This document defines and describes two types of IRB solutions -- namely, symmetric and asymmetric IRB. The description of symmetric and asymmetric IRB procedures relating to data path operations and tables in this document is a logical view of data path lookups and related tables. Actual implementations, while following this logical view, may not strictly adhere to it for performance trade-offs. Specifically,
-
References to an ARP table in the context of asymmetric IRB is a logical view of a forwarding table that maintains an IP-to-MAC binding entry on a Layer 3 interface for both IPv4 and IPv6. These entries are not subject to ARP or ND protocols. For IP-to-MAC bindings learned via EVPN, an implementation may choose to import these bindings directly to the respective forwarding table (such as an adjacency/next-hop table) as opposed to importing them to ARP or ND protocol tables.
-
References to a host IP lookup followed by a host MAC lookup in the context of asymmetric IRB MAY be collapsed into a single IP lookup in a hardware implementation.
In symmetric IRB, as its name implies, the lookup operation is symmetric at both the ingress and egress PEs -- i.e., both ingress and egress PEs perform lookups on both MAC and IP addresses. The ingress PE performs a MAC lookup followed by an IP lookup, and the egress PE performs an IP lookup followed by a MAC lookup, as depicted in the following figure.
Ingress PE Egress PE
+-------------------+ +------------------+
| | | |
| +-> IP-VRF ----|---->---|-----> IP-VRF -+ |
| | | | | |
| BT1 BT2 | | BT3 BT2 |
| | | | | |
| ^ | | v |
| | | | | |
+-------------------+ +------------------+
^ |
| |
TS1->-+ +->-TS2
In symmetric IRB, as shown in
Figure 2, the inter-subnet forwarding between two PEs is done between their associated IP-VRFs. Therefore, the tunnel connecting these IP-VRFs can be either an IP-only tunnel (e.g., in the case of MPLS or GPE encapsulation) or an Ethernet NVO tunnel (e.g., in the case of VXLAN encapsulation). If it is an Ethernet NVO tunnel, the TS1's IP packet is encapsulated in an Ethernet header consisting of ingress and egress PE MAC addresses -- i.e., there is no need for the ingress PE to use the destination TS2's MAC address. Therefore, in symmetric IRB, there is no need for the ingress PE to maintain ARP entries for the association of the destination TS2's IP and MAC addresses in its ARP table. Each PE participating in symmetric IRB only maintains ARP entries for locally connected hosts and MAC-VRFs/BTs for only locally configured subnets.
In asymmetric IRB, the lookup operation is asymmetric and the ingress PE performs three lookups, whereas the egress PE performs a single lookup -- i.e., the ingress PE performs a MAC lookup, followed by an IP lookup, followed by a MAC lookup again. The egress PE performs just a single MAC lookup as depicted in
Figure 3 below.
Ingress PE Egress PE
+-------------------+ +------------------+
| | | |
| +-> IP-VRF -> | | IP-VRF |
| | | | | |
| BT1 BT2 | | BT3 BT2 |
| | | | | | | |
| | +--|--->----|--------------+ | |
| | | | v |
+-------------------+ +----------------|-+
^ |
| |
TS1->-+ +->-TS2
In asymmetric IRB, as shown in
Figure 3, the inter-subnet forwarding between two PEs is done between their associated MAC-VRFs/BTs. Therefore, the MPLS or NVO tunnel used for inter-subnet forwarding
MUST be of type Ethernet. Since only MAC lookup is performed at the egress PE (e.g., no IP lookup), the TS1's IP packets need to be encapsulated with the destination TS2's MAC address. In order for the ingress PE to perform such encapsulation, it needs to maintain TS2's IP and MAC address association in its ARP table. Furthermore, it needs to maintain destination TS2's MAC address in the corresponding bridge table even though it may not have any TSs of the corresponding subnet locally attached. In other words, each PE participating in asymmetric IRB
MUST maintain ARP entries for remote hosts (hosts connected to other PEs) as well as maintain MAC-VRFs/BTs and IRB interfaces for ALL subnets in an IP-VRF, including subnets that may not be locally attached. Therefore, careful consideration of the PE scale aspects for its ARP table size, its IRB interfaces, and the number and size of its bridge tables should be given for the application of asymmetric IRB.
