MvpnMrouteEntry ::= SEQUENCE { mvpnMrouteCmcastGroupAddrType InetAddressType, mvpnMrouteCmcastGroupAddr InetAddress, mvpnMrouteCmcastGroupPrefixLength InetAddressPrefixLength, mvpnMrouteCmcastSourceAddrType InetAddressType, mvpnMrouteCmcastSourceAddrs InetAddress, mvpnMrouteCmcastSourcePrefixLength InetAddressPrefixLength, mvpnMrouteUpstreamNeighborAddrType InetAddressType, mvpnMrouteUpstreamNeighborAddr InetAddress, mvpnMrouteInIfIndex InterfaceIndexOrZero, mvpnMrouteExpiryTime TimeTicks, mvpnMrouteProtocol IANAipMRouteProtocol, mvpnMrouteRtProtocol IANAipRouteProtocol, mvpnMrouteRtAddrType InetAddressType, mvpnMrouteRtAddr InetAddress, mvpnMrouteRtPrefixLength InetAddressPrefixLength, mvpnMrouteRtType INTEGER, mvpnMrouteOctets Counter64, mvpnMroutePkts Counter64, mvpnMrouteTtlDroppedOctets Counter64, mvpnMrouteTtlDroppedPackets Counter64, mvpnMrouteDroppedInOctets Counter64, mvpnMrouteDroppedInPackets Counter64, mvpnMroutePmsiPointer RowPointer, mvpnMrouteNumberOfLocalReplication Unsigned32, mvpnMrouteNumberOfRemoteReplication Unsigned32, mvpnMrouteCounterDiscontinuityTime TimeStamp } mvpnMrouteCmcastGroupAddrType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "The InetAddressType of the mvpnMrouteCmcastGroupAddr object that follows. " ::= { mvpnMrouteEntry 1 } mvpnMrouteCmcastGroupAddr OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The IP multicast group address that, along with the corresponding mvpnMrouteCmcastGroupPrefixLength object, identifies destinations for which this entry contains multicast routing information.
This address object is only significant up to mvpnMrouteCmcastGroupPrefixLength bits. The remaining address bits MUST be set to zero. For addresses of type 'ipv4z' or 'ipv6z', the appended zone index is significant even though it lies beyond the prefix length. The use of these address types indicates that this forwarding state applies only within the given zone. Zone index zero is not valid in this table. " ::= { mvpnMrouteEntry 2 } mvpnMrouteCmcastGroupPrefixLength OBJECT-TYPE SYNTAX InetAddressPrefixLength MAX-ACCESS not-accessible STATUS current DESCRIPTION "The length in bits of the mask that, along with the corresponding mvpnMrouteCmcastGroupAddr object, identifies destinations for which this entry contains multicast routing information. If the corresponding InetAddressType is 'ipv4' or 'ipv4z', this object must be in the range 4..32. If the corresponding InetAddressType is 'ipv6' or 'ipv6z', this object must be in the range 8..128. " ::= { mvpnMrouteEntry 3 } mvpnMrouteCmcastSourceAddrType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "The InetAddressType of the mvpnMrouteCmcastSourceAddrs object that follows. A value of unknown(0) indicates a non-source-specific entry, corresponding to all sources in the group. Otherwise, the value MUST be the same as the value of mvpnMrouteCmcastGroupAddrType. " ::= { mvpnMrouteEntry 4 } mvpnMrouteCmcastSourceAddrs OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS not-accessible STATUS current
DESCRIPTION "The network address that, along with the corresponding mvpnMrouteCmcastSourcePrefixLength object, identifies the sources for which this entry contains multicast routing information. This address object is only significant up to mvpnMrouteCmcastSourcePrefixLength bits. The remaining address bits MUST be set to zero. For addresses of type 'ipv4z' or 'ipv6z', the appended zone index is significant even though it lies beyond the prefix length. The use of these address types indicates that this source address applies only within the given zone. Zone index zero is not valid in this table. " ::= { mvpnMrouteEntry 5 } mvpnMrouteCmcastSourcePrefixLength OBJECT-TYPE SYNTAX InetAddressPrefixLength MAX-ACCESS not-accessible STATUS current DESCRIPTION "The length in bits of the mask that, along with the corresponding mvpnMrouteCmcastSourceAddr object, identifies the sources for which this entry contains multicast routing information. If the corresponding InetAddressType is 'ipv4' or 'ipv4z', this object must be in the range 4..32. If the corresponding InetAddressType is 'ipv6' or 'ipv6z', this object must be in the range 8..128. If the corresponding InetAddressType is 'unknown', this object must be zero. " ::= { mvpnMrouteEntry 6 } mvpnMrouteUpstreamNeighborAddrType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS read-only STATUS current DESCRIPTION "The InetAddressType of the mvpnMrouteUpstreamNeighborAddr object that follows. A value of unknown(0) indicates that the upstream neighbor is unknown, for example, in Bidirectional PIM (BIDIR-PIM).
