6. Definitions RFC1271-MIB DEFINITIONS ::= BEGIN IMPORTS Counter FROM RFC1155-SMI DisplayString FROM RFC1158-MIB mib-2 FROM RFC1213-MIB OBJECT-TYPE FROM RFC-1212; -- This MIB module uses the extended OBJECT-TYPE macro as -- defined in [9]. -- Remote Network Monitoring MIB rmon OBJECT IDENTIFIER ::= { mib-2 16 } -- textual conventions OwnerString ::= DisplayString -- This data type is used to model an administratively -- assigned name of the owner of a resource. This -- information is taken from the NVT ASCII character set. -- It is suggested that this name contain one or more -- of the following: -- IP address, management station name, network manager's -- name, location, or phone number. -- In some cases the agent itself will be the owner of -- an entry. In these cases, this string shall be set -- to a string starting with 'monitor'.
-- -- SNMP access control is articulated entirely in terms of -- the contents of MIB views; access to a particular SNMP -- object instance depends only upon its presence or -- absence in a particular MIB view and never upon its -- value or the value of related object instances. Thus, -- objects of this type afford resolution of resource -- contention only among cooperating managers; they -- realize no access control function with respect -- to uncooperative parties. -- -- By convention, objects with this syntax are declared -- as having -- -- SIZE (0..127) EntryStatus ::= INTEGER { valid(1), createRequest(2), underCreation(3), invalid(4) } -- The status of a table entry. -- -- Setting this object to the value invalid(4) has the -- effect of invalidating the corresponding entry. -- That is, it effectively disassociates the mapping -- identified with said entry. -- It is an implementation-specific matter as to whether -- the agent removes an invalidated entry from the table. -- Accordingly, management stations must be prepared to -- receive tabular information from agents that corresponds -- to entries currently not in use. Proper -- interpretation of such entries requires examination -- of the relevant EntryStatus object. -- -- An existing instance of this object cannot be set to -- createRequest(2). This object may only be set to -- createRequest(2) when this instance is created. When -- this object is created, the agent may wish to create -- supplemental object instances to complete a conceptual -- row in this table. Immediately after completing the -- create operation, the agent must set this object to -- underCreation(3). -- -- Entries shall exist in the underCreation(3) state until
-- the management station is finished configuring the -- entry and sets this object to valid(1) or aborts, -- setting this object to invalid(4). If the agent -- determines that an entry has been in the -- underCreation(3) state for an abnormally long time, -- it may decide that the management station has -- crashed. If the agent makes this decision, -- it may set this object to invalid(4) to reclaim the -- entry. A prudent agent will understand that the -- management station may need to wait for human input -- and will allow for that possibility in its -- determination of this abnormally long period. statistics OBJECT IDENTIFIER ::= { rmon 1 } history OBJECT IDENTIFIER ::= { rmon 2 } alarm OBJECT IDENTIFIER ::= { rmon 3 } hosts OBJECT IDENTIFIER ::= { rmon 4 } hostTopN OBJECT IDENTIFIER ::= { rmon 5 } matrix OBJECT IDENTIFIER ::= { rmon 6 } filter OBJECT IDENTIFIER ::= { rmon 7 } capture OBJECT IDENTIFIER ::= { rmon 8 } event OBJECT IDENTIFIER ::= { rmon 9 } -- The Statistics Group -- -- Implementation of the Statistics group is optional. -- -- The statistics group contains statistics measured by the -- probe for each monitored interface on this device. These -- statistics take the form of free running counters that -- start from zero when a valid entry is created. -- -- This group currently has statistics defined only for -- Ethernet interfaces. Each etherStatsEntry contains -- statistics for one Ethernet interface. The probe must -- create one etherStats entry for each monitored Ethernet -- interface on the device. etherStatsTable OBJECT-TYPE SYNTAX SEQUENCE OF EtherStatsEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of Ethernet statistics entries." ::= { statistics 1 }
