This section reviews the different issues that an operator needs to consider for a NAT64/464XLAT deployment, as they may develop specific decision points about how to approach that deployment.
As indicated in the security considerations for DNS64 (see
Section 8 of
RFC 6147) because DNS64 modifies DNS answers and DNSSEC is designed to detect such modifications, DNS64 may break DNSSEC.
When a device connected to an IPv6-only access network queries for a domain name in a signed zone, by means of a recursive name server that supports DNS64, the result may be a synthesized AAAA record. In that case, if the recursive name server is configured to perform DNSSEC validation and has a valid chain of trust to the zone in question, it will cryptographically validate the negative response from the authoritative name server. This is the expected DNS64 behavior: the recursive name server actually "lies" to the client device. However, in most of the cases, the client will not notice it, because generally, they don't perform validation themselves; instead, they rely on the recursive name servers.
In fact, a validating DNS64 resolver increases the confidence on the synthetic AAAA, as it has validated that a non-synthetic AAAA doesn't exist. However, if the client device is oblivious to NAT64 (the most common case) and performs DNSSEC validation on the AAAA record, it will fail as it is a synthesized record.
The best possible scenario from a DNSSEC point of view is when the client requests that the DNS64 server perform the DNSSEC validation (by setting the DNSSEC OK (DO) bit to 1 and the CD bit to 0). In this case, the DNS64 server validates the data; thus, tampering may only happen inside the DNS64 server (which is considered as a trusted part, thus, its likelihood is low) or between the DNS64 server and the client. All other parts of the system (including transmission and caching) are protected by DNSSEC [
Threat-DNS64].
Similarly, if the client querying the recursive name server is another name server configured to use it as a forwarder, and it is performing DNSSEC validation, it will also fail on any synthesized AAAA record.
All those considerations are extensively covered in Sections
3,
5.5, and
6.2 of [
RFC 6147].
DNSSEC issues could be avoided if all the signed zones provide IPv6 connectivity together with the corresponding AAAA records. However, this is out of the control of the operator needing to deploy a NAT64 function. This has been proposed already in [
DNS-DNSSEC].
An alternative solution, which was considered while developing [
RFC 6147], is that the validators will be DNS64 aware. Then, they can perform the necessary discovery and do their own synthesis. Since that was standardized sufficiently early in the validator deployment curve, the expectation was that it would be okay to break certain DNSSEC assumptions for networks that were stuck and really needing NAT64/DNS64.
As already indicated, the scenarios in the previous section are simplified to look at the worst possible case and for the most perfect approach. A DNSSEC breach will not happen if the end host is not doing validation.
The figures in previous studies indicate that DNSSEC broken by using DNS64 makes up about 1.7% [
About-DNS64] of the cases. However, we can't negate that this may increase as DNSSEC deployment grows. Consequently, a decision point for the operator must depend on the following question: Do I really care about that percentage of cases and the impact on my help desk, or can I provide alternative solutions for them? Some possible solutions may be exist, as depicted in the next sections.
One solution is to avoid using DNS64, but as already indicated, this is not possible in all the scenarios.
The use of DNS64 is a key component for some networks, in order to comply with traffic performance metrics, monitored by some governmental bodies and other institutions [
FCC] [
ARCEP].
One drawback of not having a DNS64 on the network side is that it's not possible to heuristically discover NAT64 [
RFC 7050]. Consequently, an IPv6 host behind the IPv6-only access network will not be able to detect the presence of the NAT64 function, nor learn the IPv6 prefix to be used for it, unless it is configured by alternative means.
The discovery of the IPv6 prefix could be solved, as described in [
RFC 7050], by means of adding the relevant AAAA records to the ipv4only.arpa. zone of the service-provider recursive servers, i.e., if using the WKP (64:ff9b::/96):
ipv4only.arpa. SOA . . 0 0 0 0 0
ipv4only.arpa. NS .
ipv4only.arpa. AAAA 64:ff9b::192.0.0.170
ipv4only.arpa. AAAA 64:ff9b::192.0.0.171
ipv4only.arpa. A 192.0.0.170
ipv4only.arpa. A 192.0.0.171
An alternative option is the use of DNS RPZ [
DNS-RPZ] or equivalent functionalities. Note that this may impact DNSSEC if the zone is signed.
Another alternative, only valid in environments with support from the Port Control Protocol (PCP) (for both the hosts or CEs and for the service-provider network), is to follow "Discovering NAT64 IPv6 Prefixes Using the Port Control Protocol (PCP)" [
RFC 7225].
