Internet Engineering Task Force (IETF) C. Filsfils, Ed. Request for Comments: 8402 S. Previdi, Ed. Category: Standards Track L. Ginsberg ISSN: 2070-1721 Cisco Systems, Inc. B. Decraene S. Litkowski Orange R. Shakir Google, Inc. July 2018 Segment Routing ArchitectureAbstract
Segment Routing (SR) leverages the source routing paradigm. A node steers a packet through an ordered list of instructions, called "segments". A segment can represent any instruction, topological or service based. A segment can have a semantic local to an SR node or global within an SR domain. SR provides a mechanism that allows a flow to be restricted to a specific topological path, while maintaining per-flow state only at the ingress node(s) to the SR domain. SR can be directly applied to the MPLS architecture with no change to the forwarding plane. A segment is encoded as an MPLS label. An ordered list of segments is encoded as a stack of labels. The segment to process is on the top of the stack. Upon completion of a segment, the related label is popped from the stack. SR can be applied to the IPv6 architecture, with a new type of routing header. A segment is encoded as an IPv6 address. An ordered list of segments is encoded as an ordered list of IPv6 addresses in the routing header. The active segment is indicated by the Destination Address (DA) of the packet. The next active segment is indicated by a pointer in the new routing header.
Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8402. Copyright Notice Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 6 3. Link-State IGP Segments . . . . . . . . . . . . . . . . . . . 9 3.1. IGP-Prefix Segment (Prefix-SID) . . . . . . . . . . . . . 9 3.1.1. Prefix-SID Algorithm . . . . . . . . . . . . . . . . 9 3.1.2. SR-MPLS . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.3. SRv6 . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2. IGP-Node Segment (Node-SID) . . . . . . . . . . . . . . . 13 3.3. IGP-Anycast Segment (Anycast-SID) . . . . . . . . . . . . 13 3.3.1. Anycast-SID in SR-MPLS . . . . . . . . . . . . . . . 13 3.4. IGP-Adjacency Segment (Adj-SID) . . . . . . . . . . . . . 15 3.4.1. Parallel Adjacencies . . . . . . . . . . . . . . . . 17 3.4.2. LAN Adjacency Segments . . . . . . . . . . . . . . . 18 3.5. Inter-Area Considerations . . . . . . . . . . . . . . . . 18 4. BGP Segments . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1. BGP-Prefix Segment . . . . . . . . . . . . . . . . . . . 19 4.2. BGP Peering Segments . . . . . . . . . . . . . . . . . . 20 5. Binding Segment . . . . . . . . . . . . . . . . . . . . . . . 21 5.1. IGP Mirroring Context Segment . . . . . . . . . . . . . . 21 6. Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 22 8. Security Considerations . . . . . . . . . . . . . . . . . . . 22 8.1. SR-MPLS . . . . . . . . . . . . . . . . . . . . . . . . . 22 8.2. SRv6 . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.3. Congestion Control . . . . . . . . . . . . . . . . . . . 25 9. Manageability Considerations . . . . . . . . . . . . . . . . 25 10. References . . . . . . . . . . . . . . . . . . . . . . . . . 26 10.1. Normative References . . . . . . . . . . . . . . . . . . 26 10.2. Informative References . . . . . . . . . . . . . . . . . 27 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 30 Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 321. Introduction
Segment Routing (SR) leverages the source routing paradigm. A node steers a packet through an SR Policy instantiated as an ordered list of instructions called "segments". A segment can represent any instruction, topological or service based. A segment can have a semantic local to an SR node or global within an SR domain. SR supports per-flow explicit routing while maintaining per-flow state only at the ingress nodes to the SR domain. A segment is often referred to by its Segment Identifier (SID).
A segment may be associated with a topological instruction. A topological local segment may instruct a node to forward the packet via a specific outgoing interface. A topological global segment may instruct an SR domain to forward the packet via a specific path to a destination. Different segments may exist for the same destination, each with different path objectives (e.g., which metric is minimized, what constraints are specified). A segment may be associated with a service instruction (e.g., the packet should be processed by a container or Virtual Machine (VM) associated with the segment). A segment may be associated with a QoS treatment (e.g., shape the packets received with this segment at x Mbps). The SR architecture supports any type of instruction associated with a segment. The SR architecture supports any type of control plane: distributed, centralized, or hybrid. In a distributed scenario, the segments are allocated and signaled by IS-IS or OSPF or BGP. A node individually decides to steer packets on an SR Policy (e.g., pre-computed local protection [RFC8355]). A node individually computes the SR Policy. In a centralized scenario, the segments are allocated and instantiated by an SR controller. The SR controller decides which nodes need to steer which packets on which source-routed policies. The SR controller computes the source-routed policies. The SR architecture does not restrict how the controller programs the network. Likely options are Network Configuration Protocol (NETCONF), Path Computation Element Communication Protocol (PCEP), and BGP. The SR architecture does not restrict the number of SR controllers. Specifically, multiple SR controllers may program the same SR domain. The SR architecture allows these SR controllers to discover which SIDs are instantiated at which nodes and which sets of local (SRLB) and global (SRGB) labels are available at which node. A hybrid scenario complements a base distributed control plane with a centralized controller. For example, when the destination is outside the IGP domain, the SR controller may compute an SR Policy on behalf of an IGP node. The SR architecture does not restrict how the nodes that are part of the distributed control plane interact with the SR controller. Likely options are PCEP and BGP. Hosts MAY be part of an SR domain. A centralized controller can inform hosts about policies either by pushing these policies to hosts or by responding to requests from hosts.