etherStatsEntry OBJECT-TYPE SYNTAX EtherStatsEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A collection of statistics kept for a particular Ethernet interface." INDEX { etherStatsIndex } ::= { etherStatsTable 1 } EtherStatsEntry ::= SEQUENCE { etherStatsIndex INTEGER (1..65535), etherStatsDataSource OBJECT IDENTIFIER, etherStatsDropEvents Counter, etherStatsOctets Counter, etherStatsPkts Counter, etherStatsBroadcastPkts Counter, etherStatsMulticastPkts Counter, etherStatsCRCAlignErrors Counter, etherStatsUndersizePkts Counter, etherStatsOversizePkts Counter, etherStatsFragments Counter, etherStatsJabbers Counter, etherStatsCollisions Counter, etherStatsPkts64Octets Counter, etherStatsPkts65to127Octets Counter, etherStatsPkts128to255Octets Counter, etherStatsPkts256to511Octets Counter, etherStatsPkts512to1023Octets Counter, etherStatsPkts1024to1518Octets Counter, etherStatsOwner OwnerString, etherStatsStatus INTEGER } etherStatsIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The value of this object uniquely identifies this etherStats entry." ::= { etherStatsEntry 1 } etherStatsDataSource OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-write STATUS mandatory DESCRIPTION
"This object identifies the source of the data that this etherStats entry is configured to analyze. This source can be any ethernet interface on this device. In order to identify a particular interface, this object shall identify the instance of the ifIndex object, defined in [4,6], for the desired interface. For example, if an entry were to receive data from interface #1, this object would be set to ifIndex.1. The statistics in this group reflect all packets on the local network segment attached to the identified interface. This object may not be modified if the associated etherStatsStatus object is equal to valid(1)." ::= { etherStatsEntry 2 } etherStatsDropEvents OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of events in which packets were dropped by the probe due to lack of resources. Note that this number is not necessarily the number of packets dropped; it is just the number of times this condition has been detected." ::= { etherStatsEntry 3 } etherStatsOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 4 } etherStatsPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including error packets) received." ::= { etherStatsEntry 5 }
etherStatsBroadcastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of good packets received that were directed to the broadcast address." ::= { etherStatsEntry 6 } etherStatsMulticastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of good packets received that were directed to a multicast address. Note that this number does not include packets directed to the broadcast address." ::= { etherStatsEntry 7 } etherStatsCRCAlignErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but were not an integral number of octets in length or had a bad Frame Check Sequence (FCS)." ::= { etherStatsEntry 8 } etherStatsUndersizePkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets received that were less than 64 octets long (excluding framing bits, but including FCS octets) and were otherwise well formed." ::= { etherStatsEntry 9 } etherStatsOversizePkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory
DESCRIPTION "The total number of packets received that were longer than 1518 octets (excluding framing bits, but including FCS octets) and were otherwise well formed." ::= { etherStatsEntry 10 } etherStatsFragments OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets received that were not an integral number of octets in length or that had a bad Frame Check Sequence (FCS), and were less than 64 octets in length (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 11 } etherStatsJabbers OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets received that were longer than 1518 octets (excluding framing bits, but including FCS octets), and were not an integral number of octets in length or had a bad Frame Check Sequence (FCS)." ::= { etherStatsEntry 12 } etherStatsCollisions OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The best estimate of the total number of collisions on this Ethernet segment." ::= { etherStatsEntry 13 } etherStatsPkts64Octets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including error packets) received that were 64 octets in length (excluding framing bits but including FCS octets)."