" REFERENCE "RFC 5015" ::= { mvpnMrouteEntry 7 } mvpnMrouteUpstreamNeighborAddr OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS read-only STATUS current DESCRIPTION "The address of the upstream neighbor (for example, the Reverse Path Forwarding (RPF) neighbor) from which IP datagrams from these sources represented by this entry to this multicast address are received. " ::= { mvpnMrouteEntry 8 } mvpnMrouteInIfIndex OBJECT-TYPE SYNTAX InterfaceIndexOrZero MAX-ACCESS read-only STATUS current DESCRIPTION "The value of ifIndex for the interface on which IP datagrams sent by these sources represented by this entry to this multicast address are received. A value of zero indicates that datagrams are not subject to an incoming interface check but may be accepted on multiple interfaces (for example, in BIDIR-PIM). " REFERENCE "RFC 5015" ::= { mvpnMrouteEntry 9 } mvpnMrouteExpiryTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The minimum amount of time remaining before this entry will be aged out. The value zero indicates that the entry is not subject to aging. If the corresponding mvpnMrouteNextHopState object is pruned(1), this object represents the remaining time for the prune to expire after which the state will return to forwarding(2). If the corresponding mvpnMrouteNextHopState object is forwarding(2), this object indicates the time after which this entry will be removed from the table.
" ::= { mvpnMrouteEntry 10 } mvpnMrouteProtocol OBJECT-TYPE SYNTAX IANAipMRouteProtocol MAX-ACCESS read-only STATUS current DESCRIPTION "The multicast routing protocol via which this multicast forwarding entry was learned. " ::= { mvpnMrouteEntry 11 } mvpnMrouteRtProtocol OBJECT-TYPE SYNTAX IANAipRouteProtocol MAX-ACCESS read-only STATUS current DESCRIPTION "The routing protocol via which the route used to find the upstream or parent interface for this multicast forwarding entry was learned. " ::= { mvpnMrouteEntry 12 } mvpnMrouteRtAddrType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS read-only STATUS current DESCRIPTION "The InetAddressType of the mvpnMrouteRtAddr object that follows. " ::= { mvpnMrouteEntry 13 } mvpnMrouteRtAddr OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS read-only STATUS current DESCRIPTION "The address portion of the route used to find the upstream or parent interface for this multicast forwarding entry. This address object is only significant up to mvpnMrouteRtPrefixLength bits. The remaining address bits MUST be set to zero. For addresses of type 'ipv4z' or 'ipv6z', the appended zone index is significant even though it lies beyond the prefix
length. The use of these address types indicates that this forwarding state applies only within the given zone. Zone index zero is not valid in this table. " ::= { mvpnMrouteEntry 14 } mvpnMrouteRtPrefixLength OBJECT-TYPE SYNTAX InetAddressPrefixLength MAX-ACCESS read-only STATUS current DESCRIPTION "The length in bits of the mask associated with the route used to find the upstream or parent interface for this multicast forwarding entry. If the corresponding InetAddressType is 'ipv4' or 'ipv4z', this object must be in the range 4..32. If the corresponding InetAddressType is 'ipv6' or 'ipv6z', this object must be in the range 8..128. " ::= { mvpnMrouteEntry 15 } mvpnMrouteRtType OBJECT-TYPE SYNTAX INTEGER { unicast (1), multicast (2) } MAX-ACCESS read-only STATUS current DESCRIPTION "The reason for placing the route in the (logical) multicast Routing Information Base (RIB). The enumerated reasons and the corresponding descriptions are as follows: unicast: The route would normally be placed only in the unicast RIB, but it was placed in the multicast RIB by local configuration, such as when running PIM over RIP. multicast: The route was explicitly added to the multicast RIB by the routing protocol, such as the Distance Vector Multicast Routing Protocol (DVMRP) or Multiprotocol BGP. " ::= { mvpnMrouteEntry 16 }
mvpnMrouteOctets OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of octets contained in IP datagrams that were received from sources represented by this entry and addressed to this multicast group address and that were forwarded by this router. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the corresponding mvpnMrouteCounterDiscontinuityTime object. " ::= { mvpnMrouteEntry 17 } mvpnMroutePkts OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of packets routed using this multicast route entry. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the corresponding mvpnMrouteCounterDiscontinuityTime object. " ::= { mvpnMrouteEntry 18 } mvpnMrouteTtlDroppedOctets OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of octets contained in IP datagrams that this router has received from sources represented by this entry and addressed to this multicast group address, which were dropped due to Time To Live (TTL) issues. TTL issues occur when the TTL (IPv4) or Hop Limit (IPv6) of the incoming packet was decremented to zero or to a value less than ipMcastInterfaceTtl of the corresponding interface. The ipMcastInterfaceTtl object is defined in IPMCAST-MIB (RFC 5132) and represents the datagram TTL
