site or organization. There are many legal and practical issues, a few of which are: (1) Whether your site or organization is willing to risk negative publicity or exposure to cooperate with legal prosecution efforts. (2) Downstream liability--if you leave a compromised system as is so it can be monitored and another computer is damaged because the attack originated from your system, your site or organization may be liable for damages incurred. (3) Distribution of information--if your site or organization distributes information about an attack in which another site or organization may be involved or the vulnerability in a product that may affect ability to market that product, your site or organization may again be liable for any damages (including damage of reputation). (4) Liabilities due to monitoring--your site or organization may be sued if users at your site or elsewhere discover that your site is monitoring account activity without informing users. Unfortunately, there are no clear precedents yet on the liabilities or responsibilities of organizations involved in a security incident or who might be involved in supporting an investigative effort. Investigators will often encourage organizations to help trace and monitor intruders. Indeed, most investigators cannot pursue computer intrusions without extensive support from the organizations involved. However, investigators cannot provide protection from liability claims, and these kinds of efforts may drag out for months and may take a lot of effort. On the other hand, an organization's legal council may advise extreme caution and suggest that tracing activities be halted and an intruder shut out of the system. This, in itself, may not provide protection from liability, and may prevent investigators from identifying the perpetrator. The balance between supporting investigative activity and limiting liability is tricky. You'll need to consider the advice of your legal counsel and the damage the intruder is causing (if any) when making your decision about what to do during any particular incident.
Your legal counsel should also be involved in any decision to contact investigative agencies when an incident occurs at your site. The decision to coordinate efforts with investigative agencies is most properly that of your site or organization. Involving your legal counsel will also foster the multi-level coordination between your site and the particular investigative agency involved, which in turn results in an efficient division of labor. Another result is that you are likely to obtain guidance that will help you avoid future legal mistakes. Finally, your legal counsel should evaluate your site's written procedures for responding to incidents. It is essential to obtain a "clean bill of health" from a legal perspective before you actually carry out these procedures. It is vital, when dealing with investigative agencies, to verify that the person who calls asking for information is a legitimate representative from the agency in question. Unfortunately, many well intentioned people have unknowingly leaked sensitive details about incidents, allowed unauthorized people into their systems, etc., because a caller has masqueraded as a representative of a government agency. (Note: this word of caution actually applies to all external contacts.) A similar consideration is using a secure means of communication. Because many network attackers can easily re-route electronic mail, avoid using electronic mail to communicate with other agencies (as well as others dealing with the incident at hand). Non-secured phone lines (the phones normally used in the business world) are also frequent targets for tapping by network intruders, so be careful! There is no one established set of rules for responding to an incident when the local government becomes involved. Normally (in the U.S.), except by legal order, no agency can force you to monitor, to disconnect from the network, to avoid telephone contact with the suspected attackers, etc. Each organization will have a set of local and national laws and regulations that must be adhered to when handling incidents. It is recommended that each site be familiar with those laws and regulations, and identify and get know the contacts for agencies with jurisdiction well in advance of handling an incident. 5.2.3 Computer Security Incident Handling Teams There are currently a number of of Computer Security Incident Response teams (CSIRTs) such as the CERT Coordination Center, the German DFN-CERT, and other teams around the globe. Teams exist for many major government agencies and large corporations. If such a
team is available, notifying it should be of primary consideration during the early stages of an incident. These teams are responsible for coordinating computer security incidents over a range of sites and larger entities. Even if the incident is believed to be contained within a single site, it is possible that the information available through a response team could help in fully resolving the incident. If it is determined that the breach occurred due to a flaw in the system's hardware or software, the vendor (or supplier) and a Computer Security Incident Handling team should be notified as soon as possible. This is especially important because many other systems are vulnerable, and these vendor and response team organizations can help disseminate help to other affected sites. In setting up a site policy for incident handling, it may be desirable to create a subgroup, much like those teams that already exist, that will be responsible for handling computer security incidents for the site (or organization). If such a team is created, it is essential that communication lines be opened between this team and other teams. Once an incident is under way, it is difficult to open a trusted dialogue between other teams if none has existed before. 