Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 1521

MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies

Pages: 81
Obsoletes:  1341
Obsoleted by:  20452046204720482049
Updated by:  1590
Part 3 of 3 – Pages 56 to 81
First   Prev   None

ToP   noToC   RFC1521 - Page 56   prevText
8. Summary

   Using the MIME-Version, Content-Type, and Content-Transfer-Encoding
   header fields, it is possible to include, in a standardized way,
   arbitrary types of data objects with RFC 822 conformant mail
   messages.  No restrictions imposed by either RFC 821 or RFC 822 are
   violated, and care has been taken to avoid problems caused by
   additional restrictions imposed by the characteristics of some
   Internet mail transport mechanisms (see Appendix B). The "multipart"
   and "message" Content-Types allow mixing and hierarchical structuring
   of objects of different types in a single message.  Further Content-
   Types provide a standardized mechanism for tagging messages or body
   parts as audio, image, or several other kinds of data.  A
   distinguished parameter syntax allows further specification of data
   format details, particularly the specification of alternate character
   sets.  Additional optional header fields provide mechanisms for
   certain extensions deemed desirable by many implementors.  Finally, a
   number of useful Content-Types are defined for general use by
   consenting user agents, notably message/partial, and
   message/external-body.

9. Security Considerations

   Security issues are discussed in Section 7.4.2 and in Appendix F.
   Implementors should pay special attention to the security
   implications of any mail content-types that can cause the remote
   execution of any actions in the recipient's environment.  In such
   cases, the discussion of the application/postscript content-type in
   Section 7.4.2 may serve as a model for considering other content-
   types with remote execution capabilities.
ToP   noToC   RFC1521 - Page 57
10. Authors' Addresses

   For more information, the authors of this document may be contacted
   via Internet mail:

   Nathaniel S. Borenstein
   MRE 2D-296, Bellcore
   445 South St.
   Morristown, NJ 07962-1910

   Phone: +1 201 829 4270
   Fax:  +1 201 829 7019
   Email: nsb@bellcore.com


   Ned Freed
   Innosoft International, Inc.
   250 West First Street
   Suite 240
   Claremont, CA 91711

   Phone:  +1 909 624 7907
   Fax: +1 909 621 5319
   Email: ned@innosoft.com

   MIME is a result of the work of the Internet Engineering Task Force
   Working Group on Email Extensions. The chairman of that group, Greg
   Vaudreuil, may be reached at:

   Gregory M. Vaudreuil
   Tigon Corporation
   17060 Dallas Parkway
   Dallas Texas, 75248

   Phone:    +1 214-733-2722
   EMail: gvaudre@cnri.reston.va.us
ToP   noToC   RFC1521 - Page 58
11. Acknowledgements

   This document is the result of the collective effort of a large
   number of people, at several IETF meetings, on the IETF-SMTP and
   IETF-822 mailing lists, and elsewhere.  Although any enumeration
   seems doomed to suffer from egregious omissions, the following are
   among the many contributors to this effort:

            Harald Tveit Alvestrand       Timo Lehtinen
            Randall Atkinson              John R. MacMillan
            Philippe Brandon              Rick McGowan
            Kevin Carosso                 Leo Mclaughlin
            Uhhyung Choi                  Goli Montaser-Kohsari
            Cristian Constantinof         Keith Moore
            Mark Crispin                  Tom Moore
            Dave Crocker                  Erik Naggum
            Terry Crowley                 Mark Needleman
            Walt Daniels                  John Noerenberg
            Frank Dawson                  Mats Ohrman
            Hitoshi Doi                   Julian Onions
            Kevin Donnelly                Michael Patton
            Keith Edwards                 David J. Pepper
            Chris Eich                    Blake C. Ramsdell
            Johnny Eriksson               Luc Rooijakkers
            Craig Everhart                Marshall T. Rose
            Patrik Faeltstroem            Jonathan Rosenberg
            Erik E. Fair                  Jan Rynning
            Roger Fajman                  Harri Salminen
            Alain Fontaine                Michael Sanderson
            James M. Galvin               Masahiro Sekiguchi
            Philip Gladstone              Mark Sherman
            Thomas Gordon                 Keld Simonsen
            Phill Gross                   Bob Smart
            James Hamilton                Peter Speck
            Steve Hardcastle-Kille        Henry Spencer
            David Herron                  Einar Stefferud
            Bruce Howard                  Michael Stein
            Bill Janssen                  Klaus Steinberger
            Olle Jaernefors               Peter Svanberg
            Risto Kankkunen               James Thompson
            Phil Karn                     Steve Uhler
            Alan Katz                     Stuart Vance
            Tim Kehres                    Erik van der Poel
            Neil Katin                    Guido van Rossum
            Kyuho Kim                     Peter Vanderbilt
            Anders Klemets                Greg Vaudreuil
            John Klensin                  Ed Vielmetti
            Valdis Kletniek               Ryan Waldron
ToP   noToC   RFC1521 - Page 59
            Jim Knowles                   Wally Wedel
            Stev Knowles                  Sven-Ove Westberg
            Bob Kummerfeld                Brian Wideen
            Pekka Kytolaakso              John Wobus
            Stellan Lagerstrom            Glenn Wright
            Vincent Lau                   Rayan Zachariassen
            Donald Lindsay                David Zimmerman
            Marc Andreessen               Bob Braden
            Brian Capouch                 Peter Clitherow
            Dave Collier-Brown            John Coonrod
            Stephen Crocker               Jim Davis
            Axel Deininger                Dana S Emery
            Martin Forssen                Stephen Gildea
            Terry Gray                    Mark Horton
            Warner Losh                   Carlyn Lowery
            Laurence Lundblade            Charles Lynn
            Larry Masinter                Michael J. McInerny
            Jon Postel                    Christer Romson
            Yutaka Sato                   Markku Savela
            Richard Alan Schafer          Larry W. Virden
            Rhys Weatherly                Jay Weber
            Dave Wecker

