Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 8578

Deterministic Networking Use Cases

Pages: 97
Informational
Part 8 of 8 – Pages 90 to 97
First   Prev   None

Top   ToC   RFC8578 - Page 90   prevText

Appendix A. Use Cases Explicitly Out of Scope for DetNet

This appendix contains text regarding use cases that have been determined to be outside the scope of the present DetNet work.

A.1. DetNet Scope Limitations

The scope of DetNet is deliberately limited to specific use cases that are consistent with the WG charter, subject to the interpretation of the WG. At the time that the DetNet use cases were solicited and provided by the authors, the scope of DetNet was not clearly defined. As the scope has been clarified, certain use cases have been determined to be outside the scope of the present DetNet work. Text regarding these use cases was moved to this appendix to clarify that they will not be supported by the DetNet work. The text was moved to this appendix based on the following "exclusion" principles. Please note that as an alternative to moving all such text to this appendix some text has been modified in situ to reflect these same principles. The following principles have been established to clarify the scope of the present DetNet work. o The scope of networks addressed by DetNet is limited to networks that can be centrally controlled, i.e., an "enterprise" (aka "corporate") network. This explicitly excludes "the open Internet". o Maintaining time synchronization across a DetNet network is crucial to its operation; however, DetNet assumes that time is to be maintained using other means. One example would be PTP [IEEE-1588]. A use case may state the accuracy and reliability that it expects from the DetNet network as part of a whole system; however, it is understood that such timing properties are not guaranteed by DetNet itself. At the time of this writing, two open questions remain: (1) whether DetNet protocols will include a way for an application to communicate expectations regarding such timing properties to the network and (2) if so, whether those properties would likely have a material effect on network performance as a result.

A.2. Internet-Based Applications

There are many applications that communicate over the open Internet that could benefit from guaranteed delivery and bounded latency. However, as noted above, all such applications, when run over the open Internet, are out of scope for DetNet. These same applications
Top   ToC   RFC8578 - Page 91
   may be in scope when run in constrained environments, i.e., within a
   centrally controlled DetNet network.  The following are some examples
   of such applications.

A.2.1. Use Case Description

A.2.1.1. Media Content Delivery
Media content delivery continues to be an important use of the Internet, yet users often experience poor-quality audio and video due to the delay and jitter inherent in today's Internet.
A.2.1.2. Online Gaming
Online gaming is a significant part of the gaming market; however, latency can degrade the end user's experience. For example, "First Person Shooter" (FPS) games are highly delay sensitive.
A.2.1.3. Virtual Reality
VR has many commercial applications, including real estate presentations, remote medical procedures, and so on. Low latency is critical to interacting with the virtual world, because perceptual delays can cause motion sickness.

A.2.2. Internet-Based Applications Today

Internet service today is by definition "best effort", with no guarantees regarding delivery or bandwidth.

A.2.3. Internet-Based Applications in the Future

One should be able to play Internet videos without glitches and play Internet games without lag. For online gaming, the desired maximum allowance for round-trip delay is typically 100 ms. However, it may be less for specific types of games; for example, for FPS games, the maximum delay should be 50 ms. Transport delay is the dominant part, with a budget of 5-20 ms. For VR, a maximum delay of 1-10 ms is needed; if doing remote VR, the total network delay budget is 1-5 ms. Flow identification can be used for gaming and VR, i.e., it can recognize a critical flow and provide appropriate latency bounds.
Top   ToC   RFC8578 - Page 92

A.2.4. Internet-Based Applications Requests to the IETF

o Unified control and management protocols that handle time-critical data flows o An application-aware flow-filtering mechanism that recognizes time-critical flows without doing 5-tuple matching o A unified control plane that provides low-latency service on Layer 3 without changing the data plane o An OAM system and protocols that can help provide service provisioning that is sensitive to end-to-end delays

A.3. Pro Audio and Video - Digital Rights Management (DRM)

