Most post-quantum key agreement algorithms are relatively new. Thus, they are not fully trusted. There are also many proposed algorithms that have different trade-offs and that rely on different hard problems. The concern is that some of these hard problems may turn out to be easier to solve than anticipated; thus, the key agreement algorithm may not be as secure as expected. A hybrid solution, when multiple key exchanges are performed and the calculated shared key depends on all of them, allows us to deal with this uncertainty by combining a classical key exchange with a post-quantum one, as well as leaving open the possibility of combining it with multiple post-quantum key exchanges.
In order to be able to use IKE fragmentation [
RFC 7383] for those key exchanges that may have long public keys, this specification utilizes the IKE_INTERMEDIATE exchange defined in [
RFC 9242]. The initial IKE_SA_INIT messages do not have any inherent fragmentation support within IKE. However, IKE_SA_INIT messages can include a relatively short KE payload. The additional key exchanges are performed using IKE_INTERMEDIATE messages that follow the IKE_SA_INIT exchange. This is to allow the standard IKE fragmentation mechanisms (which cannot be used in IKE_SA_INIT) to be available for the potentially large Key Exchange payloads with post-quantum algorithm data.
Note that this document assumes that each key exchange method requires one round trip and consumes exactly one IKE_INTERMEDIATE exchange. This assumption is valid for all classic key exchange methods defined so far and for all post-quantum methods currently known. For hypothetical future key exchange methods that require multiple round trips to complete, a separate document should define how such methods are split into several IKE_INTERMEDIATE exchanges.
In order to minimize communication overhead, only the key shares that are agreed upon are actually exchanged. To negotiate additional key exchanges, seven new Transform Types are defined. These transforms and Transform Type 4 share the same Transform IDs.
It is assumed that new Transform Type 4 identifiers will be assigned later for various post-quantum key exchanges [
IKEV2TYPE4ID]. This specification does not make a distinction between classical (EC)DH and post-quantum key exchanges, nor between post-quantum algorithms that are true key exchanges and post-quantum algorithms that act as key transport mechanisms: all are treated equivalently by the protocol. This document renames a field in the Key Exchange Payload from "Diffie-Hellman Group Num" to "Key Exchange Method". This document also renames Transform Type 4 from "Diffie-Hellman Group (D-H)" to "Key Exchange Method (KE)". The corresponding renaming to the IANA registry is described in
Section 3.
The fact that newly defined transforms share the same registry for possible Transform IDs with Transform Type 4 allows additional key exchanges to be of any type: either post-quantum or classical (EC)DH. This approach allows any combination of the defined key exchange methods to take place. This also allows IKE peers to perform a single post-quantum key exchange in the IKE_SA_INIT without additional key exchanges, provided that the IP fragmentation is not an issue and that hybrid key exchange is not needed.
The SA payload in the IKE_SA_INIT message includes one or more newly defined transforms that represent the extra key exchange policy required by the initiator. The responder follows the usual IKEv2 negotiation rules: it selects a single transform of each type and returns all of them in the IKE_SA_INIT response message.
Then, provided that additional key exchanges are negotiated, the initiator and the responder perform one or more IKE_INTERMEDIATE exchanges. Following that, the IKE_AUTH exchange authenticates peers and completes IKE SA establishment.
Initiator Responder
---------------------------------------------------------------------
<-- IKE_SA_INIT (additional key exchanges negotiation) -->
<-- {IKE_INTERMEDIATE (additional key exchange)} -->
...
<-- {IKE_INTERMEDIATE (additional key exchange)} -->
<-- {IKE_AUTH} -->
In the simplest case, the initiator starts a single key exchange (and has no interest in supporting multiple), and it is not concerned with possible fragmentation of the IKE_SA_INIT messages (because either the key exchange that it selects is small enough not to fragment or the initiator is confident that fragmentation will be handled either by IP fragmentation or by transport via TCP).
In this case, the initiator performs the IKE_SA_INIT for a single key exchange using a Transform Type 4 (possibly with a post-quantum algorithm) and including the initiator KE payload. If the responder accepts the policy, it responds with an IKE_SA_INIT response, and IKE continues as usual.
If the initiator wants to negotiate multiple key exchanges, then the initiator uses the protocol behavior listed below.
