address from the call confirmation packet. This will be zero length for PVCs." REFERENCE "10733 calledDTEAddress" DEFVAL { ''h } ::= { x25CircuitEntry 18 } x25CircuitCallingDteAddress OBJECT-TYPE SYNTAX X121Address ACCESS read-write STATUS mandatory DESCRIPTION "For incoming calls, this is the calling address from the call indication packet. For outgoing calls, this is the calling address from the call confirmation packet. This will be zero length for PVCs." REFERENCE "10733 callingDTEAddress" DEFVAL { ''h } ::= { x25CircuitEntry 19 } x25CircuitOriginallyCalledAddress OBJECT-TYPE SYNTAX X121Address ACCESS read-write STATUS mandatory DESCRIPTION "For incoming calls, this is the address in the call Redirection or Call Deflection Notification facility if the call was deflected or redirected, otherwise it will be called address from the call indication packet. For outgoing calls, this is the address from the call request packet. This will be zero length for PVCs." REFERENCE "10733 originallyCalledAddress" DEFVAL { ''h } ::= { x25CircuitEntry 20 } x25CircuitDescr OBJECT-TYPE SYNTAX DisplayString (SIZE (0..255)) ACCESS read-write STATUS mandatory DESCRIPTION "A descriptive string associated with this circuit. This provides a place for the agent to supply any descriptive information it knows about the use or owner of the circuit. The agent may return the process identifier and user name for the process
using the circuit. Alternative the agent may return the name of the configuration entry that caused a bridge to establish the circuit. A zero length value indicates the agent doesn't have any additional information." DEFVAL { ''h } ::= { x25CircuitEntry 21 } -- ########################################################### -- The Cleared Circuit Table -- ########################################################### x25ClearedCircuitEntriesRequested OBJECT-TYPE SYNTAX PositiveInteger ACCESS read-write STATUS mandatory DESCRIPTION "The requested number of entries for the agent to keep in the x25ClearedCircuit table." ::= { x25 6 } x25ClearedCircuitEntriesGranted OBJECT-TYPE SYNTAX PositiveInteger ACCESS read-only STATUS mandatory DESCRIPTION "The actual number of entries the agent will keep in the x25ClearedCircuit Table." ::= { x25 7 } x25ClearedCircuitTable OBJECT-TYPE SYNTAX SEQUENCE OF X25ClearedCircuitEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A table of entries about closed circuits. Entries must be made in this table whenever circuits are closed and the close request or close indication packet contains a clearing cause other than DTE Originated or a Diagnostic code field other than Higher Layer Initiated disconnection-normal. An agent may optionally make entries for normal closes (to record closing facilities or
other information). Agents will delete the oldest entry in the table when adding a new entry would exceed agent resources. Agents are required to keep the last entry put in the table and may keep more entries. The object x25OperClearEntriesGranted returns the maximum number of entries kept in the table." REFERENCE "See ISO 8208 Section 12.2.3.1.1 and 12.2.3.1.2" ::= { x25 8 } x25ClearedCircuitEntry OBJECT-TYPE SYNTAX X25ClearedCircuitEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "Information about a cleared circuit." INDEX { x25ClearedCircuitIndex } ::= { x25ClearedCircuitTable 1 } X25ClearedCircuitEntry ::= SEQUENCE { x25ClearedCircuitIndex PositiveInteger, x25ClearedCircuitPleIndex IfIndexType, x25ClearedCircuitTimeEstablished TimeTicks, x25ClearedCircuitTimeCleared TimeTicks, x25ClearedCircuitChannel INTEGER, x25ClearedCircuitClearingCause INTEGER, x25ClearedCircuitDiagnosticCode INTEGER, x25ClearedCircuitInPdus Counter, x25ClearedCircuitOutPdus Counter, x25ClearedCircuitCalledAddress X121Address, x25ClearedCircuitCallingAddress X121Address, x25ClearedCircuitClearFacilities OCTET STRING
} x25ClearedCircuitIndex OBJECT-TYPE SYNTAX PositiveInteger ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely distinguishes one entry in the clearedCircuitTable from another. This index will start at 2147483647 and will decrease by one for each new entry added to the table. Upon reaching one, the index will reset to 2147483647. Because the index starts at 2147483647 and decreases, a manager may do a getnext on entry zero and obtain the most recent entry. When the index has the value of 1, the next entry will delete all entries in the table and that entry will be numbered 2147483647." ::= { x25ClearedCircuitEntry 1 } x25ClearedCircuitPleIndex OBJECT-TYPE SYNTAX IfIndexType ACCESS read-only STATUS mandatory DESCRIPTION "The value of ifIndex for the PLE which cleared the circuit that created the entry." ::= { x25ClearedCircuitEntry 2 } x25ClearedCircuitTimeEstablished OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime when the circuit was established. This will be the same value that was in the x25CircuitEstablishTime for the circuit." ::= { x25ClearedCircuitEntry 3 } x25ClearedCircuitTimeCleared OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime when the circuit was cleared. For locally initiated clears, this