The following text was moved to this appendix because this information is considered a link-layer topic for which DetNet is not directly responsible. Digital Rights Management (DRM) is very important to the audio and video industries. Whenever protected content is introduced into a network, there are DRM concerns that must be taken into account (see [Content_Protection]). Many aspects of DRM are outside the scope of network technology; however, there are cases when a secure link supporting authentication and encryption is required by content owners to carry their audio or video content when it is outside their own secure environment (for example, see [DCI]). As an example, two such techniques are Digital Transmission Content Protection (DTCP) and High-bandwidth Digital Content Protection (HDCP). HDCP content is not approved for retransmission within any other type of DRM, while DTCP content may be retransmitted under HDCP. Therefore, if the source of a stream is outside of the network and it uses HDCP, it is only allowed to be placed on the network with that same type of protection (i.e., HDCP).

A.4. Pro Audio and Video - Link Aggregation

Note: The term "link aggregation" is used here as defined by the text in the following paragraph, i.e., not following a more common network-industry definition. For transmitting streams that require more bandwidth than a single link in the target network can support, link aggregation is a technique for combining (aggregating) the bandwidth available on multiple physical links to create a single logical link that provides
Top   ToC   RFC8578 - Page 93
   the required bandwidth.  However, if aggregation is to be used, the
   network controller (or equivalent) must be able to determine the
   maximum latency of any path through the aggregate link.

A.5. Pro Audio and Video - Deterministic Time to Establish Streaming

The DetNet WG decided that guidelines for establishing a deterministic time to establish stream startup are not within the scope of DetNet. If the bounded timing for establishing or re-establishing streams is required in a given use case, it is up to the application/system to achieve it.

Acknowledgments

Pro audio (Section 2) As also acknowledged in [DetNet-Audio-Reqs], the editor would like to acknowledge the help of the following individuals and the companies they represent. Jeff Koftinoff, Meyer Sound Jouni Korhonen, Associate Technical Director, Broadcom Pascal Thubert, CTAO, Cisco Kieran Tyrrell, Sienda New Media Technologies GmbH Utility telecom (Section 3) Information regarding utility telecom was derived from [DetNet-Util-Reqs]. As in that document, the following individuals are acknowledged here. Faramarz Maghsoodlou, Ph.D., IoT Connected Industries and Energy Practice, Cisco Pascal Thubert, CTAO, Cisco The wind power generation use case has been extracted from the study of wind parks conducted within the 5GPPP VirtuWind Project. The project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 671648 (VirtuWind). Building automation systems (Section 4) Please see [BAS-DetNet].
Top   ToC   RFC8578 - Page 94
   Wireless for industrial applications (Section 5)

      See [DetNet-6TiSCH].

      [DetNet-6TiSCH] derives from the 6TiSCH architecture, which is the
      result of multiple interactions -- in particular, during the
      6TiSCH (bi)weekly interim call, relayed through the 6TiSCH mailing
      list at the IETF [MailingList-6TiSCH].

      As also acknowledged in [DetNet-6TiSCH], the editor wishes to
      thank Kris Pister, Thomas Watteyne, Xavier Vilajosana, Qin Wang,
      Tom Phinney, Robert Assimiti, Michael Richardson, Zhuo Chen,
      Malisa Vucinic, Alfredo Grieco, Martin Turon, Dominique Barthel,
      Elvis Vogli, Guillaume Gaillard, Herman Storey, Maria Rita
      Palattella, Nicola Accettura, Patrick Wetterwald, Pouria Zand,
      Raghuram Sudhaakar, and Shitanshu Shah for their participation and
      various contributions.

   Cellular radio (Section 6)

      See [DetNet-RAN].

   Internet applications and CoMP (Section 6)

      As also acknowledged in [DetNet-Mobile], authored by Yiyong Zha,
      the editor would like to thank the following people for their
      reviews, suggestions, comments, and proposed text: Jing Huang,
      Junru Lin, Lehong Niu, and Oliver Huang.

   Industrial Machine to Machine (M2M) (Section 7)

      The editor would like to thank Feng Chen and Marcel Kiessling for
      their comments and suggestions.

   Mining industry (Section 8)

      This text was written by Diego Dujovne, who worked in conjunction
      with Xavier Vilajosana.