The authors apologize for any omissions from this list, which are
certainly unintentional.
ToP   noToC   RFC1521 - Page 60
Appendix A -- Minimal MIME-Conformance

   The mechanisms described in this document are open-ended.  It is
   definitely not expected that all implementations will support all of
   the Content-Types described, nor that they will all share the same
   extensions.  In order to promote interoperability, however, it is
   useful to define the concept of "MIME-conformance" to define a
   certain level of implementation that allows the useful interworking
   of messages with content that differs from US ASCII text.  In this
   section, we specify the requirements for such conformance.

   A mail user agent that is MIME-conformant MUST:

      1.  Always generate a "MIME-Version: 1.0" header field.

      2.  Recognize the Content-Transfer-Encoding header field, and
      decode all received data encoded with either the quoted-printable
      or base64 implementations.  Encode any data sent that is not in
      seven-bit mail-ready representation using one of these
      transformations and include the appropriate Content-Transfer-
      Encoding header field, unless the underlying transport mechanism
      supports non-seven-bit data, as SMTP does not.

      3.  Recognize and interpret the Content-Type header field, and
      avoid showing users raw data with a Content-Type field other than
      text.  Be able to send at least text/plain messages, with the
      character set specified as a parameter if it is not US-ASCII.

      4.  Explicitly handle the following Content-Type values, to at
      least the following extents:

      Text:

            -- Recognize and display "text" mail
                 with the character set "US-ASCII."

            -- Recognize other character sets at
                 least to the extent of being able
                 to inform the user about what
                 character set the message uses.

            -- Recognize the "ISO-8859-*" character
                 sets to the extent of being able to
                 display those characters that are
                 common to ISO-8859-* and US-ASCII,
                 namely all characters represented
                 by octet values 0-127.
ToP   noToC   RFC1521 - Page 61
            -- For unrecognized subtypes, show or
                 offer to show the user the "raw"
                 version of the data after
                 conversion of the content from
                 canonical form to local form.

       Message:

            -- Recognize and display at least the
                 primary (822) encapsulation.

       Multipart:

            -- Recognize the primary (mixed)
                 subtype.  Display all relevant
                 information on the message level
                 and the body part header level and
                 then display or offer to display
                 each of the body parts individually.

            -- Recognize the "alternative" subtype,
                 and avoid showing the user
                 redundant parts of
                 multipart/alternative mail.

            -- Treat any unrecognized subtypes as if
                 they were "mixed".

       Application:

            -- Offer the ability to remove either of
                 the two types of Content-Transfer-
                 Encoding defined in this document
                 and put the resulting information
                 in a user file.

      5.  Upon encountering any unrecognized Content- Type, an
      implementation must treat it as if it had a Content-Type of
      "application/octet-stream" with no parameter sub-arguments.  How
      such data are handled is up to an implementation, but likely
      options for handling such unrecognized data include offering the
      user to write it into a file (decoded from its mail transport
      format) or offering the user to name a program to which the
      decoded data should be passed as input.  Unrecognized predefined
      types, which in a MIME-conformant mailer might still include
      audio, image, or video, should also be treated in this way.

   A user agent that meets the above conditions is said to be MIME-
ToP   noToC   RFC1521 - Page 62
   conformant.  The meaning of this phrase is that it is assumed to be
   "safe" to send virtually any kind of properly-marked data to users of
   such mail systems, because such systems will at least be able to
   treat the data as undifferentiated binary, and will not simply splash
   it onto the screen of unsuspecting users.  There is another sense in
   which it is always "safe" to send data in a format that is MIME-
   conformant, which is that such data will not break or be broken by
   any known systems that are conformant with RFC 821 and RFC 822.  User
   agents that are MIME-conformant have the additional guarantee that
   the user will not be shown data that were never intended to be viewed
   as text.
ToP   noToC   RFC1521 - Page 63
Appendix B -- General Guidelines For Sending Email Data

   Internet email is not a perfect, homogeneous system.  Mail may become
   corrupted at several stages in its travel to a final destination.
   Specifically, email sent throughout the Internet may travel across
   many networking technologies.  Many networking and mail technologies
   do not support the full functionality possible in the SMTP transport
   environment. Mail traversing these systems is likely to be modified
   in such a way that it can be transported.