threshold for the interface. Any IP multicast datagrams with a TTL (IPv4) or Hop Limit (IPv6) less than this threshold will not be forwarded out of the interface. The default value of zero means all multicast packets are forwarded out of the interface. A value of 256 means that no multicast packets are forwarded out of the interface. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the corresponding mvpnMrouteCounterDiscontinuityTime object. " REFERENCE "RFC 5132, Section 6 " ::= { mvpnMrouteEntry 19 } mvpnMrouteTtlDroppedPackets OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of packets that this router has received from the sources represented by this entry and addressed to this multicast group address, which were dropped due to Time To Live (TTL) issues. TTL issues occur when the TTL (IPv4) or Hop Limit (IPv6) of the incoming packet was decremented to zero or to a value less than ipMcastInterfaceTtl of the corresponding interface. The ipMcastInterfaceTtl object is defined in IPMCAST-MIB (RFC 5132) and represents the datagram TTL threshold for the interface. Any IP multicast datagrams with a TTL (IPv4) or Hop Limit (IPv6) less than this threshold will not be forwarded out of the interface. The default value of zero means all multicast packets are forwarded out of the interface. A value of 256 means that no multicast packets are forwarded out of the interface. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the corresponding mvpnMrouteCounterDiscontinuityTime object. " REFERENCE "RFC 5132, Section 6 " ::= { mvpnMrouteEntry 20 }
mvpnMrouteDroppedInOctets OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of octets contained in IP datagrams that this router has received from sources represented by this entry and addressed to this multicast group address, which were dropped due to an error(s). The value of this object includes the octets counted in the corresponding mvpnMrouteTtlDroppedOctets object. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the corresponding mvpnMrouteCounterDiscontinuityTime object. " ::= { mvpnMrouteEntry 21 } mvpnMrouteDroppedInPackets OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of packets that this router has received from sources represented by this entry and addressed to this multicast group address, which were dropped due to an error(s). The value of this object includes the number of octets counted in the corresponding mvpnMrouteTtlDroppedPackets object. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the corresponding mvpnMrouteCounterDiscontinuityTime object. " ::= { mvpnMrouteEntry 22 } mvpnMroutePmsiPointer OBJECT-TYPE SYNTAX RowPointer MAX-ACCESS read-only STATUS current DESCRIPTION "A pointer to a conceptual row representing the corresponding I-PMSI in mvpnPmsiTable or S-PMSI in mvpnSpmsiTable that this C-multicast route is using. " ::= { mvpnMrouteEntry 23 }
mvpnMrouteNumberOfLocalReplication OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of replications for local receivers. For example, if an ingress PE needs to send traffic out of N PE-CE interfaces, then mvpnMrouteNumberOfLocalReplication is N. " ::= { mvpnMrouteEntry 24 } mvpnMrouteNumberOfRemoteReplication OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of local replications for remote PEs. For example, if the number of remote PEs that need to receive traffic is N, then mvpnMrouteNumberOfRemoteReplication is N in case of Ingress Replication, but it may be less than N in case of RSVP-TE or mLDP Point-to-Multipoint (P2MP) tunnels, depending on the actual number of replications the PE needs to do. " ::= { mvpnMrouteEntry 25 } mvpnMrouteCounterDiscontinuityTime OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime on the most recent occasion at which any one or more of this application's counters, viz., counters with the OID prefix 'mvpnMrouteOctets', 'mvpnMroutePkts', 'mvpnMrouteTtlDroppedOctets', 'mvpnMrouteTtlDroppedPackets', 'mvpnMrouteDroppedInOctets', or 'mvpnMrouteDroppedInPackets', suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, this object will have a zero value. " ::= { mvpnMrouteEntry 26 }