   Private blockchain (Section 9)

      This text was written by Daniel Huang.

   Network slicing (Section 10)

      This text was written by Xuesong Geng, who would like to
      acknowledge Norm Finn and Mach Chen for their useful comments.
Top   ToC   RFC8578 - Page 95

Contributors

RFC 7322 ("RFC Style Guide") generally limits the number of authors listed on the front page of a document to five individuals -- far fewer than the 19 individuals listed below, who also made important contributions to this document. The editor wishes to thank and acknowledge each of the following authors for contributing text to this document. See also the Acknowledgments section. Craig Gunther (Harman International) 10653 South River Front Parkway South Jordan, UT 84095 United States of America Phone: +1 801 568 7675 Email: craig.gunther@harman.com Pascal Thubert (Cisco Systems, Inc.) Building D, 45 Allee des Ormes - BP1200 Mougins - Sophia Antipolis 06254 France Phone: +33 4 97 23 26 34 Email: pthubert@cisco.com Patrick Wetterwald (Cisco Systems) 45 Allee des Ormes Mougins 06250 France Phone: +33 4 97 23 26 36 Email: pwetterw@cisco.com Jean Raymond (Hydro-Quebec) 1500 University Montreal, Quebec H3A 3S7 Canada Phone: +1 514 840 3000 Email: raymond.jean@hydro.qc.ca Jouni Korhonen (Broadcom Corporation) 3151 Zanker Road San Jose, CA 95134 United States of America Email: jouni.nospam@gmail.com Yu Kaneko (Toshiba) 1 Komukai-Toshiba-cho Saiwai-ku, Kasasaki-shi, Kanagawa Japan Email: yu1.kaneko@toshiba.co.jp
Top   ToC   RFC8578 - Page 96
      Subir Das (Vencore Labs)
      150 Mount Airy Road
      Basking Ridge, NJ  07920
      United States of America
      Email: sdas@appcomsci.com

      Balazs Varga (Ericsson)
      Konyves Kalman krt. 11/B
      Budapest  1097
      Hungary
      Email: balazs.a.varga@ericsson.com

      Janos Farkas (Ericsson)
      Konyves Kalman krt. 11/B
      Budapest  1097
      Hungary
      Email: janos.farkas@ericsson.com

      Franz-Josef Goetz (Siemens)
      Gleiwitzerstr. 555
      Nurnberg  90475
      Germany
      Email: franz-josef.goetz@siemens.com

      Juergen Schmitt (Siemens)
      Gleiwitzerstr. 555
      Nurnberg  90475
      Germany
      Email: juergen.jues.schmitt@siemens.com

      Xavier Vilajosana (Worldsensing)
      483 Arago
      Barcelona, Catalonia  08013
      Spain
      Email: xvilajosana@worldsensing.com

      Toktam Mahmoodi (King's College London)
      Strand, London  WC2R 2LS
      United Kingdom
      Email: toktam.mahmoodi@kcl.ac.uk

      Spiros Spirou (Intracom Telecom)
      19.7 km Markopoulou Ave.
      Peania, Attiki  19002
      Greece
      Email: spiros.spirou@gmail.com
Top   ToC   RFC8578 - Page 97
      Petra Vizarreta (Technical University of Munich)
      Maxvorstadt, Arcisstrasse 21
      Munich  80333
      Germany
      Email: petra.stojsavljevic@tum.de

      Daniel Huang (ZTE Corporation, Inc.)
      No. 50 Software Avenue
      Nanjing, Jiangsu  210012
      China
      Email: huang.guangping@zte.com.cn

      Xuesong Geng (Huawei Technologies)
      Email: gengxuesong@huawei.com

      Diego Dujovne (Universidad Diego Portales)
      Email: diego.dujovne@mail.udp.cl

      Maik Seewald (Cisco Systems)
      Email: maseewal@cisco.com

Author's Address

Ethan Grossman (editor) Dolby Laboratories, Inc. 1275 Market Street San Francisco, CA 94103 United States of America Phone: +1 415 645 4726 Email: ethan.grossman@dolby.com URI: http://www.dolby.com