::= { etherStatsEntry 14 } etherStatsPkts65to127Octets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including error packets) received that were between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 15 } etherStatsPkts128to255Octets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including error packets) received that were between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 16 } etherStatsPkts256to511Octets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including error packets) received that were between 256 and 511 octets in length inclusive (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 17 } etherStatsPkts512to1023Octets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including error packets) received that were between 512 and 1023 octets in length inclusive (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 18 }
etherStatsPkts1024to1518Octets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including error packets) received that were between 1024 and 1518 octets in length inclusive (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 19 } etherStatsOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { etherStatsEntry 20 } etherStatsStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this etherStats entry." ::= { etherStatsEntry 21 } -- The History Group -- Implementation of the History group is optional. -- -- The history group records periodic statistical samples from -- a network and stores them for later retrieval. The -- historyControl table stores configuration entries that each -- define an interface, polling period, and other parameters. -- Once samples are taken, their data is stored in an entry -- in a media-specific table. Each such entry defines one -- sample, and is associated with the historyControlEntry that -- caused the sample to be taken. Currently the only media- -- specific table defined is the etherHistoryTable, for -- Ethernet networks. -- -- If the probe keeps track of the time of day, it should -- start the first sample of the history at a time such that -- when the next hour of the day begins, a sample is -- started at that instant. This tends to make more
-- user-friendly reports, and enables comparison of reports -- from different probes that have relatively accurate time -- of day. -- -- The monitor is encouraged to add two history control entries -- per monitored interface upon initialization that describe -- a short term and a long term polling period. Suggested -- parameters are 30 seconds for the short term polling -- period and 30 minutes for the long term period. historyControlTable OBJECT-TYPE SYNTAX SEQUENCE OF HistoryControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of history control entries." ::= { history 1 } historyControlEntry OBJECT-TYPE SYNTAX HistoryControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of parameters that set up a periodic sampling of statistics." INDEX { historyControlIndex } ::= { historyControlTable 1 } HistoryControlEntry ::= SEQUENCE { historyControlIndex INTEGER (1..65535), historyControlDataSource OBJECT IDENTIFIER, historyControlBucketsRequested INTEGER (1..65535), historyControlBucketsGranted INTEGER (1..65535), historyControlInterval INTEGER (1..3600), historyControlOwner OwnerString, historyControlStatus INTEGER } historyControlIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the historyControl table. Each such entry defines a set of samples at a particular interval for an interface on the device." ::= { historyControlEntry 1 }
historyControlDataSource OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-write STATUS mandatory DESCRIPTION "This object identifies the source of the data for which historical data was collected and placed in a media-specific table on behalf of this historyControlEntry. This source can be any interface on this device. In order to identify a particular interface, this object shall identify the instance of the ifIndex object, defined in [4,6], for the desired interface. For example, if an entry were to receive data from interface #1, this object would be set to ifIndex.1. The statistics in this group reflect all packets on the local network segment attached to the identified interface. This object may not be modified if the associated historyControlStatus object is equal to valid(1)." ::= { historyControlEntry 2 } historyControlBucketsRequested OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-write STATUS mandatory DESCRIPTION "The requested number of discrete time intervals over which data is to be saved in the part of the media-specific table associated with this historyControl entry. When this object is created or modified, the probe should set historyControlBucketsGranted as closely to this object as is possible for the particular probe implementation and available resources." DEFVAL { 50 } ::= { historyControlEntry 3 } historyControlBucketsGranted OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The number of discrete sampling intervals over which data shall be saved in the part of