   There exist many widely-deployed non-conformant MTAs in the Internet.
   These MTAs, speaking the SMTP protocol, alter messages on the fly to
   take advantage of the internal data structure of the hosts they are
   implemented on, or are just plain broken.

   The following guidelines may be useful to anyone devising a data
   format (Content-Type) that will survive the widest range of
   networking technologies and known broken MTAs unscathed.  Note that
   anything encoded in the base64 encoding will satisfy these rules, but
   that some well-known mechanisms, notably the UNIX uuencode facility,
   will not.  Note also that anything encoded in the Quoted-Printable
   encoding will survive most gateways intact, but possibly not some
   gateways to systems that use the EBCDIC character set.

      (1) Under some circumstances the encoding used for data may change
      as part of normal gateway or user agent operation. In particular,
      conversion from base64 to quoted-printable and vice versa may be
      necessary. This may result in the confusion of CRLF sequences with
      line breaks in text bodies. As such, the persistence of CRLF as
      something other than a line break must not be relied on.

      (2) Many systems may elect to represent and store text data using
      local newline conventions. Local newline conventions may not match
      the RFC822 CRLF convention -- systems are known that use plain CR,
      plain LF, CRLF, or counted records.  The result is that isolated
      CR and LF characters are not well tolerated in general; they may
      be lost or converted to delimiters on some systems, and hence must
      not be relied on.

      (3) TAB (HT) characters may be misinterpreted or may be
      automatically converted to variable numbers of spaces.  This is
      unavoidable in some environments, notably those not based on the
      ASCII character set. Such conversion is STRONGLY DISCOURAGED, but
      it may occur, and mail formats must not rely on the persistence of
      TAB (HT) characters.

      (4) Lines longer than 76 characters may be wrapped or truncated in
      some environments. Line wrapping and line truncation are STRONGLY
ToP   noToC   RFC1521 - Page 64
      DISCOURAGED, but unavoidable in some cases. Applications which
      require long lines must somehow differentiate between soft and
      hard line breaks.  (A simple way to do this is to use the quoted-
      printable encoding.)

      (5) Trailing "white space" characters (SPACE, TAB (HT)) on a line
      may be discarded by some transport agents, while other transport
      agents may pad lines with these characters so that all lines in a
      mail file are of equal length.  The persistence of trailing white
      space, therefore, must not be relied on.

      (6) Many mail domains use variations on the ASCII character set,
      or use character sets such as EBCDIC which contain most but not
      all of the US-ASCII characters.  The correct translation of
      characters not in the "invariant" set cannot be depended on across
      character converting gateways.  For example, this situation is a
      problem when sending uuencoded information across BITNET, an
      EBCDIC system.  Similar problems can occur without crossing a
      gateway, since many Internet hosts use character sets other than
      ASCII internally.  The definition of Printable Strings in X.400
      adds further restrictions in certain special cases.  In
      particular, the only characters that are known to be consistent
      across all gateways are the 73 characters that correspond to the
      upper and lower case letters A-Z and a-z, the 10 digits 0-9, and
      the following eleven special characters:

                        "'"  (ASCII code 39)
                        "("  (ASCII code 40)
                        ")"  (ASCII code 41)
                        "+"  (ASCII code 43)
                        ","  (ASCII code 44)
                        "-"  (ASCII code 45)
                        "."  (ASCII code 46)
                        "/"  (ASCII code 47)
                        ":"  (ASCII code 58)
                        "="  (ASCII code 61)
                        "?"  (ASCII code 63)

      A maximally portable mail representation, such as the base64
      encoding, will confine itself to relatively short lines of text in
      which the only meaningful characters are taken from this set of 73
      characters.

      (7) Some mail transport agents will corrupt data that includes
      certain literal strings.  In particular, a period (".") alone on a
      line is known to be corrupted by some (incorrect) SMTP
      implementations, and a line that starts with the five characters
      "From " (the fifth character is a SPACE) are commonly corrupted as
ToP   noToC   RFC1521 - Page 65
      well.  A careful composition agent can prevent these corruptions
      by encoding the data (e.g., in the quoted-printable encoding,
      "=46rom " in place of "From " at the start of a line, and "=2E" in
      place of "." alone on a line.

   Please note that the above list is NOT a list of recommended
   practices for MTAs.  RFC 821 MTAs are prohibited from altering the
   character of white space or wrapping long lines.  These BAD and
   illegal practices are known to occur on established networks, and
   implementations should be robust in dealing with the bad effects they
   can cause.
ToP   noToC   RFC1521 - Page 66
Appendix C -- A Complex Multipart Example

   What follows is the outline of a complex multipart message.  This
   message has five parts to be displayed serially: two introductory
   plain text parts, an embedded multipart message, a richtext part, and
   a closing encapsulated text message in a non-ASCII character set.
   The embedded multipart message has two parts to be displayed in
   parallel, a picture and an audio fragment.