-- Table of Next Hops for Multicast Routes in an MVPN mvpnMrouteNextHopTable OBJECT-TYPE SYNTAX SEQUENCE OF MvpnMrouteNextHopEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A conceptual table containing information on the next hops for routing IP multicast datagrams. Each entry is one of a list of next hops for a set of sources sending to a multicast group address. " ::= { mvpnObjects 8 } mvpnMrouteNextHopEntry OBJECT-TYPE SYNTAX MvpnMrouteNextHopEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A conceptual row corresponding to a next hop to which IP multicast datagrams from a set of sources to an IP multicast group address are routed. Implementers need to be aware that if the total number of octets in mplsL3VpnVrfName, mvpnMrouteNextHopGroupAddr, mvpnMrouteNextHopSourceAddrs, and mvpnMrouteNextHopAddr exceeds 111, the OIDs of column instances in this row will have more than 128 sub-identifiers and cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3. " INDEX { mplsL3VpnVrfName, mvpnMrouteNextHopGroupAddrType, mvpnMrouteNextHopGroupAddr, mvpnMrouteNextHopGroupPrefixLength, mvpnMrouteNextHopSourceAddrType, mvpnMrouteNextHopSourceAddrs, mvpnMrouteNextHopSourcePrefixLength, mvpnMrouteNextHopIfIndex, mvpnMrouteNextHopAddrType, mvpnMrouteNextHopAddr } ::= { mvpnMrouteNextHopTable 1 } MvpnMrouteNextHopEntry ::= SEQUENCE { mvpnMrouteNextHopGroupAddrType InetAddressType, mvpnMrouteNextHopGroupAddr InetAddress,
mvpnMrouteNextHopGroupPrefixLength InetAddressPrefixLength, mvpnMrouteNextHopSourceAddrType InetAddressType, mvpnMrouteNextHopSourceAddrs InetAddress, mvpnMrouteNextHopSourcePrefixLength InetAddressPrefixLength, mvpnMrouteNextHopIfIndex InterfaceIndex, mvpnMrouteNextHopAddrType InetAddressType, mvpnMrouteNextHopAddr InetAddress, mvpnMrouteNextHopState INTEGER, mvpnMrouteNextHopExpiryTime TimeTicks, mvpnMrouteNextHopClosestMemberHops Unsigned32, mvpnMrouteNextHopProtocol IANAipMRouteProtocol, mvpnMrouteNextHopOctets Counter64, mvpnMrouteNextHopPkts Counter64, mvpnMrouteNextHopCounterDiscontinuityTime TimeStamp } mvpnMrouteNextHopGroupAddrType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "The InetAddressType of the mvpnMrouteNextHopGroupAddr object that follows. " ::= { mvpnMrouteNextHopEntry 1 } mvpnMrouteNextHopGroupAddr OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The IP multicast group address that, along with the corresponding mvpnMrouteNextHopGroupPrefixLength object, identifies destinations for which this entry contains multicast forwarding information. This address object is only significant up to mvpnMrouteNextHopGroupPrefixLength bits. The remaining address bits MUST be set to zero. For addresses of type 'ipv4z' or 'ipv6z', the appended zone index is significant even though it lies beyond the prefix length. The use of these address types indicates that this forwarding state applies only within the given zone. Zone index zero is not valid in this table. " ::= { mvpnMrouteNextHopEntry 2 }
mvpnMrouteNextHopGroupPrefixLength OBJECT-TYPE SYNTAX InetAddressPrefixLength MAX-ACCESS not-accessible STATUS current DESCRIPTION "The length in bits of the mask that, along with the corresponding mvpnMrouteGroupAddr object, identifies destinations for which this entry contains multicast routing information. If the corresponding InetAddressType is 'ipv4' or 'ipv4z', this object must be in the range 4..32. If the corresponding InetAddressType is 'ipv6' or 'ipv6z', this object must be in the range 8..128. " ::= { mvpnMrouteNextHopEntry 3 } mvpnMrouteNextHopSourceAddrType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "The InetAddressType of the mvpnMrouteNextHopSourceAddrs object that follows. A value of unknown(0) indicates a non-source-specific entry, corresponding to all sources in the group. Otherwise, the value MUST be the same as the value of mvpnMrouteNextHopGroupAddrType. " ::= { mvpnMrouteNextHopEntry 4 } mvpnMrouteNextHopSourceAddrs OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The network address that, along with the corresponding mvpnMrouteNextHopSourcePrefixLength object, identifies the sources for which this entry specifies a next hop. This address object is only significant up to mvpnMrouteNextHopSourcePrefixLength bits. The remaining address bits MUST be set to zero. For addresses of type 'ipv4z' or 'ipv6z', the appended zone index is significant even though it lies beyond the prefix
length. The use of these address types indicates that this source address applies only within the given zone. Zone index zero is not valid in this table. " ::= { mvpnMrouteNextHopEntry 5 } mvpnMrouteNextHopSourcePrefixLength OBJECT-TYPE SYNTAX InetAddressPrefixLength MAX-ACCESS not-accessible STATUS current DESCRIPTION "The length in bits of the mask that, along with the corresponding mvpnMrouteNextHopSourceAddrs object, identifies the sources for which this entry specifies a next hop. If the corresponding InetAddressType is 'ipv4' or 'ipv4z', this object must be in the range 4..32. If the corresponding InetAddressType is 'ipv6' or 'ipv6z', this object must be in the range 8..128. If the corresponding InetAddressType is 'unknown', this object must be zero. " ::= { mvpnMrouteNextHopEntry 6 } mvpnMrouteNextHopIfIndex OBJECT-TYPE SYNTAX InterfaceIndex MAX-ACCESS not-accessible STATUS current DESCRIPTION "The ifIndex value of the outgoing interface for this next hop. " ::= { mvpnMrouteNextHopEntry 7 } mvpnMrouteNextHopAddrType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "The InetAddressType of the mvpnMrouteNextHopAddr object that follows. " ::= { mvpnMrouteNextHopEntry 8 } mvpnMrouteNextHopAddr OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS not-accessible