the media-specific table associated with this historyControl entry. When the associated historyControlBucketsRequested object is created or modified, the probe should set this object as closely to the requested value as is possible for the particular probe implementation and available resources. The probe must not lower this value except as a result of a modification to the associated historyControlBucketsRequested object. There will be times when the actual number of buckets associated with this entry is less than the value of this object. In this case, at the end of each sampling interval, a new bucket will be added to the media-specific table. When the number of buckets reaches the value of this object and a new bucket is to be added to the media-specific table, the oldest bucket associated with this historyControlEntry shall be deleted by the agent so that the new bucket can be added. When the value of this object changes to a value less than the current value, entries are deleted from the media-specific table associated with this historyControlEntry. Enough of the oldest of these entries shall be deleted by the agent so that their number remains less than or equal to the new value of this object. When the value of this object changes to a value greater than the current value, the number of associated media-specific entries may be allowed to grow." ::= { historyControlEntry 4 } historyControlInterval OBJECT-TYPE SYNTAX INTEGER (1..3600) ACCESS read-write STATUS mandatory DESCRIPTION "The interval in seconds over which the data is sampled for each bucket in the part of the media-specific table associated with this historyControl entry. This interval can be set to any number of seconds between 1 and
3600 (1 hour). Because the counters in a bucket may overflow at their maximum value with no indication, a prudent manager will take into account the possibility of overflow in any of the associated counters. It is important to consider the minimum time in which any counter could overflow on a particular media type and set the historyControlInterval object to a value less than this interval. This is typically most important for the 'octets' counter in any media-specific table. For example, on an Ethernet network, the etherHistoryOctets counter could overflow in about one hour at the Ethernet's maximum utilization. This object may not be modified if the associated historyControlStatus object is equal to valid(1)." DEFVAL { 1800 } ::= { historyControlEntry 5 } historyControlOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { historyControlEntry 6 } historyControlStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this historyControl entry. Each instance of the media-specific table associated with this historyControlEntry will be deleted by the agent if this historyControlEntry is not equal to valid(1)." ::= { historyControlEntry 7 } -- Ether History table etherHistoryTable OBJECT-TYPE SYNTAX SEQUENCE OF EtherHistoryEntry
ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of Ethernet history entries." ::= { history 2 } etherHistoryEntry OBJECT-TYPE SYNTAX EtherHistoryEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "An historical sample of Ethernet statistics on a particular Ethernet interface. This sample is associated with the historyControlEntry which set up the parameters for a regular collection of these samples." INDEX { etherHistoryIndex , etherHistorySampleIndex } ::= { etherHistoryTable 1 } EtherHistoryEntry ::= SEQUENCE { etherHistoryIndex INTEGER (1..65535), etherHistorySampleIndex INTEGER, etherHistoryIntervalStart TimeTicks, etherHistoryDropEvents Counter, etherHistoryOctets Counter, etherHistoryPkts Counter, etherHistoryBroadcastPkts Counter, etherHistoryMulticastPkts Counter, etherHistoryCRCAlignErrors Counter, etherHistoryUndersizePkts Counter, etherHistoryOversizePkts Counter, etherHistoryFragments Counter, etherHistoryJabbers Counter, etherHistoryCollisions Counter, etherHistoryUtilization INTEGER (0..10000) } etherHistoryIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The history of which this entry is a part. The history identified by a particular value of this index is the same history as identified by the same value of historyControlIndex." ::= { etherHistoryEntry 1 }
etherHistorySampleIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies the particular sample this entry represents among all samples associated with the same historyControlEntry. This index starts at 1 and increases by one as each new sample is taken." ::= { etherHistoryEntry 2 } etherHistoryIntervalStart OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime at the start of the interval over which this sample was measured. If the probe keeps track of the time of day, it should start the first sample of the history at a time such that when the next hour of the day begins, a sample is started at that instant. Note that following this rule may require the probe to delay collecting the first sample of the history, as each sample must be of the same interval. Also note that the sample which is currently being collected is not accessible in this table until the end of its interval." ::= { etherHistoryEntry 3 } etherHistoryDropEvents OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of events in which packets were dropped by the probe due to lack of resources during this interval. Note that this number is not necessarily the number of packets dropped, it is just the number of times this condition has been detected." ::= { etherHistoryEntry 4 } etherHistoryOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of octets of data (including