      MIME-Version: 1.0
      From: Nathaniel Borenstein <nsb@bellcore.com>
      To: Ned Freed <ned@innosoft.com>
      Subject: A multipart example
      Content-Type: multipart/mixed;
           boundary=unique-boundary-1

      This is the preamble area of a multipart message.
      Mail readers that understand multipart format
      should ignore this preamble.
      If you are reading this text, you might want to
      consider changing to a mail reader that understands
      how to properly display multipart messages.
      --unique-boundary-1

         ...Some text appears here...
      [Note that the preceding blank line means
      no header fields were given and this is text,
      with charset US ASCII.  It could have been
      done with explicit typing as in the next part.]

      --unique-boundary-1
      Content-type: text/plain; charset=US-ASCII

      This could have been part of the previous part,
      but illustrates explicit versus implicit
      typing of body parts.

      --unique-boundary-1
      Content-Type: multipart/parallel;
           boundary=unique-boundary-2


      --unique-boundary-2
      Content-Type: audio/basic
      Content-Transfer-Encoding: base64

         ... base64-encoded 8000 Hz single-channel
             mu-law-format audio data goes here....
ToP   noToC   RFC1521 - Page 67
      --unique-boundary-2
      Content-Type: image/gif
      Content-Transfer-Encoding: base64

         ... base64-encoded image data goes here....

      --unique-boundary-2--

      --unique-boundary-1
      Content-type: text/richtext

      This is <bold><italic>richtext.</italic></bold>
      <smaller>as defined in RFC 1341</smaller>
      <nl><nl>Isn't it
      <bigger><bigger>cool?</bigger></bigger>

      --unique-boundary-1
      Content-Type: message/rfc822

      From: (mailbox in US-ASCII)
      To: (address in US-ASCII)
      Subject: (subject in US-ASCII)
      Content-Type: Text/plain; charset=ISO-8859-1
      Content-Transfer-Encoding: Quoted-printable

         ... Additional text in ISO-8859-1 goes here ...

      --unique-boundary-1--
ToP   noToC   RFC1521 - Page 68
Appendix D -- Collected Grammar

   This appendix contains the complete BNF grammar for all the syntax
   specified by this document.

   By itself, however, this grammar is incomplete.  It refers to several
   entities that are defined by RFC 822.  Rather than reproduce those
   definitions here, and risk unintentional differences between the two,
   this document simply refers the reader to RFC 822 for the remaining
   definitions.  Wherever a term is undefined, it refers to the RFC 822
   definition.

   application-subtype := ("octet-stream" *stream-param)
                       / "postscript" / extension-token

   application-type :=  "application" "/" application-subtype

   attribute := token    ; case-insensitive

   atype := "ftp" / "anon-ftp" / "tftp" / "local-file"
                  / "afs" / "mail-server" / extension-token
                  ; Case-insensitive

   audio-type := "audio" "/" ("basic" / extension-token)

   body-part := <"message" as defined in RFC 822,
            with all header fields optional, and with the
            specified delimiter not occurring anywhere in
            the message body, either on a line by itself
            or as a substring anywhere.>

      NOTE: In certain transport enclaves, RFC 822 restrictions such as
      the one that limits bodies to printable ASCII characters may not
      be in force.  (That is, the transport domains may resemble
      standard Internet mail transport as specified in RFC821 and
      assumed by RFC822, but without certain restrictions.)  The
      relaxation of these restrictions should be construed as locally
      extending the definition of bodies, for example to include octets
      outside of the ASCII range, as long as these extensions are
      supported by the transport and adequately documented in the
      Content-Transfer-Encoding header field. However, in no event are
      headers (either message headers or body-part headers) allowed to
      contain anything other than ASCII characters.
ToP   noToC   RFC1521 - Page 69
   boundary := 0*69<bchars> bcharsnospace

   bchars := bcharsnospace / " "

   bcharsnospace :=    DIGIT / ALPHA / "'" / "(" / ")" / "+"  / "_"
                  / "," / "-" / "." / "/" / ":" / "=" / "?"

   charset := "us-ascii" / "iso-8859-1" / "iso-8859-2"/ "iso-8859-3"
        / "iso-8859-4" / "iso-8859-5" /  "iso-8859-6" / "iso-8859-7"
        / "iso-8859-8" / "iso-8859-9" / extension-token
        ; case insensitive

   close-delimiter := "--" boundary "--" CRLF;Again,no space by "--",

   content  := "Content-Type"  ":" type "/" subtype  *(";" parameter)
             ; case-insensitive matching of type and subtype

   delimiter := "--" boundary CRLF  ;taken from Content-Type field.
                                ; There must be no space
                                ; between "--" and boundary.