STATUS current DESCRIPTION "The address of the next hop specific to this entry. For most interfaces, this is identical to mvpnMrouteNextHopGroupAddr. Non-Broadcast Multi-Access (NBMA) interfaces, however, may have multiple next-hop addresses out of a single outgoing interface. " ::= { mvpnMrouteNextHopEntry 9 } mvpnMrouteNextHopState OBJECT-TYPE SYNTAX INTEGER { pruned(1), forwarding(2) } MAX-ACCESS read-only STATUS current DESCRIPTION "An indication of whether the outgoing interface and next hop represented by this entry is currently being used to forward IP datagrams. The enumerated states and the corresponding descriptions are as follows: pruned : this entry is not currently being used. forwarding : this entry is currently being used. " ::= { mvpnMrouteNextHopEntry 10 } mvpnMrouteNextHopExpiryTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The minimum amount of time remaining before this entry will be aged out. If mvpnMrouteNextHopState is pruned(1), this object represents the remaining time for the prune to expire after which the state will return to forwarding(2). If mvpnMrouteNextHopState is forwarding(2), this object indicates the time after which this entry will be removed from the table. The value of zero indicates that the entry is not subject to aging. " ::= { mvpnMrouteNextHopEntry 11 }
mvpnMrouteNextHopClosestMemberHops OBJECT-TYPE SYNTAX Unsigned32 (0..256) MAX-ACCESS read-only STATUS current DESCRIPTION "The minimum number of hops between this router and any member of this IP multicast group reached via this next hop on the corresponding outgoing interface. Any IP multicast datagram for the group that has a TTL (IPv4) or a Hop Count (IPv6) less than mvpnMrouteNextHopClosestMemberHops will not be forwarded through this interface. A value of zero means all multicast datagrams are forwarded out of the interface. A value of 256 means that no multicast datagrams are forwarded out of the interface. This is an optimization applied by multicast routing protocols that explicitly track hop counts to downstream listeners. Multicast protocols that are not aware of hop counts to downstream listeners set this object to zero. " ::= { mvpnMrouteNextHopEntry 12 } mvpnMrouteNextHopProtocol OBJECT-TYPE SYNTAX IANAipMRouteProtocol MAX-ACCESS read-only STATUS current DESCRIPTION "The routing protocol via which this next hop was learned. " ::= { mvpnMrouteNextHopEntry 13 } mvpnMrouteNextHopOctets OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of octets of multicast packets that have been forwarded using this route. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the corresponding mvpnMrouteNextHopCounterDiscontinuityTime object. " ::= { mvpnMrouteNextHopEntry 14 }
mvpnMrouteNextHopPkts OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of packets that have been forwarded using this route. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the corresponding mvpnMrouteNextHopCounterDiscontinuityTime object. " ::= { mvpnMrouteNextHopEntry 15 } mvpnMrouteNextHopCounterDiscontinuityTime OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime on the most recent occasion at which any one or more of this application's counters, viz., counters with the OID prefix 'mvpnMrouteNextHopOctets' or 'mvpnMrouteNextHopPackets', suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, this object will have a zero value. " ::= { mvpnMrouteNextHopEntry 16 } -- MVPN Notifications mvpnMvrfActionTaken NOTIFICATION-TYPE OBJECTS { mvpnGenMvrfCreationTime, mvpnGenMvrfLastAction, mvpnGenMvrfLastActionTime, mvpnGenMvrfCreationTime, mvpnGenCmcastRouteProtocol, mvpnGenUmhSelection, mvpnGenCustomerSiteType } STATUS current DESCRIPTION "mvpnMvrfActionTaken notifies about a change in an MVRF on the PE. The change itself will be given by mvpnGenMvrfLastAction.
" ::= { mvpnNotifications 1 } -- MVPN MIB Conformance Information mvpnGroups OBJECT IDENTIFIER ::= { mvpnConformance 1 } mvpnCompliances OBJECT IDENTIFIER ::= { mvpnConformance 2 } -- Compliance Statements mvpnModuleFullCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "Compliance statement for agents that provide full support for BGP-MPLS-LAYER3-VPN-MULTICAST-MIB. " MODULE -- this module MANDATORY-GROUPS { mvpnScalarGroup, mvpnGenericGroup, mvpnPmsiGroup, mvpnAdvtStatsGroup, mvpnMrouteGroup, mvpnMrouteNextHopGroup, mvpnNotificationGroup } GROUP mvpnBgpScalarGroup DESCRIPTION "This group is mandatory for systems that support BGP-MVPN. " GROUP mvpnBgpGroup DESCRIPTION "This group is mandatory for systems that support BGP-MVPN. " ::= { mvpnCompliances 1 } mvpnModuleReadOnlyCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "Compliance requirement for implementations that only provide read-only support for BGP-MPLS-LAYER3-VPN-MULTICAST-MIB. Such devices can then be monitored but cannot be configured using this MIB module.