Multiple key exchanges are negotiated using the standard IKEv2 mechanism via SA payload. For this purpose, seven new transform types are defined: Additional Key Exchange 1 (ADDKE1) with IANA-assigned value 6, Additional Key Exchange 2 (ADDKE2) (7), Additional Key Exchange 3 (ADDKE3) (8), Additional Key Exchange 4 (ADDKE4) (9), Additional Key Exchange 5 (ADDKE5) (10), Additional Key Exchange 6 (ADDKE6) (11), and Additional Key Exchange 7 (ADDKE7) (12). They are collectively called "Additional Key Exchange (ADDKE) Transform Types" in this document and have slightly different semantics than the existing IKEv2 Transform Types. They are interpreted as an indication of additional key exchange methods that peers agree to perform in a series of IKE_INTERMEDIATE exchanges following the IKE_SA_INIT exchange. The allowed Transform IDs for these transform types are the same as the IDs for Transform Type 4, so they all share a single IANA registry for Transform IDs.
The key exchange method negotiated via Transform Type 4 always takes place in the IKE_SA_INIT exchange, as defined in [
RFC 7296]. Additional key exchanges negotiated via newly defined transforms
MUST take place in a series of IKE_INTERMEDIATE exchanges following the IKE_SA_INIT exchange, performed in an order of the values of their Transform Types. This is so that the key exchange negotiated using Additional Key Exchange i always precedes that of Additional Key Exchange i + 1. Each additional key exchange method
MUST be fully completed before the next one is started.
With these semantics, note that ADDKE Transform Types are not associated with any particular type of key exchange and do not have any Transform IDs that are specific per Transform Type IANA registry. Instead, they all share a single registry for Transform IDs, namely "Transform Type 4 - Key Exchange Method Transform IDs". All key exchange algorithms (both classical or post-quantum) should be added to this registry. This approach gives peers flexibility in defining the ways they want to combine different key exchange methods.
When forming a proposal, the initiator adds transforms for the IKE_SA_INIT exchange using Transform Type 4. In most cases, they will contain classical (EC)DH key exchange methods, but that is not a requirement. Additional key exchange methods are proposed using ADDKE Transform Types. All of these transform types are optional; the initiator is free to select any of them for proposing additional key exchange methods. Consequently, if none of the ADDKE Transform Types are included in the proposal, then this proposal indicates the performing of standard IKEv2, as defined in [
RFC 7296]. On the other hand, if the initiator includes any ADDKE Transform Type in the proposal, the responder
MUST select one of the algorithms proposed using this type. Note that this is not a new requirement; this behavior is already specified in
Section 2.7 of
RFC 7296. A Transform ID NONE
MAY be added to those transform types that contain key exchange methods which the initiator believes are optional according to its local policy.
The responder performs the negotiation using the standard IKEv2 procedure described in
Section 3.3 of
RFC 7296. However, for the ADDKE Transform Types, the responder's choice
MUST NOT contain duplicated algorithms (those with an identical Transform ID and attributes), except for the Transform ID of NONE. An algorithm is represented as a transform. In some cases, the transform could include a set of associated attributes that define details of the algorithm. In this case, two transforms can be the same, but the attributes must be different. Additionally, the order of the attributes does not affect the equality of the algorithm, so the following two transforms define the same algorithm: "ID=alg1, ATTR1=attr1, ATTR2=attr2" and "ID=alg1, ATTR2=attr2, ATTR1=attr1". If the responder is unable to select algorithms that are not duplicated for each proposed key exchange (either because the proposal contains too few choices or due to the local policy restrictions on using the proposed algorithms), then the responder
MUST reject the message with an error notification of type NO_PROPOSAL_CHOSEN. If the responder's message contains one or more duplicated choices, the initiator should log the error and
MUST treat the exchange as failed. The initiator
MUST NOT initiate any IKE_INTERMEDIATE (or IKE_FOLLOWUP_KE) exchanges so that no new SA is created. If this happens in the CREATE_CHILD_SA exchange, then the initiator
MAY delete the IKE SA over which the invalid message was received by sending a Delete payload.
If the responder selects NONE for some ADDKE Transform Types (provided they are proposed by the initiator), then any corresponding additional key exchanges
MUST NOT take place. Therefore, if the initiator includes NONE in all of the ADDKE Transform Types and the responder selects this value for all of them, then no IKE_INTERMEDIATE exchanges performing additional key exchanges will take place between the peers. Note that the IKE_INTERMEDIATE exchanges may still take place for other purposes.