   description := "Content-Description" ":" *text

   discard-text := *(*text CRLF)

   encapsulation := delimiter body-part CRLF

   encoding := "Content-Transfer-Encoding" ":" mechanism

   epilogue := discard-text        ;  to  be  ignored upon receipt.

   extension-token :=  x-token / iana-token

   external-param :=   (";" "access-type" "=" atype)
                  / (";" "expiration" "=" date-time)

                       ; Note that date-time is quoted
                  / (";" "size" "=" 1*DIGIT)
                  / (";"  "permission"  "="  ("read" / "read-write"))
                       ; Permission is case-insensitive
                  / (";" "name" "="  value)
                  / (";" "site" "=" value)
                  / (";" "dir" "=" value)
                  / (";" "mode" "=" value)
                  / (";" "server" "=" value)
                  / (";" "subject" "=" value)
           ;access-type required; others required based on access-type
ToP   noToC   RFC1521 - Page 70
   iana-token := <a publicly-defined extension token,
             registered with IANA, as specified in
             appendix E>

   id :=  "Content-ID" ":" msg-id

   image-type := "image" "/" ("gif" / "jpeg" / extension-token)

   mechanism :=     "7bit"    ;  case-insensitive
                  / "quoted-printable"
                  / "base64"
                  / "8bit"
                  / "binary"
                  / x-token

   message-subtype := "rfc822"
                  / "partial" 2#3partial-param
                  / "external-body" 1*external-param
                  / extension-token

   message-type := "message" "/" message-subtype

   multipart-body :=preamble 1*encapsulation close-delimiter epilogue

   multipart-subtype := "mixed" / "parallel" / "digest"
                  / "alternative" / extension-token

   multipart-type := "multipart" "/" multipart-subtype
                  ";" "boundary" "=" boundary

   octet := "=" 2(DIGIT / "A" / "B" / "C" / "D" / "E" / "F")
        ; octet must be used for characters > 127, =, SPACE, or
   TAB,
        ; and is recommended for any characters not listed in
        ; Appendix B as "mail-safe".

   padding := "0" / "1" /  "2" /  "3" / "4" / "5" / "6" / "7"

   parameter := attribute "=" value

   partial-param :=     (";" "id" "=" value)
                  /  (";" "number" "=" 1*DIGIT)
                  /  (";" "total" "=" 1*DIGIT)
             ; id & number required;total required for last part

   preamble := discard-text       ;  to  be  ignored upon receipt.

   ptext := octet / <any ASCII character except "=", SPACE,  or TAB>
ToP   noToC   RFC1521 - Page 71
        ; characters not listed as "mail-safe" in Appendix B
        ; are also not recommended.

   quoted-printable := ([*(ptext / SPACE /  TAB)  ptext]  ["="] CRLF)
        ; Maximum line length of 76 characters excluding CRLF

   stream-param :=  (";" "type" "=" value)
                / (";" "padding" "=" padding)

   subtype := token  ; case-insensitive

   text-subtype := "plain" / extension-token

   text-type := "text" "/" text-subtype [";" "charset" "=" charset]

   token  :=  1*<any  (ASCII) CHAR except SPACE, CTLs, or tspecials>

   tspecials :=  "(" / ")" / "<" / ">" / "@"
              /  "," / ";" / ":" / "\" / <">
              /  "/" / "[" / "]" / "?" / "="
             ; Must be in quoted-string,
             ; to use within parameter values


   type :=     "application"     /  "audio"   ; case-insensitive
             / "image"           / "message"
             / "multipart"  / "text"
             / "video"           / extension-token
             ; All values case-insensitive

   value := token / quoted-string

   version := "MIME-Version" ":" 1*DIGIT "." 1*DIGIT

   video-type := "video" "/" ("mpeg" / extension-token)

   x-token := <The two characters "X-" or "x-" followed, with no
              intervening white space, by any token>
ToP   noToC   RFC1521 - Page 72
Appendix E -- IANA Registration Procedures

   MIME has been carefully designed to have extensible mechanisms, and
   it is expected that the set of content-type/subtype pairs and their
   associated parameters will grow significantly with time.  Several
   other MIME fields, notably character set names, access-type
   parameters for the message/external-body type, and possibly even
   Content-Transfer-Encoding values, are likely to have new values
   defined over time.  In order to ensure that the set of such values is
   developed in an orderly, well-specified, and public manner, MIME
   defines a registration process which uses the Internet Assigned
   Numbers Authority (IANA) as a central registry for such values.

   In general, parameters in the content-type header field are used to
   convey supplemental information for various content types, and their
   use is defined when the content-type and subtype are defined.  New
   parameters should not be defined as a way to introduce new
   functionality.

   In order to simplify and standardize the registration process, this
   appendix gives templates for the registration of new values with
   IANA.  Each of these is given in the form of an email message
   template, to be filled in by the registering party.

   E.1  Registration of New Content-type/subtype Values

   Note that MIME is generally expected to be extended by subtypes.  If
   a new fundamental top-level type is needed, its specification must be
   published as an RFC or submitted in a form suitable to become an RFC,
   and be subject to the Internet standards process.