will be the time when the clear confirmation was received. For remotely initiated clears, this will be the time when the clear indication was received." ::= { x25ClearedCircuitEntry 4 } x25ClearedCircuitChannel OBJECT-TYPE SYNTAX INTEGER (0..4095) ACCESS read-only STATUS mandatory DESCRIPTION "The channel number for the circuit that was cleared." ::= { x25ClearedCircuitEntry 5 } x25ClearedCircuitClearingCause OBJECT-TYPE SYNTAX INTEGER (0..255) ACCESS read-only STATUS mandatory DESCRIPTION "The Clearing Cause from the clear request or clear indication packet that cleared the circuit." REFERENCE "See ISO 8208 Section 12.2.3.1.1" ::= { x25ClearedCircuitEntry 6 } x25ClearedCircuitDiagnosticCode OBJECT-TYPE SYNTAX INTEGER (0..255) ACCESS read-only STATUS mandatory DESCRIPTION "The Diagnostic Code from the clear request or clear indication packet that cleared the circuit." REFERENCE "See ISO 8208 Section 12.2.3.1.2" ::= { x25ClearedCircuitEntry 7 } x25ClearedCircuitInPdus OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of PDUs received on the circuit." ::= { x25ClearedCircuitEntry 8 } x25ClearedCircuitOutPdus OBJECT-TYPE SYNTAX Counter
ACCESS read-only STATUS mandatory DESCRIPTION "The number of PDUs transmitted on the circuit." ::= { x25ClearedCircuitEntry 9 } x25ClearedCircuitCalledAddress OBJECT-TYPE SYNTAX X121Address ACCESS read-only STATUS mandatory DESCRIPTION "The called address from the cleared circuit." ::= { x25ClearedCircuitEntry 10 } x25ClearedCircuitCallingAddress OBJECT-TYPE SYNTAX X121Address ACCESS read-only STATUS mandatory DESCRIPTION "The calling address from the cleared circuit." ::= { x25ClearedCircuitEntry 11 } x25ClearedCircuitClearFacilities OBJECT-TYPE SYNTAX OCTET STRING (SIZE (0..109)) ACCESS read-only STATUS mandatory DESCRIPTION "The facilities field from the clear request or clear indication packet that cleared the circuit. A size of zero indicates no facilities were present." ::= { x25ClearedCircuitEntry 12 } -- ########################################################### -- The Call Parameter Table -- ########################################################### x25CallParmTable OBJECT-TYPE SYNTAX SEQUENCE OF X25CallParmEntry ACCESS not-accessible STATUS mandatory DESCRIPTION
"These objects contain the parameters that can be varied between X.25 calls. The entries in this table are independent of the PLE. There exists only one of these tables for the entire system. The indexes for the entries are independent of any PLE or any circuit. Other tables reference entries in this table. Entries in this table can be used for default PLE parameters, for parameters to use to place/answer a call, for the parameters currently in use for a circuit, or parameters that were used by a circuit. The number of references to a given set of parameters can be found in the x25CallParmRefCount object sharing the same instance identifier with the parameters. The value of this reference count also affects the access of the objects in this table. An object in this table with the same instance identifier as the instance identifier of an x25CallParmRefCount must be consider associated with that reference count. An object with an associated reference count of zero can be written (if its ACCESS clause allows it). An object with an associated reference count greater than zero can not be written (regardless of the ACCESS clause). This ensures that a set of call parameters being referenced from another table can not be modified or changed in a ways inappropriate for continued use by that table." ::= { x25 9 } x25CallParmEntry OBJECT-TYPE SYNTAX X25CallParmEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "Entries of x25CallParmTable." INDEX { x25CallParmIndex } ::= { x25CallParmTable 1 } X25CallParmEntry ::= SEQUENCE { x25CallParmIndex PositiveInteger,
