Figure 5 is an example of a PBB-EVPN network. CE1 is dual-homed to PE1 and PE2. Assume that PE1 announced a MAC route with RD 192.0.2.1:00 and B-MAC 00-AA-00-BB-00-CC and with MPLS label 16001 for EVI 10. Similarly, PE2 announced a MAC route with RD 203.0.113.2:00 and B-MAC 00-AA-00-BB-00-CC and with MPLS label 16002.
On PE3, when an operator performs a connectivity check for the B-MAC address 00-AA-00-BB-00-CC on PE1, the operator initiates an LSP Ping request with the Target FEC Stack TLV containing the EVPN MAC/IP sub-TLV in the Echo Request packet. The Echo Request packet is sent with the {Transport label(s) to reach PE1, EVPN label = 16001, GAL} MPLS label stack and IP ACH Channel header. Once the Echo Request packet reaches PE1, PE1 will use the GAL and the IP ACH Channel header to determine if the packet is an IPv4 or IPv6 OAM packet. The PE1 will process the packet and perform checks for the EVPN MAC/IP sub-TLV present in the Target FEC Stack TLV as described in
Section 4.4 of
RFC 8029 and respond according to the processing rules in [
RFC 8029].
+-----------------+
| |
| |
+----+ AC1 +-----+ +-----+ +----+
| CE1|------| | | PE3 |-----| CE2|
+----+\ | PE1 | IP/MPLS | | +----+
\ +-----+ Network +-----+
\ | |
AC2\ +-----+ |
\ | | |
\| PE2 | |
+-----+ |
| |
+-----------------+
<-802.1Q-> <------PBB over MPLS------> <-802.1Q->
Similarly, on PE3, when an operator performs a connectivity check for the B-MAC address 00-AA-00-BB-00-CC on PE2, the operator initiates an LSP Ping request with the Target FEC Stack TLV containing the EVPN MAC/IP sub-TLV in the Echo Request packet. The Echo Request packet is sent with the {MPLS Transport label(s) to reach PE2, EVPN label = 16002, GAL} MPLS label stack and IP ACH Channel header.
LSP Ping operations for unicast data plane connectivity checks in EVPN are similar to those described above for PBB-EVPN, except that the checks are for C-MAC addresses instead of B-MAC addresses.
In EVPN networks, an operator can also perform a MAC state test using an aliasing label for the MAC to verify the MAC state on the egress multihoming PE that did not learn the MAC from the multihomed CE on a local ESI but has announced Ethernet A-D per-EVI and per-ESI routes for the ESI. This is due to the fact that MAC state on multihoming PEs that did not learn the MAC locally get created from EVPN MAC/IP route advertisement from the multihoming PE that has learned the CE's MAC address locally.
Assume PE1 announced an Inclusive Multicast route for EVI 10, with RD 192.0.2.1:00, Ethernet Tag (ISID 10), PMSI tunnel attribute Tunnel type set to ingress replication, and downstream-assigned Inclusive Multicast MPLS label 17001. Similarly, PE2 announced an Inclusive Multicast route for EVI 10, with RD 203.0.113.2:00, Ethernet Tag (ISID 10), PMSI tunnel attribute Tunnel type set to ingress replication, and downstream-assigned Inclusive Multicast MPLS label 17002.
Given CE1 is dual-homed to PE1 and PE2, assume that PE1 is the DF for ISID 10 for the port corresponding to the ESI 11aa.22bb.33cc. 44dd.5500.
When an operator at PE3 initiates a connectivity check for the Inclusive Multicast on PE1, the operator initiates an LSP Ping request with the Target FEC Stack TLV containing the EVPN Inclusive Multicast sub-TLV in the Echo Request packet. The Echo Request packet is sent with the {Transport label(s) to reach PE1, EVPN Inclusive Multicast label = 17001, GAL} MPLS label stack and IP ACH Channel header. Once the Echo Request packet reaches PE1, PE1 will use the GAL and the IP ACH Channel header to determine if the packet is an IPv4 or IPv6 OAM packet. The packet will have the EVPN Inclusive Multicast label. PE1 will process the packet and perform checks for the EVPN Inclusive Multicast sub-TLV present in the Target FEC Stack TLV as described in
Section 4.4 of
RFC 8029 and respond according to the processing rules in [
RFC 8029]. For the success case, PE1 will reply with Return Code 3 ("Replying router is an egress for the FEC at stack-depth <RSC>").
Similarly, an operator at PE3 may initiate an LSP Ping to PE2 with the Target FEC Stack TLV containing the EVPN Inclusive Multicast sub-TLV in the Echo Request packet. The Echo Request packet is sent with the {Transport label(s) to reach PE2, EVPN Inclusive Multicast label = 17002, GAL} MPLS label stack and IP ACH Channel header. Once the Echo Request packet reaches PE2, PE2 will use the GAL and the IP ACH Channel header to determine if the packet is an IPv4 or IPv6 OAM packet. The processing on PE2 will be similar to that on PE1 as described above. For the success case, PE2 will reply with Return Code 3 ("Replying router is an egress for the FEC at stack-depth <RSC>") as per [
RFC 8029].