      To:  IANA@isi.edu
      Subject:  Registration of new MIME
           content-type/subtype

      MIME type name:

      (If the above is not an existing top-level MIME type,
      please explain why an existing type cannot be used.)

      MIME subtype name:

      Required parameters:

      Optional parameters:

      Encoding considerations:
ToP   noToC   RFC1521 - Page 73
      Security considerations:

      Published specification:

      (The published specification must be an Internet RFC or
      RFC-to-be if a new top-level type is being defined, and
      must be a publicly available specification in any
      case.)

      Person & email address to contact for further information:

   E.2  Registration of New Access-type Values
           for Message/external-body

      To:  IANA@isi.edu
      Subject:  Registration of new MIME Access-type for
           Message/external-body content-type

      MIME access-type name:

      Required parameters:

      Optional parameters:

      Published specification:

      (The published specification must be an Internet RFC or
      RFC-to-be.)

      Person & email address to contact for further information:
ToP   noToC   RFC1521 - Page 74
Appendix F -- Summary of the Seven Content-types

   Content-type: text

   Subtypes defined by this document:  plain

   Important Parameters: charset

   Encoding notes: quoted-printable generally preferred if an encoding
      is needed and the character set is mostly an ASCII superset.

   Security considerations: Rich text formats such as TeX and Troff
      often contain mechanisms for executing arbitrary commands or file
      system operations, and should not be used automatically unless
      these security problems have been addressed.  Even plain text may
      contain control characters that can be used to exploit the
      capabilities of "intelligent" terminals and cause security
      violations.  User interfaces designed to run on such terminals
      should be aware of and try to prevent such problems.

   ________________________________________________________
   Content-type: multipart

   Subtypes defined by  this  document: mixed, alternative,
        digest, parallel.

   Important Parameters: boundary

   Encoding notes: No content-transfer-encoding is permitted.

   ________________________________________________________
   Content-type: message

   Subtypes defined by this document: rfc822, partial, external-body

   Important Parameters: id, number, total, access-type, expiration,
      size, permission, name, site, directory, mode, server, subject

   Encoding notes: No content-transfer-encoding is permitted.
      Specifically, only "7bit" is permitted for "message/partial" or
      "message/external-body", and only "7bit", "8bit", or "binary" are
      permitted for other subtypes of "message".
   ______________________________________________________________
   Content-type: application

   Subtypes defined by this document:  octet-stream, postscript

   Important Parameters:  type, padding
ToP   noToC   RFC1521 - Page 75
   Deprecated Parameters: name and conversions were
                          defined in RFC 1341.

   Encoding notes: base64 preferred for unreadable subtypes.

   Security considerations:  This  type  is  intended  for  the
   transmission  of data to be interpreted by locally-installed
   programs.  If used,  for  example,  to  transmit  executable
   binary  programs  or programs in general-purpose interpreted
   languages, such as LISP programs or  shell  scripts,  severe
   security  problems  could  result.   Authors of mail-reading
   agents are cautioned against giving their systems the  power
   to  execute  mail-based  application  data without carefully
   considering  the  security  implications.    While   it   is
   certainly  possible  to  define safe application formats and
   even safe interpreters for unsafe formats, each  interpreter
   should   be   evaluated  separately  for  possible  security
   problems.
   ________________________________________________________________
   Content-type: image

   Subtypes defined by this document:  jpeg, gif

   Important Parameters: none

   Encoding notes: base64 generally preferred
   ________________________________________________________________
   Content-type: audio

   Subtypes defined by this document:  basic

   Important Parameters: none

   Encoding notes: base64 generally preferred
   ________________________________________________________________
   Content-type: video

   Subtypes defined by this document:  mpeg

   Important Parameters: none

   Encoding notes: base64 generally preferred
ToP   noToC   RFC1521 - Page 76
Appendix G -- Canonical Encoding Model

   There was some confusion, in earlier drafts of this memo, regarding
   the model for when email data was to be converted to canonical form
   and encoded, and in particular how this process would affect the
   treatment of CRLFs, given that the representation of newlines varies
   greatly from system to system.  For this reason, a canonical model
   for encoding is presented below.

   The process of composing a MIME entity can be modeled as being done
   in a number of steps.  Note that these steps are roughly similar to
   those steps used in RFC 1421 and are performed for each 'innermost
   level' body:

   Step 1.  Creation of local form.

   The body to be transmitted is created in the system's native format.
   The native character set is used, and where appropriate local end of
   line conventions are used as well.  The body may be a UNIX-style text
   file, or a Sun raster image, or a VMS indexed file, or audio data in
   a system-dependent format stored only in memory, or anything else
   that corresponds to the local model for the representation of some
   form of information.  Fundamentally, the data is created in the
   "native" form specified by the type/subtype information.

   Step 2.  Conversion to canonical form.