x25CallParmStatus EntryStatus, x25CallParmRefCount PositiveInteger, x25CallParmInPacketSize INTEGER, x25CallParmOutPacketSize INTEGER, x25CallParmInWindowSize INTEGER, x25CallParmOutWindowSize INTEGER, x25CallParmAcceptReverseCharging INTEGER, x25CallParmProposeReverseCharging INTEGER, x25CallParmFastSelect INTEGER, x25CallParmInThruPutClasSize INTEGER, x25CallParmOutThruPutClasSize INTEGER, x25CallParmCug DisplayString, x25CallParmCugoa DisplayString, x25CallParmBcug DisplayString, x25CallParmNui OCTET STRING, x25CallParmChargingInfo INTEGER, x25CallParmRpoa DisplayString, x25CallParmTrnstDly INTEGER, x25CallParmCallingExt DisplayString, x25CallParmCalledExt DisplayString, x25CallParmInMinThuPutCls INTEGER, x25CallParmOutMinThuPutCls INTEGER, x25CallParmEndTrnsDly OCTET STRING, x25CallParmPriority OCTET STRING,
x25CallParmProtection DisplayString, x25CallParmExptData INTEGER, x25CallParmUserData OCTET STRING, x25CallParmCallingNetworkFacilities OCTET STRING, x25CallParmCalledNetworkFacilities OCTET STRING } x25CallParmIndex OBJECT-TYPE SYNTAX PositiveInteger ACCESS read-only STATUS mandatory DESCRIPTION "A value that distinguishes this entry from another entry. Entries in this table are referenced from other objects which identify call parameters. It is impossible to know which other objects in the MIB reference entries in the table by looking at this table. Because of this, changes to parameters must be accomplished by creating a new entry in this table and then changing the referencing table to identify the new entry. Note that an agent will only use the values in this table when another table is changed to reference those values. The number of other tables that reference an index object in this table can be found in x25CallParmRefCount. The value of the reference count will affect the writability of the objects as explained above. Entries in this table which have a reference count of zero maybe deleted at the convence of the agent. Care should be taken by the agent to give the NMS sufficient time to create a reference to newly created entries. Should a Management Station not find a free index with which to create a new entry, it may feel free to delete entries with a
reference count of zero. However in doing so the Management Station much realize it may impact other Management Stations." ::= { x25CallParmEntry 1 } x25CallParmStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this call parameter entry. See RFC 1271 for details of usage." ::= { x25CallParmEntry 2 } x25CallParmRefCount OBJECT-TYPE SYNTAX PositiveInteger ACCESS read-only STATUS mandatory DESCRIPTION "The number of references know by a management station to exist to this set of call parameters. This is the number of other objects that have returned a value of, and will return a value of, the index for this set of call parameters. Examples of such objects are the x25AdmnDefCallParamId, x25OperDataLinkId, or x25AdmnDefCallParamId objects defined above." ::= { x25CallParmEntry 3 } x25CallParmInPacketSize OBJECT-TYPE SYNTAX INTEGER (0..4096) ACCESS read-write STATUS mandatory DESCRIPTION "The maximum receive packet size in octets for a circuit. A size of zero for a circuit means use the PLE default size. A size of zero for the PLE means use a default size of 128." REFERENCE "10733 proposedPacketSize; See ISO 8208 Section 15.2.2.1.1" DEFVAL { 128 } ::= { x25CallParmEntry 4 } x25CallParmOutPacketSize OBJECT-TYPE SYNTAX INTEGER (0..4096) ACCESS read-write
STATUS mandatory DESCRIPTION "The maximum transmit packet size in octets for a circuit. A size of zero for a circuit means use the PLE default size. A size of zero for the PLE default means use a default size of 128." REFERENCE "10733 proposedPacketSize; See ISO 8208 Section 15.2.2.1.1" DEFVAL { 128 } ::= { x25CallParmEntry 5 } x25CallParmInWindowSize OBJECT-TYPE SYNTAX INTEGER (0..127) ACCESS read-write STATUS mandatory DESCRIPTION "The receive window size for a circuit. A size of zero for a circuit means use the PLE default size. A size of zero for the PLE default means use 2." REFERENCE "10733 proposedWindowSize; See ISO 8208 Section 15.2.2.1.2" DEFVAL { 2 } ::= { x25CallParmEntry 6 } x25CallParmOutWindowSize OBJECT-TYPE SYNTAX INTEGER (0..127) ACCESS read-write STATUS mandatory DESCRIPTION "The transmit window size for a circuit. A size of zero for a circuit means use the PLE default size. A size of zero for the PLE default means use 2." REFERENCE "10733 proposedWindowSize; See ISO 8208 Section 15.2.2.1.2" DEFVAL { 2 } ::= { x25CallParmEntry 7 } x25CallParmAcceptReverseCharging OBJECT-TYPE SYNTAX INTEGER { default (1), accept (2), refuse (3), neverAccept (4) } ACCESS read-write