The initiator
MAY propose ADDKE Transform Types that are not consecutive, for example, proposing ADDKE2 and ADDKE5 Transform Types only. The responder
MUST treat all of the omitted ADDKE transforms as if they were proposed with Transform ID NONE.
Below is an example of the SA payload in the initiator's IKE_SA_INIT request message. Here, the abbreviation "KE" is used for the Key Exchange transform, which this document renames from the Diffie-Hellman Group transform. Additionally, the notations PQ_KEM_1, PQ_KEM_2, and PQ_KEM_3 are used to represent Transform IDs that have yet to be defined of some popular post-quantum key exchange methods.
SA Payload
|
+--- Proposal #1 ( Proto ID = IKE(1), SPI Size = 8,
| 9 transforms, SPI = 0x35a1d6f22564f89d )
|
+-- Transform ENCR ( ID = ENCR_AES_GCM_16 )
| +-- Attribute ( Key Length = 256 )
|
+-- Transform KE ( ID = 4096-bit MODP Group )
|
+-- Transform PRF ( ID = PRF_HMAC_SHA2_256 )
|
+-- Transform ADDKE2 ( ID = PQ_KEM_1 )
|
+-- Transform ADDKE2 ( ID = PQ_KEM_2 )
|
+-- Transform ADDKE3 ( ID = PQ_KEM_1 )
|
+-- Transform ADDKE3 ( ID = PQ_KEM_2 )
|
+-- Transform ADDKE5 ( ID = PQ_KEM_3 )
|
+-- Transform ADDKE5 ( ID = NONE )
In this example, the initiator proposes performing the initial key exchange using a 4096-bit MODP Group followed by two mandatory additional key exchanges (i.e., ADDKE2 and ADDKE3 Transform Types) using PQ_KEM_1 and PQ_KEM_2 methods in any order followed by an additional key exchange (i.e., ADDKE5 Transform Type) using the PQ_KEM_3 method that may be omitted.
The responder might return the following SA payload, indicating that it agrees to perform two additional key exchanges, PQ_KEM_2 followed by PQ_KEM_1, and that it does not want to additionally perform PQ_KEM_3.
SA Payload
|
+--- Proposal #1 ( Proto ID = IKE(1), SPI Size = 8,
| 6 transforms, SPI = 0x8df52b331a196e7b )
|
+-- Transform ENCR ( ID = ENCR_AES_GCM_16 )
| +-- Attribute ( Key Length = 256 )
|
+-- Transform KE ( ID = 4096-bit MODP Group )
|
+-- Transform PRF ( ID = PRF_HMAC_SHA2_256 )
|
+-- Transform ADDKE2 ( ID = PQ_KEM_2 )
|
+-- Transform ADDKE3 ( ID = PQ_KEM_1 )
|
+-- Transform ADDKE5 ( ID = NONE )
If the initiator includes any ADDKE Transform Types into the SA payload in the IKE_SA_INIT exchange request message, then it
MUST also negotiate the use of the IKE_INTERMEDIATE exchange, as described in [
RFC 9242] by including an INTERMEDIATE_EXCHANGE_SUPPORTED notification in the same message. If the responder agrees to use additional key exchanges while establishing an initial IKE SA, it
MUST also return this notification in the IKE_SA_INIT response message, confirming that IKE_INTERMEDIATE exchange is supported and will be used for transferring additional key exchange data. If the IKE_INTERMEDIATE exchange is not negotiated, then the peers
MUST treat any ADDKE Transform Types in the IKE_SA_INIT exchange messages as unknown transform types and skip the proposals they appear in. If no other proposals are present in the SA payload, the peers will proceed as if no proposal has been chosen (i.e., the responder will send a NO_PROPOSAL_CHOSEN notification).
Initiator Responder
---------------------------------------------------------------------
HDR, SAi1(.. ADDKE*...), KEi, Ni,
N(INTERMEDIATE_EXCHANGE_SUPPORTED) --->
HDR, SAr1(.. ADDKE*...), KEr, Nr,
[CERTREQ],
<--- N(INTERMEDIATE_EXCHANGE_SUPPORTED)
It is possible for an attacker to manage to send a response to the initiator's IKE_SA_INIT request before the legitimate responder does. If the initiator continues to create the IKE SA using this response, the attempt will fail. Implementers may wish to consider strategies as described in
Section 2.4 of
RFC 7296 to handle such an attack.