those in bad packets) received on the network (excluding framing bits but including FCS octets)." ::= { etherHistoryEntry 5 } etherHistoryPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets (including error packets) received during this sampling interval." ::= { etherHistoryEntry 6 } etherHistoryBroadcastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of good packets received during this sampling interval that were directed to the broadcast address." ::= { etherHistoryEntry 7 } etherHistoryMulticastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of good packets received during this sampling interval that were directed to a multicast address. Note that this number does not include packets addressed to the broadcast address." ::= { etherHistoryEntry 8 } etherHistoryCRCAlignErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets received during this sampling interval that had a length (excluding framing bits but including FCS octets) between 64 and 1518 octets, inclusive, but were not an integral number of octets in length or had a bad Frame Check Sequence (FCS)." ::= { etherHistoryEntry 9 }
etherHistoryUndersizePkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets received during this interval that were less than 64 octets long (excluding framing bits but including FCS octets) and were otherwise well formed." ::= { etherHistoryEntry 10 } etherHistoryOversizePkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets received during this interval that were longer than 1518 octets (excluding framing bits but including FCS octets) but were otherwise well formed." ::= { etherHistoryEntry 11 } etherHistoryFragments OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets received during this sampling interval that were not an integral number of octets in length or that had a bad Frame Check Sequence (FCS), and were less than 64 octets in length (excluding framing bits but including FCS octets)." ::= { etherHistoryEntry 12 } etherHistoryJabbers OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets received during this interval that were longer than 1518 octets (excluding framing bits but including FCS octets), and were not an integral number of octets in length or had a bad Frame Check Sequence (FCS)." ::= { etherHistoryEntry 13 }
etherHistoryCollisions OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The best estimate of the total number of collisions on this Ethernet segment during this interval." ::= { etherHistoryEntry 14 } etherHistoryUtilization OBJECT-TYPE SYNTAX INTEGER (0..10000) ACCESS read-only STATUS mandatory DESCRIPTION "The best estimate of the mean physical layer network utilization on this interface during this interval, in hundredths of a percent." ::= { etherHistoryEntry 15 } -- The Alarm Group -- Implementation of the Alarm group is optional. -- -- The Alarm Group requires the implementation of the Event -- group. -- -- The Alarm group periodically takes statistical samples from -- variables in the probe and compares them to thresholds -- that have been configured. The alarm table stores -- configuration entries that each define a variable, -- polling period, and threshold parameters. If a sample is -- found to cross the threshold values, an event is -- generated. Only variables that resolve to an ASN.1 -- primitive type of INTEGER (INTEGER, Counter, -- Gauge, or TimeTicks) may be monitored in this way. -- -- This function has a hysteresis mechanism to limit the -- generation of events. This mechanism generates one event -- as a threshold is crossed in the appropriate direction. -- No more events are generated for that threshold until the -- opposite threshold is crossed. -- -- In the case of a sampling a deltaValue, a probe may -- implement this mechanism with more precision if it takes -- a delta sample twice per period, each time comparing the -- sum of the latest two samples to the threshold. This -- allows the detection of threshold crossings
-- that span the sampling boundary. Note that this does not -- require any special configuration of the threshold value. -- It is suggested that probes implement this more precise -- algorithm. alarmTable OBJECT-TYPE SYNTAX SEQUENCE OF AlarmEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of alarm entries." ::= { alarm 1 } alarmEntry OBJECT-TYPE SYNTAX AlarmEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of parameters that set up a periodic checking for alarm conditions." INDEX { alarmIndex } ::= { alarmTable 1 } AlarmEntry ::= SEQUENCE { alarmIndex INTEGER (1..65535), alarmInterval INTEGER, alarmVariable OBJECT IDENTIFIER, alarmSampleType INTEGER, alarmValue INTEGER, alarmStartupAlarm INTEGER, alarmRisingThreshold INTEGER, alarmFallingThreshold INTEGER, alarmRisingEventIndex INTEGER (1..65535), alarmFallingEventIndex INTEGER (1..65535), alarmOwner OwnerString, alarmStatus INTEGER } alarmIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the alarm table. Each such entry defines a diagnostic sample at a particular interval for an object on the device." ::= { alarmEntry 1 }