" MODULE -- this module MANDATORY-GROUPS { mvpnScalarGroup, mvpnGenericGroup, mvpnPmsiGroup, mvpnAdvtStatsGroup, mvpnMrouteGroup, mvpnMrouteNextHopGroup, mvpnNotificationGroup } GROUP mvpnBgpScalarGroup DESCRIPTION "This group is mandatory for systems that support BGP-MVPN. " GROUP mvpnBgpGroup DESCRIPTION "This group is mandatory for systems that support BGP-MVPN. " OBJECT mvpnSPTunnelLimit MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT mvpnBgpCmcastRouteWithdrawalTimer MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT mvpnBgpSrcSharedTreeJoinTimer MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT mvpnBgpMsgRateLimit MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT mvpnBgpMaxSpmsiAdRoutes MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT mvpnBgpMaxSpmsiAdRouteFreq MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT mvpnBgpMaxSrcActiveAdRoutes
MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT mvpnBgpMaxSrcActiveAdRouteFreq MIN-ACCESS read-only DESCRIPTION "Write access is not required." ::= { mvpnCompliances 2 } mvpnModuleAdvtStatsCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "Compliance statement for agents that support the monitoring of the statistics pertaining to advertisements sent/received by a PE. " MODULE -- this module MANDATORY-GROUPS { mvpnAdvtStatsGroup } ::= { mvpnCompliances 3 } -- Units of Conformance mvpnScalarGroup OBJECT-GROUP OBJECTS { mvpnMvrfs, mvpnV4Mvrfs, mvpnV6Mvrfs, mvpnPimV4Mvrfs, mvpnPimV6Mvrfs, mvpnSPTunnelLimit } STATUS current DESCRIPTION "These objects are used to monitor/manage global statistics and parameters. " ::= { mvpnGroups 1 } mvpnBgpScalarGroup OBJECT-GROUP OBJECTS { mvpnMldpMvrfs, mvpnBgpV4Mvrfs, mvpnBgpV6Mvrfs, mvpnBgpCmcastRouteWithdrawalTimer,
mvpnBgpSrcSharedTreeJoinTimer } STATUS current DESCRIPTION "These objects are used to monitor/manage BGP-MVPN-specific global parameters. " ::= { mvpnGroups 2 } mvpnGenericGroup OBJECT-GROUP OBJECTS { mvpnGenMvrfLastAction, mvpnGenMvrfLastActionTime, mvpnGenMvrfCreationTime, mvpnGenCmcastRouteProtocol, mvpnGenIpmsiInfo, mvpnGenInterAsPmsiInfo, mvpnGenUmhSelection, mvpnGenCustomerSiteType } STATUS current DESCRIPTION "These objects are used to monitor MVPNs on a PE. " ::= { mvpnGroups 3 } mvpnBgpGroup OBJECT-GROUP OBJECTS { mvpnBgpMode, mvpnBgpVrfRouteImportExtendedCommunity, mvpnBgpSrcASExtendedCommunity, mvpnBgpMsgRateLimit, mvpnBgpMaxSpmsiAdRoutes, mvpnBgpMaxSpmsiAdRouteFreq, mvpnBgpMaxSrcActiveAdRoutes, mvpnBgpMaxSrcActiveAdRouteFreq } STATUS current DESCRIPTION "These objects are used to monitor/manage MVPN-wise BGP-specific parameters. " ::= { mvpnGroups 4 } mvpnPmsiGroup OBJECT-GROUP OBJECTS { mvpnPmsiRD, mvpnPmsiTunnelType,
mvpnPmsiTunnelAttribute, mvpnPmsiTunnelPimGroupAddrType, mvpnPmsiTunnelPimGroupAddr, mvpnPmsiEncapsulationType, mvpnSpmsiPmsiPointer } STATUS current DESCRIPTION "These objects are used to monitor I-PMSI and S-PMSI tunnels on a PE. " ::= { mvpnGroups 5 } mvpnAdvtStatsGroup OBJECT-GROUP OBJECTS { mvpnAdvtSent, mvpnAdvtReceived, mvpnAdvtReceivedError, mvpnAdvtReceivedMalformedTunnelType, mvpnAdvtReceivedMalformedTunnelId, mvpnAdvtLastSentTime, mvpnAdvtLastReceivedTime, mvpnAdvtCounterDiscontinuityTime } STATUS current DESCRIPTION "These objects are used to monitor the statistics pertaining to I-PMSI and S-PMSI advertisements sent/received by a PE. " ::= { mvpnGroups 6 } mvpnMrouteGroup OBJECT-GROUP OBJECTS { mvpnMrouteUpstreamNeighborAddrType, mvpnMrouteUpstreamNeighborAddr, mvpnMrouteInIfIndex, mvpnMrouteExpiryTime, mvpnMrouteProtocol, mvpnMrouteRtProtocol, mvpnMrouteRtAddrType, mvpnMrouteRtAddr, mvpnMrouteRtPrefixLength, mvpnMrouteRtType, mvpnMrouteOctets, mvpnMroutePkts, mvpnMrouteTtlDroppedOctets, mvpnMrouteTtlDroppedPackets,
mvpnMrouteDroppedInOctets, mvpnMrouteDroppedInPackets, mvpnMroutePmsiPointer, mvpnMrouteNumberOfLocalReplication, mvpnMrouteNumberOfRemoteReplication, mvpnMrouteCounterDiscontinuityTime } STATUS current DESCRIPTION "These objects are used to monitor multicast routing information corresponding to the MVRFs on a PE. " ::= { mvpnGroups 7 } mvpnMrouteNextHopGroup OBJECT-GROUP OBJECTS { mvpnMrouteNextHopState, mvpnMrouteNextHopExpiryTime, mvpnMrouteNextHopClosestMemberHops, mvpnMrouteNextHopProtocol, mvpnMrouteNextHopOctets, mvpnMrouteNextHopPkts, mvpnMrouteNextHopCounterDiscontinuityTime } STATUS current DESCRIPTION "These objects are used to monitor the information on next hops for routing datagrams to MVPNs on a PE. " ::= { mvpnGroups 8 } mvpnNotificationGroup NOTIFICATION-GROUP NOTIFICATIONS { mvpnMvrfActionTaken } STATUS current DESCRIPTION "Objects required for MVPN notifications." ::= { mvpnGroups 9 } END
4. Security Considerations