Other alternatives may be available in the future. All them are extensively discussed in [
RFC 7051]; however, due to the deployment evolution, many considerations from that document have changed. New options are being documented, such as using Router Advertising [
PREF64] or DHCPv6 options [
DHCPv6-OPTIONS].
Simultaneous support of several of the possible approaches is convenient and will ensure that clients with different ways to configure the NAT64 prefix successfully obtain it. This is also convenient even if DNS64 is being used.
Also of special relevance to this section is [
IPV4ONLY-ARPA].
In general, by default, DNS servers with DNS64 function will not synthesize AAAA responses if the DO flag was set in the query.
In this case, since only an A record is available, if a CLAT function is present, the CLAT will, as in the case of literal IPv4 addresses, keep that traffic flow end to end as IPv4 so DNSSEC is not broken.
However, this will not work if a CLAT function is not present because the hosts will not be able to use IPv4 (which is the case for all the scenarios without 464XLAT).
If the DO flag is set and the client device performs DNSSEC validation, and the Checking Disabled (CD) flag is set for a query, the DNS64 recursive server will not synthesize AAAA responses. In this case, the client could perform the DNSSEC validation with the A record and then synthesize the AAAA responses [
RFC 6052]. For that to be possible, the client must have learned the NAT64 prefix beforehand using any of the available methods (see [
RFC 7050], [
RFC 7225], [
PREF64], and [
DHCPv6-OPTIONS]). This allows the client device to avoid using the DNS64 function and still use NAT64 even with DNSSEC.
If the end host is IPv4 only, this will not work if a CLAT function is not present (which is the case for all scenarios without 464XLAT).
Instead of a CLAT, some devices or Operating Systems may implement an equivalent function by using Bump-in-the-Host [
RFC 6535] as part of Happy Eyeballs v2 (see
Section 7.1 of
RFC 8305). In this case, the considerations in the above paragraphs are also applicable.
If a CE includes CLAT support and also a DNS proxy, as indicated in
Section 6.4 of
RFC 6877, the CE could behave as a stub validator on behalf of the client devices. Then, following the same approach described in
Section 4.1.3, the DNS proxy will actually "lie" to the client devices, which, in most cases, will not be noticed unless they perform validation by themselves. Again, this allows the client devices to avoid the use of the DNS64 function but to still use NAT64 with DNSSEC.
Once more, this will not work without a CLAT function (which is the case for all scenarios without 464XLAT).
In cases of dual-stack clients, AAAA queries typically take preference over A queries. If DNS64 is enabled for those clients, it will never get A records, even for IPv4-only servers.
As a consequence, in cases where there are IPv4-only servers, and those are located in the path before the NAT64 function, the clients will not be able to reach them. If DNSSEC is being used for all those flows, specific addresses or prefixes can be left out of the DNS64 synthesis by means of Access Control Lists (ACLs).
Once more, this will not work without a CLAT function (which is the case for all scenarios without 464XLAT).
If there are well-known specific IPv4 addresses or prefixes using DNSSEC, they can be mapped out of the DNS64 synthesis.
Even if this is not related to DNSSEC, this "mapping-out" feature is quite commonly used to ensure that addresses [
RFC 1918] (for example, used by LAN servers) are not synthesized to AAAA.
Once more, this will not work without a CLAT function (which is the case for all scenarios without 464XLAT).
When a client device using DNS64 tries to reverse-map a synthesized IPv6 address, the name server responds with a CNAME record that points the domain name used to reverse-map the synthesized IPv6 address (the one under ip6.arpa) to the domain name corresponding to the embedded IPv4 address (under in-addr.arpa).
This is the expected behavior, so no issues need to be considered regarding DNS reverse mapping.
In case the client device is IPv6 only (either because the stack or application is IPv6 only or because it is connected via an IPv6-only LAN) and the remote server is IPv4 only (either because the stack is IPv4 only or because it is connected via an IPv4-only LAN), only NAT64 combined with DNS64 will be able to provide access between both. Because DNS64 is then required, DNSSEC validation will only be possible if the recursive name server is validating the negative response from the authoritative name server, and the client is not performing validation.
Note that at this stage of the transition, it is not expected that applications, devices, or Operating Systems are IPv6 only. It will not be a sensible decision for a developer to work on that direction, unless it is clear that the deployment scenario fully supports it.
On the other hand, an end user or enterprise network may decide to run IPv6 only in the LANs. In case there is any chance for applications to be IPv6 only, the Operating System may be responsible for either doing a local address synthesis or setting up some kind of on-demand VPN (IPv4-in-IPv6), which needs to be supported by that network. This may become very common in enterprise networks, where "Unique IPv6 Prefix per Host" [
RFC 8273] is supported.