In an Echo Request packet for EVPN, a combination of an EVPN Ethernet A-D sub-TLV and the associated MPLS Split Horizon label, immediately preceding the GAL in the MPLS label stack, may be used to emulate traffic coming from a multihomed site. The Split Horizon label is used by leaf PE(s) attached to the same multihomed site to prevent forwarding of packets back to the multihomed site. If the behavior on a leaf PE is to not forward the packet to the multihomed site on the ESI identified by the EVPN Ethernet A-D sub-TLV because of Split Horizon filtering, the PE will reply with Return Code 37 (see
Section 8) and drop the BUM packets on the ES corresponding to the ESI received in the EVPN Ethernet A-D sub-TLV because of the Split Horizon Group filtering.
Both Inclusive P-tree and Aggregate Inclusive P-tree can be used in EVPN or PBB-EVPN networks.
When using an Inclusive P-tree arrangement, the P2MP P-tree transport label itself is used to identify the L2 service associated with the Inclusive Multicast route. This L2 service could be a Customer Bridge or a Provider Backbone Bridge.
For an Inclusive P-tree arrangement, when an operator performs a connectivity check for the multicast L2 service, the operator initiates an LSP Ping request with the Target FEC Stack TLV containing the EVPN Inclusive Multicast sub-TLV in the Echo Request packet. The Echo Request packet is sent over P2MP LSP with the {P2MP P-tree Transport label, GAL} MPLS label stack and IP ACH Channel header.
When using an Aggregate Inclusive P-tree arrangement, a PE announces an upstream-assigned MPLS label along with the P-tree ID, so both the P2MP P-tree MPLS transport label and the upstream MPLS label can be used to identify the L2 service.
For an Aggregate Inclusive P-tree arrangement, when an operator performs a connectivity check for the multicast L2 service, the operator initiates an LSP Ping request with the Target FEC Stack TLV containing the EVPN Inclusive Multicast sub-TLV in the Echo Request packet. The Echo Request packet is sent over P2MP LSP using the IP-ACH Control channel with the {P2MP P-tree Transport label, EVPN upstream-assigned Multicast label, GAL} MPLS label stack and IP ACH Channel header.
The leaf PE(s) of the P2MP P-tree will process the packet and perform checks for the EVPN Inclusive Multicast sub-TLV present in the Target FEC Stack TLV as described in
Section 4.4 of
RFC 8029 and respond according to the processing rules in [
RFC 8029]. For the success case, the leaf PE will reply with Return Code 3 ("Replying router is an egress for the FEC at stack-depth <RSC>").
In an Echo Request packet for EVPN, a combination of an EVPN Ethernet A-D sub-TLV and the associated MPLS Split Horizon label, immediately preceding the GAL in the MPLS label stack, may be used to emulate traffic coming from a multihomed site. When using P2MP P-tree, the Split Horizon label is upstream assigned and is received by all the leaf PEs of the P2MP P-tree. The Split Horizon label is used by leaf PE(s) attached to the same multihomed site so that packets will not be forwarded back to the multihomed site. If the behavior on a leaf PE is to not forward the packet to the multihomed site on the ESI in the EVPN Ethernet A-D sub-TLV because of Split Horizon filtering, the PE will reply with Return Code 37 (see
Section 8) and drop the BUM packets on the ES corresponding to the ESI received in the EVPN Ethernet A-D sub-TLV because of the Split Horizon Group filtering. If the leaf PE does not have the ESI identified in the EVPN Ethernet A-D sub-TLV, the PE
MAY reply with Return Code 38 (see
Section 8), and the BUM packets are forwarded because there is no ES corresponding to the ESI received in the EVPN Ethernet A-D sub-TLV.
The procedures described in [
RFC 6425] for preventing congestion of Echo Responses (Echo Jitter TLV) and limiting the Echo Reply to a single egress node (P2MP Responder Identifier TLV with either the IPv4 Node Address P2MP Responder sub-TLV or the IPv6 Node Address P2MP Responder sub-TLV) can be applied to LSP Ping in EVPN and PBB-EVPN when using P2MP P-trees for BUM traffic.
Assume PE1 announced an Ethernet A-D per-EVI route with the ESI set to CE1 system ID and MPLS label 19001. Additionally, assume PE2 announced an Ethernet A-D per-EVI route with the ESI set to CE1 system ID and MPLS label 19002.
At PE3, when an operator performs a connectivity check for the aliasing aspect of the EVPN Ethernet A-D route on PE1, the operator initiates an LSP Ping request with the Target FEC Stack TLV containing the EVPN Ethernet A-D sub-TLV in the Echo Request packet. The Echo Request packet is sent with the {Transport label(s) to reach PE1, EVPN Ethernet A-D label 19001, GAL} MPLS label stack and IP ACH Channel header.
When PE1 receives the packet, it will process the packet and perform checks for the EVPN Ethernet A-D sub-TLV present in the Target FEC Stack TLV as described in
Section 4.4 of
RFC 8029 and respond according to the processing rules in [
RFC 8029].
Assume PE1 in
Figure 5 announced an IP Prefix route (RT-5) with an IP prefix reachable behind CE1 and MPLS label 20001. When an operator on PE3 performs a connectivity check for the IP prefix on PE1, the operator initiates an LSP Ping request with the Target FEC Stack TLV containing the EVPN IP Prefix sub-TLV in the Echo Request packet. The Echo Request packet is sent with the {Transport label(s) to reach PE1, EVPN IP Prefix label 20001 } MPLS label stack.
When PE1 receives the packet, it will process the packet and perform checks for the EVPN IP Prefix sub-TLV present in the Target FEC Stack TLV as described in
Section 4.4 of
RFC 8029 and respond according to the processing rules in [
RFC 8029].