alarmInterval OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The interval in seconds over which the data is sampled and compared with the rising and falling thresholds. When setting this variable, care should be given to ensure that the variable being monitored will not exceed 2^31 - 1 and roll over the alarmValue object during the interval. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 2 } alarmVariable OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-write STATUS mandatory DESCRIPTION "The object identifier of the particular variable to be sampled. Only variables that resolve to an ASN.1 primitive type of INTEGER (INTEGER, Counter, Gauge, or TimeTicks) may be sampled. Because SNMP access control is articulated entirely in terms of the contents of MIB views, no access control mechanism exists that can restrict the value of this object to identify only those objects that exist in a particular MIB view. Because there is thus no acceptable means of restricting the read access that could be obtained through the alarm mechanism, the probe must only grant write access to this object in those views that have read access to all objects on the probe. During a set operation, if the supplied variable name is not available in the selected MIB view, a badValue error must be returned. If at any time the variable name of an established alarmEntry is no longer available in the selected MIB view, the probe must change the status of this alarmEntry to invalid(4). This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 3 }
alarmSampleType OBJECT-TYPE SYNTAX INTEGER { absoluteValue(1), deltaValue(2) } ACCESS read-write STATUS mandatory DESCRIPTION "The method of sampling the selected variable and calculating the value to be compared against the thresholds. If the value of this object is absoluteValue(1), the value of the selected variable will be compared directly with the thresholds at the end of the sampling interval. If the value of this object is deltaValue(2), the value of the selected variable at the last sample will be subtracted from the current value, and the difference compared with the thresholds. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 4 } alarmValue OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The value of the statistic during the last sampling period. The value during the current sampling period is not made available until the period is completed." ::= { alarmEntry 5 } alarmStartupAlarm OBJECT-TYPE SYNTAX INTEGER { risingAlarm(1), fallingAlarm(2), risingOrFallingAlarm(3) } ACCESS read-write STATUS mandatory DESCRIPTION "The alarm that may be sent when this entry is first set to valid. If the first sample after this entry becomes valid is greater than or equal to the risingThreshold and alarmStartupAlarm is equal to risingAlarm(1) or risingOrFallingAlarm(3), then a single rising alarm will be generated. If the first
sample after this entry becomes valid is less than or equal to the fallingThreshold and alarmStartupAlarm is equal to fallingAlarm(2) or risingOrFallingAlarm(3), then a single falling alarm will be generated. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 6 } alarmRisingThreshold OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "A threshold for the sampled statistic. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single event will be generated. A single event will also be generated if the first sample after this entry becomes valid is greater than or equal to this threshold and the associated alarmStartupAlarm is equal to risingAlarm(1) or risingOrFallingAlarm(3). After a rising event is generated, another such event will not be generated until the sampled value falls below this threshold and reaches the alarmFallingThreshold. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 7 } alarmFallingThreshold OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "A threshold for the sampled statistic. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval was greater than this threshold, a single event will be generated. A single event will also be generated if the first sample after this entry becomes valid is less than or equal to this threshold and the associated
alarmStartupAlarm is equal to fallingAlarm(2) or risingOrFallingAlarm(3). After a falling event is generated, another such event will not be generated until the sampled value rises above this threshold and reaches the alarmRisingThreshold. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 8 } alarmRisingEventIndex OBJECT-TYPE SYNTAX INTEGER (0..65535) ACCESS read-write STATUS mandatory DESCRIPTION "The index of the eventEntry that is used when a rising threshold is crossed. The eventEntry identified by a particular value of this index is the same as identified by the same value of the eventIndex object. If there is no corresponding entry in the eventTable, then no association exists. In particular, if this value is zero, no associated event will be generated, as zero is not a valid event index. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 9 } alarmFallingEventIndex OBJECT-TYPE SYNTAX INTEGER (0..65535) ACCESS read-write STATUS mandatory DESCRIPTION "The index of the eventEntry that is used when a falling threshold is crossed. The eventEntry identified by a particular value of this index is the same as identified by the same value of the eventIndex object. If there is no corresponding entry in the eventTable, then no association exists. In particular, if this value is zero, no associated event will be generated, as zero is not a valid event index. This object may not be modified if the associated alarmStatus object is equal to valid(1)."