STATUS mandatory DESCRIPTION "An enumeration defining if the PLE will accept or refuse charges. A value of default for a circuit means use the PLE default value. A value of neverAccept is only used for the PLE default and indicates the PLE will never accept reverse charging. A value of default for a PLE default means refuse." REFERENCE "10733 acceptReverseCharging" DEFVAL { refuse } ::= { x25CallParmEntry 8 } x25CallParmProposeReverseCharging OBJECT-TYPE SYNTAX INTEGER { default (1), reverse (2), local (3) } ACCESS read-write STATUS mandatory DESCRIPTION "An enumeration defining if the PLE should propose reverse or local charging. The value of default for a circuit means use the PLE default. The value of default for the PLE default means use local." REFERENCE "10733 proposedPacketSize; See ISO 8208 Section 15.2.2.6" DEFVAL { local } ::= { x25CallParmEntry 9 } x25CallParmFastSelect OBJECT-TYPE SYNTAX INTEGER { default (1), notSpecified (2), fastSelect (3), restrictedFastResponse (4), noFastSelect (5), noRestrictedFastResponse (6) } ACCESS read-write STATUS mandatory DESCRIPTION "Expresses preference for use of fast select facility. The value of default for a circuit is the PLE default. A value of
default for the PLE means noFastSelect. A value of noFastSelect or noRestrictedFastResponse indicates a circuit may not use fast select or restricted fast response." REFERENCE "10733 fastSelect; Sec ISO 8208 Section 15.2.2.6" DEFVAL { noFastSelect } ::= { x25CallParmEntry 10 } x25CallParmInThruPutClasSize OBJECT-TYPE SYNTAX INTEGER { tcReserved1 (1), tcReserved2 (2), tc75 (3), tc150 (4), tc300 (5), tc600 (6), tc1200 (7), tc2400 (8), tc4800 (9), tc9600 (10), tc19200 (11), tc48000 (12), tc64000 (13), tcReserved14 (14), tcReserved15 (15), tcReserved0 (16), tcNone (17), tcDefault (18) } ACCESS read-write STATUS mandatory DESCRIPTION "The incoming throughput class to negotiate. A value of tcDefault for a circuit means use the PLE default. A value of tcDefault for the PLE default means tcNone. A value of tcNone means do not negotiate throughtput class." REFERENCE "See ISO 8208 Section 15.2.2.2, table 18" DEFVAL { tcNone } ::= { x25CallParmEntry 11 } x25CallParmOutThruPutClasSize OBJECT-TYPE SYNTAX INTEGER { tcReserved1 (1), tcReserved2 (2),
tc75 (3), tc150 (4), tc300 (5), tc600 (6), tc1200 (7), tc2400 (8), tc4800 (9), tc9600 (10), tc19200 (11), tc48000 (12), tc64000 (13), tcReserved14 (14), tcReserved15 (15), tcReserved0 (16), tcNone (17), tcDefault (18) } ACCESS read-write STATUS mandatory DESCRIPTION "The outgoing throughput class to negotiate. A value of tcDefault for a circuit means use the PLE default. A value of tcDefault for the PLE default means use tcNone. A value of tcNone means do not negotiate throughtput class." REFERENCE "See ISO 8208 Section 15.2.2.2, table 18" DEFVAL { tcNone } ::= { x25CallParmEntry 12 } x25CallParmCug OBJECT-TYPE SYNTAX DisplayString (SIZE(0..4)) ACCESS read-write STATUS mandatory DESCRIPTION "The Closed User Group to specify. This consists of two or four octets containing the characters 0 through 9. A zero length string indicates no facility requested. A string length of three containing the characters DEF for a circuit means use the PLE default, (the PLE default parameter may not reference an entry of DEF.)" REFERENCE "See ISO 8208 Section 15.2.2.3" DEFVAL { ''h } ::= { x25CallParmEntry 13 } x25CallParmCugoa OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..4)) ACCESS read-write STATUS mandatory DESCRIPTION "The Closed User Group with Outgoing Access to specify. This consists of two or four octets containing the characters 0 through 9. A string length of three containing the characters DEF for a circuit means use the PLE default (the PLE default parameters may not reference an entry of DEF). A zero length string indicates no facility requested." REFERENCE "See ISO 8208 Section 15.2.2.4" DEFVAL { ''h } ::= { x25CallParmEntry 14 } x25CallParmBcug OBJECT-TYPE SYNTAX DisplayString (SIZE(0..3)) ACCESS read-write STATUS mandatory DESCRIPTION "The Bilateral Closed User Group to specify. This consists of two octets containing the characters 0 through 9. A string length of three containing the characters DEF for a circuit means use the PLE default (the PLE default parameter may not reference an entry of DEF). A zero length string indicates no facility requested." REFERENCE "See ISO 8208 Section 15.2.2.5" DEFVAL { ''h } ::= { x25CallParmEntry 15 } x25CallParmNui OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..108)) ACCESS read-write STATUS mandatory DESCRIPTION "The Network User Identifier facility. This is binary value to be included immediately after the length field. The PLE will supply the length octet. A zero length string indicates no facility requested. This value is ignored for the PLE default parameters entry." REFERENCE "See ISO 8208 Section 15.2.2.7" DEFVAL { ''h }