However, when the client device is dual stack and/or connected in a dual-stack LAN by means of a CLAT function (or has a built-in CLAT function), DNS64 is an option.
-
With DNS64: If DNS64 is used, most of the IPv4 traffic (except if using literal IPv4 addresses or non-IPv6-compliant APIs) will not use the CLAT and will instead use the IPv6 path, so only one translation will be done at the NAT64. This may break DNSSEC, unless measures as described in the previous sections are taken.
-
Without DNS64: If DNS64 is not used, all the IPv4 traffic will make use of the CLAT, so two translations are required (NAT46 at the CLAT and NAT64 at the PLAT), which adds some overhead in terms of the extra NAT46 translation. However, this avoids the AAAA synthesis and consequently will never break DNSSEC.
Note that the extra translation, when DNS64 is not used, takes place at the CLAT, which means no extra overhead for the operator. However, it adds potential extra delays to establish the connections and has no perceptible impact for a CE in a broadband network, but it may have some impact on a battery-powered device. The cost for a battery-powered device is possibly comparable to the cost when the device is doing a local address synthesis (see
Section 7.1 of
RFC 8305).
Clients, devices, or applications in a service-provider network may use DNS servers from other networks. This may be the case if individual applications use their own DNS server, the Operating System itself or even the CE, or combinations of the above.
Those "foreign" DNS servers may not support DNS64; as a consequence, those scenarios that require a DNS64 may not work. However, if a CLAT function is available, the considerations in
Section 4.3 will apply.
If the foreign DNS supports the DNS64 function, incorrect configuration parameters may be provided that, for example, cause WKP or NSP to become unmatched or result in a case such as the one described in
Section 3.2.3.
Having a CLAT function, even if using foreign DNS without a DNS64 function, ensures that everything will work, so the CLAT must be considered to be an advantage despite user configuration errors. As a result, all the traffic will use a double translation (NAT46 at the CLAT and NAT64 at the operator network), unless there is support for EAM (
Section 4.9).
An exception is the case where there is a CLAT function at the CE that is not able to obtain the correct configuration parameters (again, causing WKP or NSP to become unmatched).
However, it needs to be emphasized that if there is no CLAT function (which is the case for all scenarios without 464XLAT), an external DNS without DNS64 support will disallow any access to IPv4-only destination networks and will not guarantee the correct DNSSEC validation, so it will behave as in
Section 3.2.1.
In summary, the consequences of using foreign DNS depends on each specific case. However, in general, if a CLAT function is present, most of the time there will not be any issues. In the other cases, the access to IPv6-enabled services is still guaranteed for IPv6-enabled hosts, but it is not guaranteed for IPv4-only hosts nor is the access to IPv4-only services for any hosts in the network.
The causes of "foreign DNS" could be classified in three main categories, as depicted in the following subsections.
It is becoming increasingly common that end users, or even devices or applications, configure alternative DNS in their Operating Systems and sometimes in CEs.
Clients or applications may use mechanisms for DNS privacy/encryption, such as DNS over TLS (DoT) [
RFC 7858], DNS over DTLS [
RFC 8094], DNS queries over HTTPS (DoH) [
RFC 8484], or DNS over QUIC (DoQ) [
QUIC-CONNECTIONS].
Currently, those DNS privacy/encryption options are typically provided by the applications, not the Operating System vendors. At the time this document was written, the DoT and DoH standards have declared DNS64 (and consequently NAT64) out of their scope, so an application using them may break NAT64, unless a correctly configured CLAT function is used.
When networks or hosts use "split-DNS" (also called Split Horizon, DNS views, or private DNS), the successful use of DNS64 is not guaranteed. This case is analyzed in
Section 4 of
RFC 6950.
A similar situation may happen with VPNs that force all the DNS queries through the VPN and ignore the operator DNS64 function.
Section 3 of "IPv6 Addressing of IPv4/IPv6 Translator" [
RFC 6052] discusses some considerations that are useful to an operator when deciding if a WKP or an NSP should be used.
Considering that discussion and other issues, we can summarize the possible decision points to as follows:
-
The WKP MUST NOT be used to represent non-global IPv4 addresses. If this is required because the network to be translated uses non-global addresses, then an NSP is required.