   The entire body, including "out-of-band" information such as record
   lengths and possibly file attribute information, is converted to a
   universal canonical form.  The specific content type of the body as
   well as its associated attributes dictate the nature of the canonical
   form that is used.  Conversion to the proper canonical form may
   involve character set conversion, transformation of audio data,
   compression, or various other operations specific to the various
   content types.  If character set conversion is involved, however,
   care must be taken to understand the semantics of the content-type,
   which may have strong implications for any character set conversion,
   e.g.  with regard to syntactically meaningful characters in a text
   subtype other than "plain".

   For example, in the case of text/plain data, the text must be
   converted to a supported character set and lines must be delimited
   with CRLF delimiters in accordance with RFC822.  Note that the
   restriction on line lengths implied by RFC822 is eliminated if the
   next step employs either quoted-printable or base64 encoding.
ToP   noToC   RFC1521 - Page 77
   Step 3.  Apply transfer encoding.

   A Content-Transfer-Encoding appropriate for this body is applied.
   Note that there is no fixed relationship between the content type and
   the transfer encoding.  In particular, it may be appropriate to base
   the choice of base64 or quoted-printable on character frequency
   counts which are specific to a given instance of a body.

   Step 4.  Insertion into entity.

   The encoded object is inserted into a MIME entity with appropriate
   headers.  The entity is then inserted into the body of a higher-level
   entity (message or multipart) if needed.

   It is vital to note that these steps are only a model; they are
   specifically NOT a blueprint for how an actual system would be built.
   In particular, the model fails to account for two common designs:

      1.  In many cases the conversion to a canonical form prior to
      encoding will be subsumed into the encoder itself, which
      understands local formats directly.  For example, the local
      newline convention for text bodies might be carried through to the
      encoder itself along with knowledge of what that format is.

      2.  The output of the encoders may have to pass through one or
      more additional steps prior to being transmitted as a message.  As
      such, the output of the encoder may not be conformant with the
      formats specified by RFC822.  In particular, once again it may be
      appropriate for the converter's output to be expressed using local
      newline conventions rather than using the standard RFC822 CRLF
      delimiters.

   Other implementation variations are conceivable as well.  The vital
   aspect of this discussion is that, in spite of any optimizations,
   collapsings of required steps, or insertion of additional processing,
   the resulting messages must be consistent with those produced by the
   model described here.  For example, a message with the following
   header fields:

        Content-type: text/foo; charset=bar
        Content-Transfer-Encoding: base64

   must be first represented in the text/foo form, then (if necessary)
   represented in the "bar" character set, and finally transformed via
   the base64 algorithm into a mail-safe form.
ToP   noToC   RFC1521 - Page 78
Appendix H -- Changes from RFC 1341

   This document is a relatively minor revision  of  RFC  1341.  For
   the  convenience  of  those familiar with RFC 1341, the technical
   changes from that document are summarized in  this appendix.

   1.  The definition of "tspecials" has been changed to no longer
   include ".".

   2.  The Content-ID field is now mandatory for message/external-body
   parts.

   3.  The text/richtext type (including the old Section 7.1.3 and
   Appendix D) has been moved to a separate document.

   4.  The rules on header merging for message/partial data have been
   changed to treat the Encrypted and MIME-Version headers as special
   cases.

   5.  The definition of the external-body access-type parameter has
   been changed so that it can only indicate a single access method
   (which was all that made sense).

   6.  There is a new "Subject" parameter for message/external-body,
   access-type mail-server, to permit MIME-based use of mail servers
   that rely on Subject field information.

   7.  The "conversions" parameter for application/octet-stream has been
   removed.

   8.  Section 7.4.1 now deprecates the use of the "name" parameter for
   application/octet-stream, as this will be superseded in the future by
   a Content-Disposition header.

   9.  The formal grammar for multipart bodies has been changed so that
   a CRLF is no longer required before the first boundary line.

   10.  MIME entities of type "message/partial" and "message/external-
   body" are now required to use only the "7bit" transfer-encoding.
   (Specifically, "binary" and "8bit" are not permitted.)

   11.  The "application/oda" content-type has been removed.

   12.  A note has been added to the end of section 7.2.3, explaining
   the semantics of Content-ID in a multipart/alternative MIME entity.

   13.  The formal syntax for the "MIME-Version" field has been
   tightened, but in a way that is completely compatible with the only
ToP   noToC   RFC1521 - Page 79
   version number defined in RFC 1341.

   14.  In Section 7.3.1, the definition of message/rfc822 has been
   relaxed regarding mandatory fields.

   All other changes from RFC 1341 were editorial changes and do not
   affect the technical content of MIME.  Considerable formal grammar
   has been added, but this reflects the prose specification that was
   already in place.
ToP   noToC   RFC1521 - Page 80
References

   [US-ASCII] Coded Character Set--7-Bit American Standard Code for
   Information Interchange, ANSI X3.4-1986.

   [ATK] Borenstein, Nathaniel S., Multimedia Applications Development
   with the Andrew Toolkit, Prentice-Hall, 1990.