::= { x25CallParmEntry 16 } x25CallParmChargingInfo OBJECT-TYPE SYNTAX INTEGER { default (1), noFacility (2), noChargingInfo (3), chargingInfo (4) } ACCESS read-write STATUS mandatory DESCRIPTION "The charging Information facility. A value of default for a circuit means use the PLE default. The value of default for the default PLE parameters means use noFacility. The value of noFacility means do not include a facility." REFERENCE "See ISO 8208 Section 15.2.2.8" DEFVAL { noFacility } ::= { x25CallParmEntry 17 } x25CallParmRpoa OBJECT-TYPE SYNTAX DisplayString (SIZE(0..108)) ACCESS read-write STATUS mandatory DESCRIPTION "The RPOA facility. The octet string contains n * 4 sequences of the characters 0-9 to specify a facility with n entries. The octet string containing the 3 characters DEF for a circuit specifies use of the PLE default (the entry for the PLE default may not contain DEF). A zero length string indicates no facility requested." REFERENCE "See ISO 8208, section 15.2.2.9" DEFVAL { ''h } ::= { x25CallParmEntry 18 } x25CallParmTrnstDly OBJECT-TYPE SYNTAX INTEGER (0..65537) ACCESS read-write STATUS mandatory DESCRIPTION "The Transit Delay Selection and Indication value. A value of 65536 indicates no facility requested. A value of 65537 for a circuit means use the PLE default (the PLE
default parameters entry may not use the value 65537). The value 65535 may only be used to indicate the value in use by a circuit." REFERENCE "See ISO 8208, Section 15.2.2.13" DEFVAL { 65536 } ::= { x25CallParmEntry 19 } -- The following parameters are for CCITT facilities. x25CallParmCallingExt OBJECT-TYPE SYNTAX DisplayString (SIZE(0..40)) ACCESS read-write STATUS mandatory DESCRIPTION "The Calling Extension facility. This contains one of the following: A sequence of hex digits with the value to be put in the facility. These digits will be converted to binary by the agent and put in the facility. These octets do not include the length octet. A value containing the three character DEF for a circuit means use the PLE default, (the entry for the PLE default parameters may not use the value DEF). A zero length string indicates no facility requested." REFERENCE "See ISO 8208 Section 15.3.2.1" DEFVAL { ''h } ::= { x25CallParmEntry 20 } x25CallParmCalledExt OBJECT-TYPE SYNTAX DisplayString (SIZE(0..40)) ACCESS read-write STATUS mandatory DESCRIPTION "The Called Extension facility. This contains one of the following: A sequence of hex digits with the value to be put in the facility. These digits will be converted to binary by the agent and put in the facility. These octets do not include
the length octet. A value containing the three character DEF for a circuit means use the PLE default, (the entry for the PLE default parameters may not use the value DEF). A zero length string indicates no facility requested." REFERENCE "See ISO 8208 Section 15.3.2.2" DEFVAL { ''h } ::= { x25CallParmEntry 21 } x25CallParmInMinThuPutCls OBJECT-TYPE SYNTAX INTEGER (0..17) ACCESS read-write STATUS mandatory DESCRIPTION "The minimum input throughput Class. A value of 16 for a circuit means use the PLE default (the PLE parameters entry may not use this value). A value of 17 indicates no facility requested." REFERENCE "See ISO 8208 Section 15.3.2.3" DEFVAL { 17 } ::= { x25CallParmEntry 22 } x25CallParmOutMinThuPutCls OBJECT-TYPE SYNTAX INTEGER (0..17) ACCESS read-write STATUS mandatory DESCRIPTION "The minimum output throughput Class. A value of 16 for a circuit means use the PLE default (the PLE parameters entry may not use this value). A value of 17 indicates no facility requested." REFERENCE "See ISO 8208 Section 15.3.2.3" DEFVAL { 17 } ::= { x25CallParmEntry 23 } x25CallParmEndTrnsDly OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..6)) ACCESS read-write STATUS mandatory DESCRIPTION "The End-to-End Transit Delay to negotiate. An octet string of length 2, 4, or 6
