This document uses the terminology defined in [
RFC 8415]. However, when defining the functional elements for prefix delegation,
RFC 8415,
Section 4.2 defines the term "delegating router" as:
The router that acts as a DHCP server and responds to requests for delegated prefixes.
This document is concerned with deployment scenarios in which the DHCPv6 relay and DHCPv6 server functions are separated, so the term "delegating router" is not used. Instead, a new term is introduced to describe the relaying function:
-
Delegating relay:
-
A delegating relay acts as an intermediate device, forwarding DHCPv6 messages containing IA_PD and IAPREFIX options between the client and server. The delegating relay does not implement a DHCPv6 server function. The delegating relay is also responsible for routing traffic for the delegated prefixes.
Where the term "relay" is used on its own within this document, it should be understood to be a delegating relay unless specifically stated otherwise.
In CableLabs DOCSIS environments, the Cable Modem Termination System (CMTS) would be considered a delegating relay with respect to Customer Premises Devices (CPEs) ([
DOCSIS_3.1], Section 5.2.7.2). A Broadband Network Gateway (BNG) in a DSL-based access network may be a delegating relay if it does not implement a local DHCPv6 server function ([
TR-092], Section 4.10).
[
RFC 8415] defines the "DHCP server" (or "server") as:
A node that responds to requests from clients. It may or may not be on the same link as the client(s). Depending on its capabilities, if it supports prefix delegation it may also feature the functionality of a delegating router.
This document serves the deployment cases where a DHCPv6 server is not located on the same link as the client (necessitating the delegating relay). The server supports prefix delegation and is capable of leasing prefixes to clients, but it is not responsible for other functions required of a delegating router, such as managing routes for the delegated prefixes.
The term "requesting router" has previously been used to describe the DHCP client requesting prefixes for use. This document adopts the terminology of [
RFC 8415] and uses "DHCP client" or "client" interchangeably for this element.
The following diagram shows the deployment topology relevant to this document.
+
| ------- uplink ------>
| _ ,--,_
| +--------+ +------------+ _( `' )_ +--------+
+---+ PD |-------| Delegating |--( Operator )---| DHCPv6 |
| | Client | | relay | `(_ Network_)' | server |
| +--------+ +----------- + `--'`---' +--------+
|
| <----- downlink ------
+ (client facing)
Client
Network
The client requests prefixes via the downlink interface of the delegating relay. The resulting prefixes will be used for addressing the client network. The delegating relay is responsible for forwarding DHCP messages, including prefix delegation requests and responses between the client and server. Messages are forwarded from the delegating relay to the server using multicast or unicast via the operator uplink interface.
The delegating relay provides the operator's Layer 3 edge towards the client and is responsible for routing traffic to and from clients connected to the client network using addresses from the delegated prefixes.
The key words "
MUST", "
MUST NOT", "
REQUIRED", "
SHALL", "
SHALL NOT", "
SHOULD", "
SHOULD NOT", "
RECOMMENDED", "
NOT RECOMMENDED", "
MAY", and "
OPTIONAL" in this document are to be interpreted as described in BCP 14 [
RFC 2119] [
RFC 8174] when, and only when, they appear in all capitals, as shown here.