-
The WKP MAY appear in interdomain routing tables, if the operator provides a NAT64 function to peers. However, in this case, special considerations related to BGP filtering are required, and IPv4-embedded IPv6 prefixes longer than the WKP MUST NOT be advertised (or accepted) in BGP. An NSP may be a more appropriate option in those cases.
-
If several NAT64s use the same prefix, packets from the same flow may be routed to a different NAT64 in case of routing changes. This can be avoided by either using different prefixes for each NAT64 function or ensuring that all the NAT64s coordinate their state. Using an NSP could simplify that.
-
If DNS64 is required and users, devices, Operating Systems, or applications may change their DNS configuration and deliberately choose an alternative DNS64 function, the alternative DNS64 will most likely use the WKP by default. In that case, if an NSP is used by the NAT64 function, clients will not be able to use the operator NAT64 function, which will break connectivity to IPv4-only destinations.
A host or application using literal IPv4 addresses or older APIs, which aren't IPv6 compliant, behind a network with IPv6-only access will not work unless any of the following alternatives are provided:
-
CLAT (or an equivalent function).
-
Happy Eyeballs v2 (Section 7.1 of [RFC 8305]).
-
Bump-in-the-Host [RFC 6535] with a DNS64 function.
Those alternatives will solve the problem for an end host. However, if the end host is providing "tethering" or an equivalent service to other hosts, that needs to be considered as well. In other words, in a cellular network, these alternatives resolve the issue for the UE itself, but this may not be the case for hosts connected via the tethering.
Otherwise, the support of 464XLAT is the only valid and complete approach to resolve this issue.
IPv4-only hosts or an application behind a network with IPv6-only access will not work unless a CLAT function is present.
464XLAT is the only valid approach to resolve this issue.
As described in "IPv6 Prefix Handling" (see
Section 6.3 of
RFC 6877), if the CLAT function can be configured with a dedicated /64 prefix for the NAT46 translation, then it will be possible to do a more efficient stateless translation.
Otherwise, if this dedicated prefix is not available, the CLAT function will need to do a stateful translation, for example, perform stateful NAT44 for all the IPv4 LAN packets so they appear as coming from a single IPv4 address; in turn, the CLAT function will perform a stateless translation to a single IPv6 address.
A possible setup, in order to maximize the CLAT performance, is to configure the dedicated translation prefix. This can be easily achieved automatically, if the broadband CE or end-user device is able to obtain a shorter prefix by means of DHCPv6-PD [
RFC 8415] or other alternatives. The CE can then use a specific /64 for the translation. This is also possible when broadband is provided by a cellular access.
The above recommendation is often not possible for cellular networks, when connecting smartphones (as UEs): generally they don't use DHCPv6-PD [
RFC 8415]. Instead, a single /64 is provided for each Packet Data Protocol (PDP) context, and prefix sharing [
RFC 6877] is used. In this case, the UEs typically have a build-in CLAT function that is performing a stateful NAT44 translation before the stateless NAT46.
"Explicit Address Mappings for Stateless IP/ICMP Translation" [
RFC 7757] provides a way to configure explicit mappings between IPv4 and IPv6 prefixes of any length. When this is used, for example, in a CLAT function, it may provide a simple mechanism in order to avoid traffic flows between IPv4-only nodes or applications and dual-stack destinations to be translated twice (NAT46 and NAT64), by creating mapping entries with the Global Unicast Address (GUA) of the IPv6-reachable destination. This optimization of NAT64 usage is very useful in many scenarios, including Content Delivery Networks (CDNs) and caches, as described in [
OPT-464XLAT].
In addition, it may also provide a way for IPv4-only nodes or applications to communicate with IPv6-only destinations.
The use of NAT64, in principle, disallows IPv4 incoming connections, which may still be needed for IPv4-only peer-to-peer applications. However, there are several alternatives that resolve this issue:
-
Session Traversal Utilities for NAT (STUN) [RFC 5389], Traversal Using Relays around NAT (TURN) [RFC 5766], and Interactive Connectivity Establishment (ICE) [RFC 8445] are commonly used by peer-to-peer applications in order to allow incoming connections with IPv4 NAT. In the case of NAT64, they work as well.
-
The Port Control Protocol (PCP) [RFC 6887] allows a host to control how incoming IPv4 and IPv6 packets are translated and forwarded. A NAT64 may implement PCP to allow this service.
-
EAM [RFC 7757] may also be used in order to configure explicit mappings for customers that require them. This is used, for example, by Stateless IP/ICMP Translation for IPv6 Data Center Environments (SIIT-DC) [RFC 7755] and SIIT-DC Dual Translation Mode (SIIT-DC-DTM) [RFC 7756].