::= { alarmEntry 10 } alarmOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { alarmEntry 11 } alarmStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this alarm entry." ::= { alarmEntry 12 } -- The Host Group -- Implementation of the Host group is optional. -- -- The host group discovers new hosts on the network by -- keeping a list of source and destination MAC Addresses seen -- in good packets. For each of these addresses, the host -- group keeps a set of statistics. The hostControlTable -- controls which interfaces this function is performed on, -- and contains some information about the process. On -- behalf of each hostControlEntry, data is collected on an -- interface and placed both the hostTable and the -- hostTimeTable. If the monitoring device finds itself -- short of resources, it may delete entries as needed. It -- is suggested that the device delete the least recently -- used entries first. -- The hostTable contains entries for each address -- discovered on a particular interface. Each entry -- contains statistical data about that host. This table -- is indexed by the MAC address of the host, through -- which a random access may be achieved. -- The hostTimeTable contains data in the same format as the -- hostTable, and must contain the same set of hosts, but is -- indexed using hostTimeCreationOrder rather than hostAddress. -- The hostTimeCreationOrder is an integer which reflects -- the relative order in which a particular entry was
-- discovered and thus inserted into the table. As this -- order, and thus index, is among those entries currently -- in the table, the index for a particular entry may change -- if an (earlier) entry is deleted. Thus the association -- between hostTimeCreationOrder and hostTimeEntry may be -- broken at any time. -- The hostTimeTable has two important uses. The first is the -- fast download of this potentially large table. Because the -- index of this table runs from 1 to the size of the table, -- inclusive, its values are predictable. This allows very -- efficient packing of variables into SNMP PDU's and allows -- a table transfer to have multiple packets outstanding. -- These benefits increase transfer rates tremendously. -- The second use of the hostTimeTable is the efficient -- discovery by the management station of new entries added -- to the table. After the management station has -- downloaded the entire table, it knows that new entries -- will be added immediately after the end of the current -- table. It can thus detect new entries there -- and retrieve them easily. -- Because the association between hostTimeCreationOrder and -- hostTimeEntry may be broken at any time, the management -- station must monitor the related hostControlLastDeleteTime -- object. When the management station thus detects a deletion, -- it must assume that any such associations have been broken, -- and invalidate any it has stored locally. This includes -- restarting any download of the hostTimeTable that may have -- been in progress, as well as rediscovering the end of the -- hostTimeTable so that it may detect new entries. If the -- management station does not detect the broken association, -- it may continue to refer to a particular host by its -- creationOrder while unwittingly retrieving the data -- associated with another host entirely. If this happens -- while downloading the host table, the management station -- may fail to download all of the entries in the table. hostControlTable OBJECT-TYPE SYNTAX SEQUENCE OF HostControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of host table control entries." ::= { hosts 1 }
hostControlEntry OBJECT-TYPE SYNTAX HostControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of parameters that set up the discovery of hosts on a particular interface and the collection of statistics about these hosts." INDEX { hostControlIndex } ::= { hostControlTable 1 } HostControlEntry ::= SEQUENCE { hostControlIndex INTEGER (1..65535), hostControlDataSource OBJECT IDENTIFIER, hostControlTableSize INTEGER, hostControlLastDeleteTime TimeTicks, hostControlOwner OwnerString, hostControlStatus INTEGER } hostControlIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the hostControl table. Each such entry defines a function that discovers hosts on a particular interface and places statistics about them in the hostTable and the hostTimeTable on behalf of this hostControlEntry." ::= { hostControlEntry 1 } hostControlDataSource OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-write STATUS mandatory DESCRIPTION "This object identifies the source of the data for this instance of the host function. This source can be any interface on this device. In order to identify a particular interface, this object shall identify the instance of the ifIndex object, defined in [4,6], for the desired interface. For example, if an entry were to receive data from interface #1, this object would be set to ifIndex.1. The statistics in this group reflect all packets
on the local network segment attached to the identified interface. This object may not be modified if the associated hostControlStatus object is equal to valid(1)." ::= { hostControlEntry 2 } hostControlTableSize OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The number of hostEntries in the hostTable and the hostTimeTable associated with this hostControlEntry." ::= { hostControlEntry 3 } hostControlLastDeleteTime OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime when the last entry was deleted from the portion of the hostTable associated with this hostControlEntry. If no deletions have occurred, this value shall be zero." ::= { hostControlEntry 4 } hostControlOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { hostControlEntry 5 } hostControlStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this hostControl entry. If this object is not equal to valid(1), all associated entries in the hostTable, hostTimeTable, and the hostTopNTable shall be deleted by the agent." ::= { hostControlEntry 6 }
