This document defines a set of information model objects and parameters that may be exposed and visible from other devices. Some of these information model objects and parameters may be configured. Securing access to and ensuring the integrity of this data is in scope of and the responsibility of any data model derived from this information model. Specifically, any YANG [
RFC 7950] data model is expected to define security exposure of the various parameters, and a [
TR-181] data model will be secured by the mechanisms defined for the management protocol used to transport it.
Misconfiguration (whether unintentional or malicious) can prevent reachability or cause poor network performance (increased latency, jitter, etc.). Misconfiguration of security credentials can cause a denial-of-service condition for the Babel routing protocol. The information in this model discloses network topology, which can be used to mount subsequent attacks on traffic traversing the network.
This information model defines objects that can allow credentials (for this device, for trusted devices, and for trusted certificate authorities) to be added and deleted. Public keys may be exposed through this model. This model requires that private keys and MAC keys never be exposed. Certificates used by [
RFC 8968] implementations use separate parameters to model the public parts (including the public key) and the private key.
MAC keys are allowed to be as short as zero length. This is useful for testing. It is
RECOMMENDED that network operators follow current best practices for key length and generation of keys related to the MAC algorithm associated with the key. Short (and zero-length) keys are highly susceptible to brute-force attacks and therefore
SHOULD NOT be used. See the security considerations as described in
Section 7 of
RFC 8967 for additional considerations related to MAC keys; note that there are some specific key value recommendations in the fifth paragraph. It says that if it is necessary to derive keys from a human-readable passphrase, "only the derived keys should be communicated to the routers" and "the original passphrase itself should be kept on the host used to perform the key generation" (which would be the management system in the case of a remote management protocol). It also recommends that keys "should have a length of 32 octets (both for HMAC-SHA256 and BLAKE2s), and be chosen randomly".
This information model uses key sets and certification sets to provide a means of grouping keys and certificates. This makes it easy to use a different set per interface, use the same set for one or more interfaces, have a default set in case a new interface is instantiated, and change keys and certificates as needed.