   [GIF] Graphics Interchange Format (Version 89a), Compuserve, Inc.,
   Columbus, Ohio, 1990.

   [ISO-2022] International Standard--Information Processing--ISO 7-bit
   and 8-bit coded character sets--Code extension techniques, ISO
   2022:1986.

   [ISO-8859] Information Processing -- 8-bit Single-Byte Coded Graphic
   Character Sets -- Part 1: Latin Alphabet No. 1, ISO 8859-1:1987.  Part
   2: Latin alphabet No.  2, ISO 8859-2, 1987.  Part 3: Latin alphabet
   No. 3, ISO 8859-3, 1988.  Part 4: Latin alphabet No.  4, ISO 8859-4,
   1988.  Part 5: Latin/Cyrillic alphabet, ISO 8859-5, 1988.  Part 6:
   Latin/Arabic alphabet, ISO 8859-6, 1987.  Part 7: Latin/Greek
   alphabet, ISO 8859-7, 1987.  Part 8: Latin/Hebrew alphabet, ISO
   8859-8, 1988.  Part 9: Latin alphabet No. 5, ISO 8859-9, 1990.

   [ISO-646] International Standard--Information Processing--ISO 7-bit
   coded character set for information interchange, ISO 646:1983.

   [MPEG] Video Coding Draft Standard ISO 11172 CD, ISO IEC/TJC1/SC2/WG11
   (Motion Picture Experts Group), May, 1991.

   [PCM] CCITT, Fascicle III.4 - Recommendation G.711, Geneva, 1972,
   "Pulse Code Modulation (PCM) of Voice Frequencies".

   [POSTSCRIPT] Adobe Systems, Inc., PostScript Language Reference
   Manual, Addison-Wesley, 1985.

   [POSTSCRIPT2] Adobe Systems, Inc., PostScript Language Reference
   Manual, Addison-Wesley, Second Edition, 1990.

   [X400] Schicker, Pietro, "Message Handling Systems, X.400", Message
   Handling Systems and Distributed Applications, E.  Stefferud, O-j.
   Jacobsen, and P.  Schicker, eds., North-Holland, 1989, pp. 3-41.

   [RFC-783] Sollins, K., "TFTP Protocol (revision 2)", RFC 783, MIT,
   June 1981.

   [RFC-821] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC
   821, USC/Information Sciences Institute, August 1982.
ToP   noToC   RFC1521 - Page 81
   [RFC-822] Crocker, D., "Standard for the Format of ARPA Internet Text
   Messages", STD 11, RFC 822, UDEL, August 1982.

   [RFC-934] Rose, M., and E. Stefferud, "Proposed Standard for Message
   Encapsulation", RFC 934, Delaware and NMA, January 1985.

   [RFC-959] Postel, J. and J. Reynolds, "File Transfer Protocol",
   STD 9, RFC 959, USC/Information Sciences Institute, October 1985.

   [RFC-1049] Sirbu, M., "Content-Type Header Field for Internet
   Messages", STD 11, RFC 1049, CMU, March 1988.

   [RFC-1421] Linn, J., "Privacy Enhancement for Internet Electronic Mail:
   Part I - Message Encryption and Authentication Procedures", RFC
   1421, IAB IRTF PSRG, IETF PEM WG, February 1993.

   [RFC-1154] Robinson, D. and R. Ullmann, "Encoding Header Field for
   Internet Messages", RFC 1154, Prime Computer, Inc., April 1990.

   [RFC-1341] Borenstein, N., and N.  Freed, "MIME (Multipurpose Internet
   Mail Extensions): Mechanisms for Specifying and Describing the Format
   of Internet Message Bodies", RFC 1341, Bellcore, Innosoft, June 1992.

   [RFC-1342] Moore, K., "Representation of Non-Ascii Text in Internet
   Message Headers", RFC 1342, University of Tennessee, June 1992.

   [RFC-1343] Borenstein, N., "A User Agent Configuration Mechanism
   for Multimedia Mail Format Information", RFC 1343, Bellcore, June
   1992.

   [RFC-1344] Borenstein, N., "Implications of MIME for Internet
   Mail Gateways", RFC 1344, Bellcore, June 1992.

   [RFC-1345] Simonsen, K., "Character Mnemonics & Character Sets",
   RFC 1345, Rationel Almen Planlaegning, June 1992.

   [RFC-1426] Klensin, J., (WG Chair), Freed, N., (Editor), Rose, M.,
   Stefferud, E., and D. Crocker, "SMTP Service Extension for 8bit-MIME
   transport", RFC 1426, United Nations Universit, Innosoft, Dover Beach
   Consulting, Inc., Network Management Associates, Inc., The Branch
   Office, February 1993.

   [RFC-1522] Moore, K., "Representation of Non-Ascii Text in Internet
   Message Headers" RFC 1522, University of Tennessee, September 1993.

   [RFC-1340] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC
   1340, USC/Information Sciences Institute, July 1992.