It should be noted that whenever a PE performs a host IP lookup for a packet that is routed, the IPv4 Time To Live (TTL) or IPv6 hop limit for that packet is decremented by one, and if it reaches zero, the packet is discarded. In the case of symmetric IRB, the TTL / hop limit is decremented by both ingress and egress PEs (once by each), whereas in the case of asymmetric IRB, the TTL / hop limit is decremented only once by the ingress PE.
The following sections define the control and data plane procedures for symmetric and asymmetric IRB on ingress and egress PEs. The following figure is used to describe these procedures, showing a single IP-VRF and a number of BDs on each PE for a given tenant. That is, an IP-VRF connects one or more EVIs, and each EVI contains one MAC-VRF; each MAC VRF consists of one or more bridge tables, one per BD; and a PE has an associated IRB interface for each BD.
PE 1 +---------+
+-------------+ | |
TS1-----| MACx| | | PE2
(M1/IP1) |(BT1) | | | +-------------+
TS5-----| \ | | MPLS/ | |MACy (BT3) |-----TS3
(M5/IP5) |IPx/Mx \ | | VXLAN/ | | / | (M3/IP3)
| (IP-VRF1)|----| NVGRE |---|(IP-VRF1) |
| / | | | | \ |
TS2-----|(BT2) / | | | | (BT1) |-----TS4
(M2/IP2) | | | | | | (M4/IP4)
+-------------+ | | +-------------+
| |
+---------+
To support inter-subnet forwarding on a PE, the PE acts as an IP default gateway from the perspective of the attached Tenant Systems where default gateway MAC and IP addresses are configured on each IRB interface associated with its subnet and fall into one of the following two options:
-
All the PEs for a given tenant subnet use the same anycast default gateway IP and MAC addresses. On each PE, these default gateway IP and MAC addresses correspond to the IRB interface connecting the bridge table associated with the tenant's VLAN to the corresponding tenant's IP-VRF.
-
Each PE for a given tenant subnet uses the same anycast default gateway IP address but its own MAC address. These MAC addresses are aliased to the same anycast default gateway IP address through the use of the Default Gateway extended community as specified in [RFC 7432], which is carried in the EVPN MAC/IP Advertisement routes. On each PE, this default gateway IP address, along with its associated MAC addresses, correspond to the IRB interface connecting the bridge table associated with the tenant's VLAN to the corresponding tenant's IP-VRF.
It is worth noting that if the applications that are running on the TSs are employing or relying on any form of MAC security, then the first option (i.e., using an anycast MAC address) should be used to ensure that the applications receive traffic from the same IRB interface MAC address to which they are sending. If the second option is used, then the IRB interface MAC address
MUST be the one used in the initial ARP reply or ND Neighbor Advertisement (NA) for that TS.
Although both of these options are applicable to both symmetric and asymmetric IRB,
option 1 is recommended because of the ease of anycast MAC address provisioning on not only the IRB interface associated with a given subnet across all the PEs corresponding to that VLAN but also on all IRB interfaces associated with all the tenant's subnets across all the PEs corresponding to all the VLANs for that tenant. Furthermore, it simplifies the operation as there is no need for Default Gateway extended community advertisement and its associated MAC aliasing procedure. Yet another advantage is that following host mobility, the host does not need to refresh the default GW ARP/ND entry.
If
option 1 is used, an implementation
MAY choose to auto-derive the anycast MAC address. If auto-derivation is used, the anycast MAC
MUST be auto-derived out of the following ranges (which are defined in [
RFC 5798]):
-
Anycast IPv4 IRB case: 00-00-5E-00-01-{VRID}
-
Anycast IPv6 IRB case: 00-00-5E-00-02-{VRID}
Where the last octet is generated based on a configurable Virtual Router ID (VRID) (range 1-255). If not explicitly configured, the default value for the VRID octet is '1'. Auto-derivation of the anycast MAC can only be used if there is certainty that the auto-derived MAC does not collide with any customer MAC address.