contains the facility encoded as specified in ISO/IEC 8208 section 15.3.2.4. An octet string of length 3 containing the three character DEF for a circuit means use the PLE default (the entry for the PLE default can not contain the characters DEF). A zero length string indicates no facility requested." REFERENCE "See ISO 8208 Section 15.3.2.4" DEFVAL { ''h } ::= { x25CallParmEntry 24 } x25CallParmPriority OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..6)) ACCESS read-write STATUS mandatory DESCRIPTION "The priority facility to negotiate. The octet string encoded as specified in ISO/IEC 8208 section 15.3.2.5. A zero length string indicates no facility requested. The entry for the PLE default parameters must be zero length." REFERENCE "See ISO 8208 Section 15.3.2.5" DEFVAL { ''h } ::= { x25CallParmEntry 25 } x25CallParmProtection OBJECT-TYPE SYNTAX DisplayString (SIZE(0..108)) ACCESS read-write STATUS mandatory DESCRIPTION "A string contains the following: A hex string containing the value for the protection facility. This will be converted from hex to the octets actually in the packet by the agent. The agent will supply the length field and the length octet is not contained in this string. An string containing the 3 characters DEF for a circuit means use the PLE default (the entry for the PLE default parameters may not use the value DEF). A zero length string mean no facility requested." REFERENCE "See ISO 8208 Section 15.3.2.5"
DEFVAL { ''h } ::= { x25CallParmEntry 26 } x25CallParmExptData OBJECT-TYPE SYNTAX INTEGER { default (1), noExpeditedData (2), expeditedData (3) } ACCESS read-write STATUS mandatory DESCRIPTION "The Expedited Data facility to negotiate. A value of default for a circuit means use the PLE default value. The entry for the PLE default parameters may not have the value default." REFERENCE "See ISO 8208 Section 15.3.2.7" DEFVAL { noExpeditedData } ::= { x25CallParmEntry 27 } x25CallParmUserData OBJECT-TYPE SYNTAX OCTET STRING (SIZE (0..128)) ACCESS read-write STATUS mandatory DESCRIPTION "The call user data as placed in the packet. A zero length string indicates no call user data. If both the circuit call parameters and the PLE default have call user data defined, the data from the circuit call parameters will be used. If only the PLE has data defined, the PLE entry will be used. If neither the circuit call parameters or the PLE default entry has a value, no call user data will be sent." REFERENCE "See ISO 8208 Section 12.2.1.1.6, 12.2.1.2" DEFVAL { ''h } ::= { x25CallParmEntry 28 } x25CallParmCallingNetworkFacilities OBJECT-TYPE SYNTAX OCTET STRING (SIZE (0..108)) ACCESS read-write STATUS mandatory DESCRIPTION "The calling network facilities. The facilities are encoded here exactly as encoded in the call packet. These
facilities do not include the marker facility code. A zero length string in the entry for the parameter to use when establishing a circuit means use the PLE default. A zero length string in the entry for PLE default parameters indicates no default facilities." REFERENCE "See ISO 8206 Section 15.1, category b" DEFVAL { ''h } ::= { x25CallParmEntry 29 } x25CallParmCalledNetworkFacilities OBJECT-TYPE SYNTAX OCTET STRING (SIZE (0..108)) ACCESS read-write STATUS mandatory DESCRIPTION "The called network facilities. The facilities are encoded here exactly as encoded in the call packet. These facilities do not include the marker facility code. A zero length string in the entry for the parameter to use when establishing a circuit means use the PLE default. A zero length string in the entry for PLE default parameters indicates no default facilities." REFERENCE "See ISO 8206 Section 15.1, category c" DEFVAL { ''h } ::= { x25CallParmEntry 30 } -- ########################################################### -- X.25 Traps -- ########################################################### x25Restart TRAP-TYPE ENTERPRISE x25 VARIABLES { x25OperIndex } DESCRIPTION "This trap means the X.25 PLE sent or received a restart packet. The restart that brings up the link should not send a x25Restart trap so the interface should send a linkUp trap. Sending this trap means the agent does not send a linkDown and linkUp trap." ::= 1
x25Reset TRAP-TYPE ENTERPRISE x25 VARIABLES { x25CircuitIndex, x25CircuitChannel } DESCRIPTION "If the PLE sends or receives a reset, the agent should send an x25Reset trap." ::= 2 -- ########################################################### -- X.25 Protocol Version Identifiers -- ########################################################### x25ProtocolVersion OBJECT IDENTIFIER ::= { x25 10 } -- X.25 CCITT 1976 version. x25protocolCcittV1976 OBJECT IDENTIFIER ::= { x25ProtocolVersion 1 } -- X.25 CCITT 1980 version. x25protocolCcittV1980 OBJECT IDENTIFIER ::= { x25ProtocolVersion 2 } -- X.25 CCITT 1984 version. x25protocolCcittV1984 OBJECT IDENTIFIER ::= { x25ProtocolVersion 3 } -- X.25 CCITT 1988 version. x25protocolCcittV1988 OBJECT IDENTIFIER ::= { x25ProtocolVersion 4 } -- X.25 1987 version of ISO 8208. x25protocolIso8208V1987 OBJECT IDENTIFIER ::= { x25ProtocolVersion 5 } -- X.25 1989 version of ISO 8208. x25protocolIso8208V1989 OBJECT IDENTIFIER ::= { x25ProtocolVersion 6 } -- ########################################################### END