For each additional key exchange agreed to in the IKE_SA_INIT exchange, the initiator and the responder perform an IKE_INTERMEDIATE exchange, as described in [
RFC 9242].
Initiator Responder
---------------------------------------------------------------------
HDR, SK {KEi(n)} -->
<-- HDR, SK {KEr(n)}
The initiator sends key exchange data in the KEi(n) payload. This message is protected with the current SK_ei/SK_ai keys. The notation "KEi(n)" denotes the n-th IKE_INTERMEDIATE KE payload from the initiator; the integer "n" is sequential starting from 1.
On receiving this, the responder sends back key exchange payload KEr(n); "KEr(n)" denotes the n-th IKE_INTERMEDIATE KE payload from the responder. Similar to how the request is protected, this message is protected with the current SK_er/SK_ar keys.
The former "Diffie-Hellman Group Num" (now called "Key Exchange Method") field in the KEi(n) and KEr(n) payloads
MUST match the n-th negotiated additional key exchange.
Once this exchange is done, both sides compute an updated keying material:
SKEYSEED(n) = prf(SK_d(n-1), SK(n) | Ni | Nr)
From this exchange, SK(n) is the resulting shared secret. Ni and Nr are nonces from the IKE_SA_INIT exchange. SK_d(n-1) is the last generated SK_d (derived from IKE_SA_INIT for the first use of IKE_INTERMEDIATE and, otherwise, from the previous IKE_INTERMEDIATE exchange). The other keying materials, SK_d, SK_ai, SK_ar, SK_ei, SK_er, SK_pi, and SK_pr, are generated from the SKEYSEED(n) as follows:
{SK_d(n) | SK_ai(n) | SK_ar(n) | SK_ei(n) | SK_er(n) | SK_pi(n) |
SK_pr(n)} = prf+ (SKEYSEED(n), Ni | Nr | SPIi | SPIr)
Both the initiator and the responder use these updated key values in the next exchange (IKE_INTERMEDIATE or IKE_AUTH).
After all IKE_INTERMEDIATE exchanges have completed, the initiator and the responder perform an IKE_AUTH exchange. This exchange is the standard IKE exchange, as described in [
RFC 7296], with the modification of AUTH payload calculation described in [
RFC 9242].
The CREATE_CHILD_SA exchange is used in IKEv2 for the purposes of creating additional Child SAs, rekeying these Child SAs, and rekeying IKE SA itself. When creating or rekeying Child SAs, the peers may optionally perform a key exchange to add a fresh entropy into the session keys. In the case of an IKE SA rekey, the key exchange is mandatory. Peers supporting this specification may want to use multiple key exchanges in these situations.
Using multiple key exchanges with a CREATE_CHILD_SA exchange is negotiated in a similar fashion to the initial IKE exchange, see
Section 2.2.1. If the initiator includes any ADDKE Transform Types in the SA payload (along with Transform Type 4), and if the responder agrees to perform additional key exchanges, then the additional key exchanges are performed in a series of new IKE_FOLLOWUP_KE exchanges that follow the CREATE_CHILD_SA exchange. The IKE_FOLLOWUP_KE exchange is introduced especially for transferring data of additional key exchanges following the one performed in the CREATE_CHILD_SA. Its Exchange Type value is 44.
The key exchange negotiated via Transform Type 4 always takes place in the CREATE_CHILD_SA exchange, as per the IKEv2 specification [
RFC 7296]. Additional key exchanges are performed in an order of the values of their Transform Types so that the key exchange negotiated using Additional Key Exchange i always precedes the key exchange negotiated using Additional Key Exchange i + 1. Each additional key exchange method
MUST be fully completed before the next one is started. Note that this document assumes that each key exchange method consumes exactly one IKE_FOLLOWUP_KE exchange. For the methods that require multiple round trips, a separate document should define how such methods are split into several IKE_FOLLOWUP_KE exchanges.
After an IKE SA is created, the window size may be greater than one; thus, multiple concurrent exchanges may be in progress. Therefore, it is essential to link the IKE_FOLLOWUP_KE exchanges together with the corresponding CREATE_CHILD_SA exchange. Once an IKE SA is created, all IKE exchanges are independent and IKEv2 doesn't have a built-in mechanism to link an exchange with another one. A new status type notification called "ADDITIONAL_KEY_EXCHANGE" is introduced for this purpose. Its Notify Message Type value is 16441, and the Protocol ID and SPI Size are both set to 0. The data associated with this notification is a blob meaningful only to the responder so that the responder can correctly link successive exchanges. For the initiator, the content of this notification is an opaque blob.