In addition to IP anycast addresses, IRB interfaces can be configured with non-anycast IP addresses for the purpose of OAM (such as sending a traceroute/ping to these interfaces) for both symmetric and asymmetric IRB. These IP addresses need to be distributed as VPN routes when PEs operate in symmetric IRB mode. However, they don't need to be distributed if the PEs are operating in asymmetric IRB mode as the non-anycast IP addresses are configured along with their individual MACs, and they get distributed via the EVPN route type 2 advertisement.
For
option 1 -- irrespective of whether only the anycast MAC address or both anycast and non-anycast MAC addresses (where the latter one is used for the purpose of OAM) are used on the same IRB -- when a TS sends an ARP request or ND Neighbor Solicitation (NS) to the PE to which it is attached, the request is sent for the anycast IP address of the IRB interface associated with the TS's subnet. The reply will use an anycast MAC address (in both the source MAC in the Ethernet header and sender hardware address in the payload). For example, in
Figure 4, TS1 is configured with the anycast IPx address as its default gateway IP address; thus, when it sends an ARP request for IPx (anycast IP address of the IRB interface for BT1), the PE1 sends an ARP reply with the MACx, which is the anycast MAC address of that IRB interface. Traffic routed from IP-VRF1 to TS1 uses the anycast MAC address as the source MAC address.
Symmetric and asymmetric IRB modes may coexist in the same network, and an ingress PE that supports both forwarding modes for a given tenant can interwork with egress PEs that support either IRB mode. The egress PE will indicate the desired forwarding mode for a given host based on the presence of the Label2 field and the IP-VRF Route Target in the EVPN MAC/IP Advertisement route. If the Label2 field of the received MAC/IP Advertisement route for host H1 is non-zero, and one of its Route Targets identifies the IP-VRF, the ingress PE will use symmetric IRB mode when forwarding packets destined to H1. If the Label2 field is zero and the MAC/IP Advertisement route for H1 does not carry any Route Target that identifies the IP-VRF, the ingress PE will use asymmetric mode when forwarding traffic to H1.
As an example that illustrates the previous statement, suppose PE1 and PE2 need to forward packets from TS2 to TS4 in
Figure 4. Since both PEs are attached to the bridge table of the destination host, symmetric and asymmetric IRB modes are both possible as long as the ingress PE, PE1, supports both modes. The forwarding mode will depend on the mode configured in the egress PE, PE2. That is:
-
If PE2 is configured for symmetric IRB mode, PE2 will advertise TS4 MAC/IP addresses in a MAC/IP Advertisement route with a non-zero Label2 field, e.g., Label2 = Lx, and a Route Target that identifies IP-VRF1 in PE1. IP4 will be installed in PE1's IP-VRF1; TS4's ARP and MAC information will also be installed in PE1's IRB interface ARP table and BT1, respectively. When a packet from TS2 destined to TS4 is looked up in PE1's IP-VRF route table, a longest prefix match lookup will find IP4 in the IP-VRF, and PE1 will forward using the symmetric IRB mode and Label Lx.
-
However, if PE2 is configured for asymmetric IRB mode, PE2 will advertise TS4 MAC/IP information in a MAC/IP Advertisement route with a zero Label2 field and no Route Target identifying IP-VRF1. In this case, PE2 will install TS4 information in its ARP table and BT1. When a packet from TS2 to TS4 arrives at PE1, a longest prefix match on IP-VRF1's route table will yield the local IRB interface to BT1, where a subsequent ARP and bridge table lookup will provide the information for an asymmetric forwarding mode to PE2.
Refer to [
EVPN] for more information about interoperability between symmetric and asymmetric forwarding modes.
The choice between symmetric or asymmetric mode is based on the operator's preference, and it is a trade-off between scale (which is better in the symmetric IRB mode) and control plane simplicity (asymmetric IRB mode simplifies the control plane). In cases where a tenant has hosts for every subnet attached to all (or most of) the PEs, the ARP and MAC entries need to be learned by all PEs anyway; therefore, the asymmetric IRB mode simplifies the forwarding model and saves space in the IP-VRF route table, since host routes are not installed in the route table. However, if the tenant does not need to stretch subnets (broadcast domains) to multiple PEs and inter-subnet forwarding is needed, the symmetric IRB model will save ARP and bridge table space in all the PEs (in comparison with the asymmetric IRB model).