5. Appendix: Revision History July 30 1992 The July, 1992 release (Editor's Internal Reference Number 2.14) made the following changes: The syntax of the index objects for tables that are congruent with the MIB-II ifTable were changed to ifIndexType. The x25CallParmRefCount object was added to the x25CallParmTable. The description of the x25CallParmTable and x25CallParmIndex objects were changed to only allow writing an entry with a zero reference count. A requirement for conformance was added after the definition of x25 in the ASN.1 definition. June 26 1992 The June 29, 1992 release (Editor's Internal Reference Number 2.12) made the following changes: The range of x25ChannelLIC was changed from (0..4096) to (0..4095). The range of x25ChannelHIC was changed from (0..4096) to (0..4095). The range of x25ChannelLTC was changed from (0..4096) to (0..4095). The range of x25ChannelHTC was changed from (0..4096) to (0..4095). The range of x25ChannelLOC was changed from (0..4096) to (0..4095). The range of x25ChannelHOC was changed from (0..4096) to (0..4095). The range of x25CircuitChannel was changed from (1..4096) to (0..4095). The range of x25ClearedCircuitChannel was changed from
(1..4096) to (0..4095). June 1992 The June 92 release (Editor's Internal Reference Number 2.11) made the following changes: A value of dxe was defined for x25AdmnInterfaceMode and x25OperInterfaceMode. The objects in the x25ChannelTable can now have a value of zero to indicate no channels configured in the range. The length of an X121Address was extended to 17 to accommodate the 1988 CCITT X.25 standard. Some object descriptions have been expanded and simplified, these include: all the channel table objects except the index, x25AdmnDataRxmtCount, x25AdmnRejectCount, x25AdmnRegistrationRequestCount, x25OperDataRxmtCount, x25OperRejectCount, x25OperRegistrationRequestCount, x25CircuitEstablishTime, x25ClearedCircuitTimeEstablished, x25ClearedCircuitTimeCleared, x25CallParmIndex, x25CallParmInPacketSize, x25CircuitCalledAddress, x25CircuitOriginallCalledAddress, x25CircuitCallingAddress, x25CallParmFastSelect, x25CallParmCug, x25CallParmCugoa, x25CallParmBcug, x25CallParmNui, x25CallParmRpoa, x25CallParmCallingExt, x25CallParmCalledExt, x25CallParmProtection, x25StatInCallRefusals and x25CallParmOutPacketSize. The x25StatNumberPvcs object was deleted and x25AdmnNumberPVCs and x25OperNumberPVCs objects added. The object x25StatOutDataPackets was added. The object x25AdmnProtocolVersionSupported as added. The x25CircuitRemoteDteAddress was deleted. Some ASN.1 errors were corrected. April 1992 The April release (Editor's Internal Reference Number 2.8) made many changes to incorporate the comments of the working group meeting in March 1992.
All reference comments were changed to reference fields. The type PositiveInteger was imported from the RFC1381- MIB and used for all index and timer values. The x25PleTable was split into the x25AdmnTable, x25OperTable, and x25StatTable. The timer and counter objects from the x25CircuitTable were moved to the x25AdmnTable and replicated in the x25OperTable The objects in the x25CircuitTable were reordered to put the non-integer objects at the end of the table for easier implementation. The called and calling extension character set was extended to include a-f, and A-F. Additional states were added to the x25CircuitStatus object. Additional values were added to x25CircuitDirection x25CircuitCallParamId, and the addresses in the Circuit Table for PVCs. The length of the X25Address was changed to 0..15. The objects x25ClearedCircuitTimeEstablished, x25ClearedCircuitInPdus, and x25ClearedCircuitOutPdus were added to the x25ClearedCircuitTable. The name of the x25CircuitName was changed to x25CircuitDescr and the description was expanded. The access of the x25CircuitCallParamId was changed to read-only. The x25ClearedCircuitCodes object was split into the x25ClearedCircuitClearingCause and x25ClearedCircuitDiagnosticCode objects. The semantics of the x25ClearedCircuitIndex was redefined. Some of the description clauses were changed in an attempt to add clarity.