The responder
MUST include this notification in a CREATE_CHILD_SA or IKE_FOLLOWUP_KE response message in case the next IKE_FOLLOWUP_KE exchange is expected, filling it with some data that would allow linking the current exchange to the next one. The initiator
MUST send back this notification intact in the request message of the next IKE_FOLLOWUP_KE exchange.
Below is an example of CREATE_CHILD_SA exchange followed by three additional key exchanges.
Initiator Responder
---------------------------------------------------------------------
HDR(CREATE_CHILD_SA), SK {SA, Ni, KEi} -->
<-- HDR(CREATE_CHILD_SA), SK {SA, Nr, KEr,
N(ADDITIONAL_KEY_EXCHANGE)(link1)}
HDR(IKE_FOLLOWUP_KE), SK {KEi(1),
N(ADDITIONAL_KEY_EXCHANGE)(link1)} -->
<-- HDR(IKE_FOLLOWUP_KE), SK {KEr(1),
N(ADDITIONAL_KEY_EXCHANGE)(link2)}
HDR(IKE_FOLLOWUP_KE), SK {KEi(2),
N(ADDITIONAL_KEY_EXCHANGE)(link2)} -->
<-- HDR(IKE_FOLLOWUP_KE), SK {KEr(2),
N(ADDITIONAL_KEY_EXCHANGE)(link3)}
HDR(IKE_FOLLOWUP_KE), SK {KEi(3),
N(ADDITIONAL_KEY_EXCHANGE)(link3)} -->
<-- HDR(IKE_FOLLOWUP_KE), SK {KEr(3)}
The former "Diffie-Hellman Group Num" (now called "Key Exchange Method") field in the KEi(n) and KEr(n) payloads
MUST match the n-th negotiated additional key exchange.
Due to some unexpected events (e.g., a reboot), it is possible that the initiator may lose its state, forget that it is in the process of performing additional key exchanges, and never start the remaining IKE_FOLLOWUP_KE exchanges. The responder
MUST handle this situation gracefully and delete the associated state if it does not receive the next expected IKE_FOLLOWUP_KE request after some reasonable period of time. Due to various factors such as computational resource and key exchange algorithm used, note that it is not possible to give normative guidance on how long this timeout period should be. In general, 5-20 seconds of waiting time should be appropriate in most cases.
It may also take too long for the initiator to prepare and to send the next IKE_FOLLOWUP_KE request, or, due to the network conditions, the request could be lost and retransmitted. In this case, the message may reach the responder when it has already deleted the associated state, following the advice above. If the responder receives an IKE_FOLLOWUP_KE message for which it does not have a key exchange state, it
MUST send back a new error type notification called "STATE_NOT_FOUND". This is an error notification that is not fatal to the IKE SA. Its Notify Message Type value is 47, its Protocol ID and SPI Size are both set to 0, and the data is empty. If the initiator receives this notification in response to an IKE_FOLLOWUP_KE exchange performing an additional key exchange, it
MUST cancel this exchange and
MUST treat the whole series of exchanges started from the CREATE_CHILD_SA exchange as having failed. In most cases, the receipt of this notification is caused by the premature deletion of the corresponding state on the responder (the time period between IKE_FOLLOWUP_KE exchanges appeared to be too long from the responder's point of view, e.g., due to a temporary network failure). After receiving this notification, the initiator
MAY start a new CREATE_CHILD_SA exchange, which may eventually be followed by the IKE_FOLLOWUP_KE exchanges, to retry the failed attempt. If the initiator continues to receive STATE_NOT_FOUND notifications after several retries, it
MUST treat this situation as a fatal error and delete the IKE SA by sending a DELETE payload.
It is possible that the peers start rekeying the IKE SA or the Child SA at the same time, which is called "simultaneous rekeying". Sections
2.8.1 and
2.8.2 of [
RFC 7296] describe how IKEv2 handles this situation. In a nutshell, IKEv2 follows the rule that, in the case of simultaneous rekeying, if two identical new IKE SAs (or two pairs of Child SAs) are created, then one of them should be deleted. Which one to delete is determined by comparing the values of four nonces that are used in the colliding CREATE_CHILD_SA exchanges. The IKE SA (or pair of Child SAs) created by the exchange in which the smallest nonce is used should be deleted by the initiator of this exchange.