5.2.4 Affected and Involved Sites If an incident has an impact on other sites, it is good practice to inform them. It may be obvious from the beginning that the incident is not limited to the local site, or it may emerge only after further analysis. Each site may choose to contact other sites directly or they can pass the information to an appropriate incident response team. It is often very difficult to find the responsible POC at remote sites and the incident response team will be able to facilitate contact by making use of already established channels. The legal and liability issues arising from a security incident will differ from site to site. It is important to define a policy for the sharing and logging of information about other sites before an incident occurs. Information about specific people is especially sensitive, and may be subject to privacy laws. To avoid problems in this area, irrelevant information should be deleted and a statement of how to handle the remaining information should be included. A clear statement of how this information is to be used is essential. No one who informs a site of a security incident wants to read about it in the public
press. Incident response teams are valuable in this respect. When they pass information to responsible POCs, they are able to protect the anonymity of the original source. But, be aware that, in many cases, the analysis of logs and information at other sites will reveal addresses of your site. All the problems discussed above should be not taken as reasons not to involve other sites. In fact, the experiences of existing teams reveal that most sites informed about security problems are not even aware that their site had been compromised. Without timely information, other sites are often unable to take action against intruders. 5.2.5 Internal Communications It is crucial during a major incident to communicate why certain actions are being taken, and how the users (or departments) are expected to behave. In particular, it should be made very clear to users what they are allowed to say (and not say) to the outside world (including other departments). For example, it wouldn't be good for an organization if users replied to customers with something like, "I'm sorry the systems are down, we've had an intruder and we are trying to clean things up." It would be much better if they were instructed to respond with a prepared statement like, "I'm sorry our systems are unavailable, they are being maintained for better service in the future." Communications with customers and contract partners should be handled in a sensible, but sensitive way. One can prepare for the main issues by preparing a checklist. When an incident occurs, the checklist can be used with the addition of a sentence or two for the specific circumstances of the incident. Public relations departments can be very helpful during incidents. They should be involved in all planning and can provide well constructed responses for use when contact with outside departments and organizations is necessary. 5.2.6 Public Relations - Press Releases There has been a tremendous growth in the amount of media coverage dedicated to computer security incidents in the United States. Such press coverage is bound to extend to other countries as the Internet continues to grow and expand internationally. Readers from countries where such media attention has not yet occurred, can learn from the experiences in the U.S. and should be forwarned and prepared.
One of the most important issues to consider is when, who, and how much to release to the general public through the press. There are many issues to consider when deciding this particular issue. First and foremost, if a public relations office exists for the site, it is important to use this office as liaison to the press. The public relations office is trained in the type and wording of information released, and will help to assure that the image of the site is protected during and after the incident (if possible). A public relations office has the advantage that you can communicate candidly with them, and provide a buffer between the constant press attention and the need of the POC to maintain control over the incident. If a public relations office is not available, the information released to the press must be carefully considered. If the information is sensitive, it may be advantageous to provide only minimal or overview information to the press. It is quite possible that any information provided to the press will be quickly reviewed by the perpetrator of the incident. Also note that misleading the press can often backfire and cause more damage than releasing sensitive information. While it is difficult to determine in advance what level of detail to provide to the press, some guidelines to keep in mind are: (1) Keep the technical level of detail low. Detailed information about the incident may provide enough information for others to launch similar attacks on other sites, or even damage the site's ability to prosecute the guilty party once the event is over. (2) Keep the speculation out of press statements. Speculation of who is causing the incident or the motives are very likely to be in error and may cause an inflamed view of the incident. (3) Work with law enforcement professionals to assure that evidence is protected. If prosecution is involved, assure that the evidence collected is not divulged to the press. (4) Try not to be forced into a press interview before you are prepared. The popular press is famous for the "2 am" interview, where the hope is to catch the interviewee off guard and obtain information otherwise not available. (5) Do not allow the press attention to detract from the handling of the event. Always remember that the successful closure of an incident is of primary importance.