hostTable OBJECT-TYPE SYNTAX SEQUENCE OF HostEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of host entries." ::= { hosts 2 } hostEntry OBJECT-TYPE SYNTAX HostEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A collection of statistics for a particular host that has been discovered on an interface of this device." INDEX { hostIndex, hostAddress } ::= { hostTable 1 } HostEntry ::= SEQUENCE { hostAddress OCTET STRING, hostCreationOrder INTEGER (1..65535), hostIndex INTEGER (1..65535), hostInPkts Counter, hostOutPkts Counter, hostInOctets Counter, hostOutOctets Counter, hostOutErrors Counter, hostOutBroadcastPkts Counter, hostOutMulticastPkts Counter } hostAddress OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS mandatory DESCRIPTION "The physical address of this host." ::= { hostEntry 1 } hostCreationOrder OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that defines the relative ordering of the creation time of hosts captured for a particular hostControlEntry. This index shall
be between 1 and N, where N is the value of the associated hostControlTableSize. The ordering of the indexes is based on the order of each entry's insertion into the table, in which entries added earlier have a lower index value than entries added later. It is important to note that the order for a particular entry may change as an (earlier) entry is deleted from the table. Because this order may change, management stations should make use of the hostControlLastDeleteTime variable in the hostControlEntry associated with the relevant portion of the hostTable. By observing this variable, the management station may detect the circumstances where a previous association between a value of hostCreationOrder and a hostEntry may no longer hold." ::= { hostEntry 2 } hostIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The set of collected host statistics of which this entry is a part. The set of hosts identified by a particular value of this index is associated with the hostControlEntry as identified by the same value of hostControlIndex." ::= { hostEntry 3 } hostInPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets without errors transmitted to this address since it was added to the hostTable." ::= { hostEntry 4 } hostOutPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets including errors transmitted by this address since it was added to the hostTable."
::= { hostEntry 5 } hostInOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of octets transmitted to this address since it was added to the hostTable (excluding framing bits but including FCS octets), except for those octets in packets that contained errors." ::= { hostEntry 6 } hostOutOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of octets transmitted by this address since it was added to the hostTable (excluding framing bits but including FCS octets), including those octets in packets that contained errors." ::= { hostEntry 7 } hostOutErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of error packets transmitted by this address since this host was added to the hostTable." ::= { hostEntry 8 } hostOutBroadcastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of good packets transmitted by this address that were directed to the broadcast address since this host was added to the hostTable." ::= { hostEntry 9 } hostOutMulticastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION
"The number of good packets transmitted by this address that were directed to a multicast address since this host was added to the hostTable. Note that this number does not include packets directed to the broadcast address." ::= { hostEntry 10 } -- host Time Table hostTimeTable OBJECT-TYPE SYNTAX SEQUENCE OF HostTimeEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of time-ordered host table entries." ::= { hosts 3 } hostTimeEntry OBJECT-TYPE SYNTAX HostTimeEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A collection of statistics for a particular host that has been discovered on an interface of this device. This collection includes the relative ordering of the creation time of this object." INDEX { hostTimeIndex, hostTimeCreationOrder } ::= { hostTimeTable 1 } HostTimeEntry ::= SEQUENCE { hostTimeAddress OCTET STRING, hostTimeCreationOrder INTEGER (1..65535), hostTimeIndex INTEGER (1..65535), hostTimeInPkts Counter, hostTimeOutPkts Counter, hostTimeInOctets Counter, hostTimeOutOctets Counter, hostTimeOutErrors Counter, hostTimeOutBroadcastPkts Counter, hostTimeOutMulticastPkts Counter } hostTimeAddress OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS mandatory DESCRIPTION
"The physical address of this host." ::= { hostTimeEntry 1 } hostTimeCreationOrder OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the hostTime table among those entries associated with the same hostControlEntry. This index shall be between 1 and N, where N is the value of the associated hostControlTableSize. The ordering of the indexes is based on the order of each entry's insertion into the table, in which entries added earlier have a lower index value than entries added later. Thus the management station has the ability to learn of new entries added to this table without downloading the entire table. It is important to note that the index for a particular entry may change as an (earlier) entry is deleted from the table. Because this order may change, management stations should make use of the hostControlLastDeleteTime variable in the hostControlEntry associated with the relevant portion of the hostTimeTable. By observing this variable, the management station may detect the circumstances where a download of the table may have missed entries, and where a previous association between a value of hostTimeCreationOrder and a hostTimeEntry may no longer hold." ::= { hostTimeEntry 2 } hostTimeIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The set of collected host statistics of which this entry is a part. The set of hosts identified by a particular value of this index is associated with the hostControlEntry as identified by the same value of hostControlIndex." ::= { hostTimeEntry 3 }