This MIB module contains some read-only objects that may be deemed sensitive. It also contains some read-write objects whose settings will change the device's MVPN-related behavior. Appropriate security procedures that are related to SNMP in general but are not specific to this MIB module need to be implemented by concerned operators. There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection opens devices to attack. These are the tables and objects and their sensitivity/vulnerability: o mvpnSPTunnelLimit The value of this object is used to control the maximum number of selective provider tunnels that a PE allows for a particular MVPN. Access to this object may be abused to impact the performance of the PE or prevent the PE from having new selective provider tunnels. o mvpnBgpCmcastRouteWithdrawalTimer The value of this object is used to control the delay for the advertisement of withdrawals of C-multicast routes. Access to this object may be abused to impact the performance of a PE. o mvpnBgpSrcSharedTreeJoinTimer The value of this object is used to control the delay for the advertisement of Source/Shared Tree Join C-multicast routes. Access to this object may be abused to impact the propagation of C-multicast routing information. o mvpnBgpMsgRateLimit The value of this object is used to control the upper bound for the rate of BGP C-multicast routing information message exchange among PEs. Access to this object may be abused to impact the performance of the PE or disrupt the C-multicast routing information message exchange using BGP.
o mvpnBgpMaxSpmsiAdRoutes The value of this object is used to control the upper bound for the number of S-PMSI A-D routes. Access to this object may be abused to impact the performance of the PE or prevent the PE from receiving S-PMSI A-D routes. o mvpnBgpMaxSpmsiAdRouteFreq The value of this object is used to control the upper bound for the frequency of S-PMSI A-D route generation. Access to this object may be abused to impact the performance of the PE or prevent the PE from generating new S-PMSI A-D routes. o mvpnBgpMaxSrcActiveAdRoutes The value of this object is used to control the upper bound for the number of Source Active A-D routes. Access to this object may be abused to impact the performance of the PE or prevent the PE from receiving Source Active A-D routes. o mvpnBgpMaxSrcActiveAdRouteFreq The value of this object is used to control the upper bound for the frequency of Source Active A-D route generation. Access to this object may be abused to impact the performance of the PE or prevent the PE from generating new Source Active A-D routes. Some of the objects in this MIB module may be considered sensitive or vulnerable in some network environments. This includes INDEX objects with a MAX-ACCESS of not-accessible, and any indices from other modules exposed via AUGMENTS. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability: o The address-related objects in this MIB module may have impact on privacy and security. These objects may reveal the locations of senders and recipients. * mvpnPmsiTunnelPimGroupAddr * mvpnSpmsiCmcastGroupAddr * mvpnSpmsiCmcastSourceAddr * mvpnAdvtPeerAddr
* mvpnMrouteCmcastGroupAddr * mvpnMrouteCmcastSourceAddrs * mvpnMrouteUpstreamNeighborAddr * mvpnMrouteRtAddr * mvpnMrouteNextHopGroupAddr * mvpnMrouteNextHopSourceAddrs * mvpnMrouteNextHopAddr SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPsec), there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module. Implementations SHOULD provide the security features described by the SNMPv3 framework (see [RFC3410]), and implementations claiming compliance to the SNMPv3 standard MUST include full support for authentication and privacy via the User-based Security Model (USM) [RFC3414] with the AES cipher algorithm [RFC3826]. Implementations MAY also provide support for the Transport Security Model (TSM) [RFC5591] in combination with a secure transport such as SSH [RFC5592] or TLS/DTLS [RFC6353]. Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.5. IANA Considerations
The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER value recorded in the "SMI Network Management MGMT Codes Internet-standard MIB" registry: Name Description OBJECT IDENTIFIER value ------- --------------------------------- ---------------------- mvpnMIB BGP-MPLS-LAYER3-VPN-MULTICAST-MIB { mib-2 243 }
6. References
6.1. Normative References
[RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003, DOI 10.17487/RFC2003, October 1996, <https://www.rfc-editor.org/info/rfc2003>. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>. [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed., "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, DOI 10.17487/RFC2578, April 1999, <https://www.rfc-editor.org/info/rfc2578>. [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed., "Textual Conventions for SMIv2", STD 58, RFC 2579, DOI 10.17487/RFC2579, April 1999, <https://www.rfc-editor.org/info/rfc2579>. [RFC2580] McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed., "Conformance Statements for SMIv2", STD 58, RFC 2580, DOI 10.17487/RFC2580, April 1999, <https://www.rfc-editor.org/info/rfc2580>. [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. Traina, "Generic Routing Encapsulation (GRE)", RFC 2784, DOI 10.17487/RFC2784, March 2000, <https://www.rfc-editor.org/info/rfc2784>. [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000, <https://www.rfc-editor.org/info/rfc2863>. [RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001, <https://www.rfc-editor.org/info/rfc3032>. [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)", STD 62, RFC 3414, DOI 10.17487/RFC3414, December 2002, <https://www.rfc-editor.org/info/rfc3414>.