DEFVAL clauses were added to most objects in the x25CallParmTable. Additional text was added to the description section to provide an overview of the tables of the MIB. The minimum allowable value for maximum active circuits was changed from one to zero. February 1992 The February release (Editor's Internal Reference Number 1.14) made many changes. Many of the tables were combined. For example, the x25InfoTable, x25PktStatTable, and x25TmrStatTable were combined into the x25PleTable. The x25ConInfoTable, x25ConStatTable, and x25ConTimrTable were combined into the x25CircuitTable. The objects for call parameters were drastically reworked. All call parameters were combined in the x25CallParmTable. Any table, such as the x25PleTable or x25CircuitTable, that needs to reference call parameters identifies an entry in the new table. As part of this the x25ConDefTable was deleted and replaced with the x25PleDefCallParamId. The x25PvcTable was deleted; the x25CircuitStatus object provides similar information about PVCs. The x25ClearedCircuitTable was added to record the status code of cleared circuits. Many object definitions were restructured. For example, the time units for timers was changed from 1/100ths of a second to milliseconds. Some indexes into tables were replaced with object identifiers. Much of the introductory text was changed and the references were changed to match. October 1991 The October release (Editor Internal Reference Number 1.10) made the following changes: Changed x25ConInfoStatus to clarify the description and
the pvcResetting(5) value was changed to pvcResetting(6) to avoid a conflict with a previous use of the number 5. The name of the counter object x25TmrStatRetryCountsExceeded was changed to x25TmrStatRetryCountExceededs. The name of the counter object x25TmrStatClearCountsExceeded was changed to x25TmrStatClearCountExceededs. All occurrence of Guage was changed to Gauge. Added the x25CallFcltyTable, x25CallFcltyCcittTable, and x25CallParamTable. June 1991 The June release corrected some syntax errors and cleaned up some other minor things. April 1991 The April 26 release of this document was the first release. That version was derived from the ISO work on network layer management as presented in ISO/IEC 10733 [11] 6. Acknowledgements This document was produced by the x25mib working group: Fred Baker, ACC Art Berggreen, ACC Frank Bieser Gary Bjerke, Tandem Bill Bowman, HP Christopher Bucci, Datability Charles Carvalho, ACC Jeff Case, Snmp Research Angela Chen, HP Carson Cheung, BNR Tom Daniel, Spider Systems Chuck Davin, MIT Billy Durham, Honeywell Richard Fox, Synoptics Doug Geller, Data General Herve Goguely, LIR Corp Andy Goldthorpe, british-telecom
Walter D. Guilarte David Gurevich Steve Huston, Process Software Corporation Jon Infante, ICL Frank Kastenholz, Clearpoint Zbigniew Kielczewski, Eicon Cheryl Krupezak, Georgia Tech Mats Lindstrom, Diab Data AB Andrew Malis, BBN Evan McGinnis, 3Com Gary (G.P.)Mussar, BNR Chandy Nilakantan, 3Com Randy Pafford, Data General Ragnar Paulson, The Software Group Limited Dave Perkins, Synoptics Walter Pinkarschewsky, DEC Karen Quidley, Data General Chris Ranch, Novell Paul S. Rarey, DHL Systems Inc. Jim Roche, Newbridge Research Philippe Roger, LIR Corp. Timon Sloane Mike Shand, DEC Brad Steina, Microcom Bob Stewart, Xyplex Tom Sullivan, Data General Rodney Thayer, Sable Technology Corporation Mark Therieau, Microcom Jane Thorn, Data General Dean Throop, Data General Maurice Turcotte, Racal Datacom Mike Zendels, Data General In addition, the contributions of the following individuals are also acknowledged: John Harper, DEC Chairman of the ISO committee for Network Level Management Information 7. References [1] Rose M., and K. McCloghrie, "Structure and Identification of Management Information for TCP/IP-based internets", STD 16, RFC 1155, Performance Systems International, Hughes LAN Systems, May 1990. [2] McCloghrie K., and M. Rose, "Management Information Base for
Network Management of TCP/IP-based internets", RFC 1156, Hughes LAN Systems, Performance Systems International, May 1990. [3] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network Management Protocol", STD 15, RFC 1157, SNMP Research, Performance Systems International, Performance Systems International, MIT Laboratory for Computer Science, May 1990. [4] Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions", STD 16, RFC 1212, Performance Systems International, Hughes LAN Systems, March 1991. [5] Rose M., Editor, "Management Information Base for Network Management of TCP/IP-based internets: MIB-II", STD 17, RFC 1213, Performance Systems International, March 1991. [6] Information processing systems - Open Systems Interconnection - Specification of Abstract Syntax Notation One (ASN.1), International Organization for Standardization, International Standard 8824, December 1987. [7] Information processing systems - Open Systems Interconnection - Specification of Basic Encoding Rules for Abstract Notation One (ASN.1), International Organization for Standardization, International Standard 8825, December 1987. [8] Stewart, B., Editor, "Definitions of Managed Objects for RS-232- like Hardware Devices", RFC 1317, Xyplex, Inc., April 1992. [9] Throop, D., Editor, "SNMP MIB extension for LAPB", RFC 1381, Data General Corporation, November 1992. [10] "Information technology - - Data communication - X.25 Packet layer Protocol for Data Terminal Equipment", International Organization for Standardization, International Standard 8208, March 1990. [11] "Information Technology - Telecommunications and information exchange between systems - Elements of Management Information Related to OSI network Layer Standards", Committee Draft International Standard 10733, November 1990. 8. Security Considerations Security issues are not discussed in this memo.
9. Authors' Addresses Dean D. Throop Data General Corporation 62 Alexander Dr. Research Triangle Park, NC 27709 Phone: (919)248-8421 EMail: throop@dg-rtp.dg.com