With multiple key exchanges, the SAs are not yet created when the CREATE_CHILD_SA is completed. Instead, they would be created only after the series of IKE_FOLLOWUP_KE exchanges is finished. For this reason, if additional key exchanges are negotiated in the CREATE_CHILD_SA exchange in which the smallest nonce is used, then, because there is nothing to delete yet, the initiator of this exchange just stops the rekeying process, and it
MUST NOT initiate the IKE_FOLLOWUP_KE exchange.
In most cases, rekey collisions are resolved in the CREATE_CHILD_SA exchange. However, a situation may occur when, due to packet loss, one of the peers receives the CREATE_CHILD_SA message requesting the rekey of an SA that is already being rekeyed by this peer (i.e., the CREATE_CHILD_SA exchange initiated by this peer has already been completed, and the series of IKE_FOLLOWUP_KE exchanges is in progress). In this case, a TEMPORARY_FAILURE notification
MUST be sent in response to such a request.
If multiple key exchanges are negotiated in the CREATE_CHILD_SA exchange, then the resulting keys are computed as follows.
In the case of an IKE SA rekey:
SKEYSEED = prf(SK_d, SK(0) | Ni | Nr | SK(1) | ... SK(n))
In the case of a Child SA creation or rekey:
KEYMAT = prf+ (SK_d, SK(0) | Ni | Nr | SK(1) | ... SK(n))
In both cases, SK_d is from the existing IKE SA; SK(0), Ni, and Nr are the shared key and nonces from the CREATE_CHILD_SA, respectively; SK(1)...SK(n) are the shared keys from additional key exchanges.
It is believed that this specification requires no modification to the IKEv2 extensions defined so far. In particular, the IKE SA resumption mechanism defined in [
RFC 5723] can be used to resume IKE SAs created using this specification.
It is possible to establish IKE SAs with post-quantum algorithms by only using IKE_FOLLOWUP_KE exchanges and without the use of IKE_INTERMEDIATE exchanges. In this case, the IKE SA that is created from the IKE_SA_INIT exchange, can be immediately rekeyed with CREATE_CHILD_SA with additional key exchanges, where IKE_FOLLOWUP_KE messages are used for these additional key exchanges. If the classical key exchange method is used in the IKE_SA_INIT message, the very first Child SA created in IKE_AUTH will offer no resistance against the quantum threats. Consequently, if the peers' local policy requires all Child SAs to be post-quantum secure, then the peers can avoid creating the very first Child SA by adopting [
RFC 6023]. In this case, the initiator sends two types of proposals in the IKE_SA_INIT request: one with and another one without ADDKE Transform Types. The responder chooses the latter proposal type and includes a CHILDLESS_IKEV2_SUPPORTED notification in the IKE_SA_INIT response. Assuming that the initiator supports childless IKE SA extension, both peers perform the modified IKE_AUTH exchange described in [
RFC 6023], and no Child SA is created in this exchange. The peers should then immediately rekey the IKE SA and subsequently create the Child SAs, all with additional key exchanges using a CREATE_CHILD_SA exchange.
It is also possible for the initiator to send proposals without any ADDKE Transform Types in the IKE_SA_INIT message. In this instance, the responder will have no information about whether or not the initiator supports the extension in this specification. This may not be efficient, as the responder will have to wait for the subsequent CREATE_CHILD_SA request to determine whether or not the initiator's request is appropriate for its local policy.
The support for childless IKE SA is not negotiated, but it is the responder that indicates the support for this mode. As such, the responder cannot enforce that the initiator use this mode. Therefore, it is entirely possible that the initiator does not support this extension and sends IKE_AUTH request as per [
RFC 7296] instead of [
RFC 6023]. In this case, the responder may respond with an error that is not fatal, such as the NO_PROPOSAL_CHOSEN notify message type.
Note that if the initial IKE SA is used to transfer sensitive information, then this information will not be protected using the additional key exchanges, which may use post-quantum algorithms. In this arrangement, the peers will have to use post-quantum algorithm in Transform Type 4 in order to mitigate the risk of quantum attack.