[RFC3826] Blumenthal, U., Maino, F., and K. McCloghrie, "The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model", RFC 3826, DOI 10.17487/RFC3826, June 2004, <https://www.rfc-editor.org/info/rfc3826>. [RFC4001] Daniele, M., Haberman, B., Routhier, S., and J. Schoenwaelder, "Textual Conventions for Internet Network Addresses", RFC 4001, DOI 10.17487/RFC4001, February 2005, <https://www.rfc-editor.org/info/rfc4001>. [RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February 2006, <https://www.rfc-editor.org/info/rfc4364>. [RFC4382] Nadeau, T., Ed. and H. van der Linde, Ed., "MPLS/BGP Layer 3 Virtual Private Network (VPN) Management Information Base", RFC 4382, DOI 10.17487/RFC4382, February 2006, <https://www.rfc-editor.org/info/rfc4382>. [RFC5132] McWalter, D., Thaler, D., and A. Kessler, "IP Multicast MIB", RFC 5132, DOI 10.17487/RFC5132, December 2007, <https://www.rfc-editor.org/info/rfc5132>. [RFC5591] Harrington, D. and W. Hardaker, "Transport Security Model for the Simple Network Management Protocol (SNMP)", STD 78, RFC 5591, DOI 10.17487/RFC5591, June 2009, <https://www.rfc-editor.org/info/rfc5591>. [RFC5592] Harrington, D., Salowey, J., and W. Hardaker, "Secure Shell Transport Model for the Simple Network Management Protocol (SNMP)", RFC 5592, DOI 10.17487/RFC5592, June 2009, <https://www.rfc-editor.org/info/rfc5592>. [RFC6353] Hardaker, W., "Transport Layer Security (TLS) Transport Model for the Simple Network Management Protocol (SNMP)", STD 78, RFC 6353, DOI 10.17487/RFC6353, July 2011, <https://www.rfc-editor.org/info/rfc6353>. [RFC6513] Rosen, E., Ed. and R. Aggarwal, Ed., "Multicast in MPLS/ BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, February 2012, <https://www.rfc-editor.org/info/rfc6513>. [RFC6514] Aggarwal, R., Rosen, E., Morin, T., and Y. Rekhter, "BGP Encodings and Procedures for Multicast in MPLS/BGP IP VPNs", RFC 6514, DOI 10.17487/RFC6514, February 2012, <https://www.rfc-editor.org/info/rfc6514>.
[RFC6625] Rosen, E., Ed., Rekhter, Y., Ed., Hendrickx, W., and R. Qiu, "Wildcards in Multicast VPN Auto-Discovery Routes", RFC 6625, DOI 10.17487/RFC6625, May 2012, <https://www.rfc-editor.org/info/rfc6625>. [RFC7761] Fenner, B., Handley, M., Holbrook, H., Kouvelas, I., Parekh, R., Zhang, Z., and L. Zheng, "Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)", STD 83, RFC 7761, DOI 10.17487/RFC7761, March 2016, <https://www.rfc-editor.org/info/rfc7761>. [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>. [RFC8502] Zhang, Z. and H. Tsunoda, "L2L3 VPN Multicast MIB", RFC 8502, DOI 10.17487/RFC8502, December 2018, <https://www.rfc-editor.org/info/rfc8502>.6.2. Informative References
[RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet- Standard Management Framework", RFC 3410, DOI 10.17487/RFC3410, December 2002, <https://www.rfc-editor.org/info/rfc3410>.
Acknowledgements
An earlier draft version of this document was coauthored by Zhaohui (Jeffrey) Zhang, Saud Asif, Andy Green, Sameer Gulrajani, and Pradeep G. Jain. That document, in turn, was based on an earlier document written by Susheela Vaidya, Thomas D. Nadeau, and Harmen Van der Linde. This document also borrows heavily from the design and descriptions of ipMcastRouteTable and ipMcastRouteNextHopTable from IPMCAST-MIB [RFC5132]. Glenn Mansfield Keeni did the MIB Doctor review and provided valuable comments.Author's Address
Hiroshi Tsunoda Tohoku Institute of Technology 35-1, Yagiyama Kasumi-cho, Taihaku-ku Sendai 982-8577 Japan Phone: +81-22-305-3411 Email: tsuno@m.ieice.org