The SR architecture can be instantiated on various data planes. This document introduces two data-plane instantiations of SR: SR over MPLS (SR-MPLS) and SR over IPv6 (SRv6). SR can be directly applied to the MPLS architecture with no change to the forwarding plane [SR-MPLS]. A segment is encoded as an MPLS label. An SR Policy is instantiated as a stack of labels. The segment to process (the active segment) is on the top of the stack. Upon completion of a segment, the related label is popped from the stack. SR can be applied to the IPv6 architecture with a new type of routing header called the SR Header (SRH) [IPv6-SRH]. An instruction is associated with a segment and encoded as an IPv6 address. An SRv6 segment is also called an SRv6 SID. An SR Policy is instantiated as an ordered list of SRv6 SIDs in the routing header. The active segment is indicated by the Destination Address (DA) of the packet. The next active segment is indicated by the SegmentsLeft (SL) pointer in the SRH. When an SRv6 SID is completed, the SL is decremented and the next segment is copied to the DA. When a packet is steered on an SR Policy, the related SRH is added to the packet. In the context of an IGP-based distributed control plane, two topological segments are defined: the IGP-Adjacency segment and the IGP-Prefix segment. In the context of a BGP-based distributed control plane, two topological segments are defined: the BGP peering segment and the BGP-Prefix segment. The headend of an SR Policy binds a SID (called a Binding segment or BSID) to its policy. When the headend receives a packet with active segment matching the BSID of a local SR Policy, the headend steers the packet into the associated SR Policy. This document defines the IGP, BGP, and Binding segments for the SR-MPLS and SRv6 data planes. Note: This document defines the architecture for Segment Routing, including definitions of basic objects and functions and a description of the overall design. It does NOT define the means of implementing the architecture -- that is contained in numerous referenced documents, some of which are mentioned in this document as a convenience to the reader.
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. SR-MPLS: the instantiation of SR on the MPLS data plane. SRv6: the instantiation of SR on the IPv6 data plane. Segment: an instruction a node executes on the incoming packet (e.g., forward packet according to shortest path to destination, or, forward packet through a specific interface, or, deliver the packet to a given application/service instance). SID: a segment identifier. Note that the term SID is commonly used in place of the term "Segment", though this is technically imprecise as it overlooks any necessary translation. SR-MPLS SID: an MPLS label or an index value into an MPLS label space explicitly associated with the segment. SRv6 SID: an IPv6 address explicitly associated with the segment. Segment Routing domain (SR domain): the set of nodes participating in the source-based routing model. These nodes may be connected to the same physical infrastructure (e.g., a Service Provider's network). They may as well be remotely connected to each other (e.g., an enterprise VPN or an overlay). If multiple protocol instances are deployed, the SR domain most commonly includes all of the protocol instances in a network. However, some deployments may wish to subdivide the network into multiple SR domains, each of which includes one or more protocol instances. It is expected that all nodes in an SR domain are managed by the same administrative entity. Active Segment: the segment that is used by the receiving router to process the packet. In the MPLS data plane, it is the top label. In the IPv6 data plane, it is the destination address [IPv6-SRH]. PUSH: the operation consisting of the insertion of a segment at the top of the segment list. In SR-MPLS, the top of the segment list is the topmost (outer) label of the label stack. In SRv6, the top of the segment list is represented by the first segment in the Segment Routing Header as defined in [IPv6-SRH].
NEXT: when the active segment is completed, NEXT is the operation consisting of the inspection of the next segment. The next segment becomes active. In SR-MPLS, NEXT is implemented as a POP of the top label. In SRv6, NEXT is implemented as the copy of the next segment from the SRH to the destination address of the IPv6 header. CONTINUE: the active segment is not completed; hence, it remains active. In SR-MPLS, the CONTINUE operation is implemented as a SWAP of the top label [RFC3031]. In SRv6, this is the plain IPv6 forwarding action of a regular IPv6 packet according to its destination address. SR Global Block (SRGB): the set of global segments in the SR domain. If a node participates in multiple SR domains, there is one SRGB for each SR domain. In SR-MPLS, SRGB is a local property of a node and identifies the set of local labels reserved for global segments. In SR-MPLS, using identical SRGBs on all nodes within the SR domain is strongly recommended. Doing so eases operations and troubleshooting as the same label represents the same global segment at each node. In SRv6, the SRGB is the set of global SRv6 SIDs in the SR domain. SR Local Block (SRLB): local property of an SR node. If a node participates in multiple SR domains, there is one SRLB for each SR domain. In SR-MPLS, SRLB is a set of local labels reserved for local segments. In SRv6, SRLB is a set of local IPv6 addresses reserved for local SRv6 SIDs. In a controller-driven network, some controllers or applications may use the control plane to discover the available set of local segments. Global Segment: a segment that is part of the SRGB of the domain. The instruction associated with the segment is defined at the SR domain level. A topological shortest-path segment to a given destination within an SR domain is a typical example of a global segment. Local Segment: In SR-MPLS, this is a local label outside the SRGB. It may be part of the explicitly advertised SRLB. In SRv6, this can be any IPv6 address, i.e., the address may be part of the SRGB, but used such that it has local significance. The instruction associated with the segment is defined at the node level. IGP Segment: the generic name for a segment attached to a piece of information advertised by a link-state IGP, e.g., an IGP prefix or an IGP adjacency. IGP-Prefix Segment: an IGP-Prefix segment is an IGP segment representing an IGP prefix. When an IGP-Prefix segment is global within the SR IGP instance/topology, it identifies an instruction to
forward the packet along the path computed using the routing algorithm specified in the algorithm field, in the topology, and in the IGP instance where it is advertised. Also referred to as "prefix segment". Prefix-SID: the SID of the IGP-Prefix segment. IGP-Anycast Segment: an IGP-Anycast segment is an IGP-Prefix segment that identifies an anycast prefix advertised by a set of routers. Anycast-SID: the SID of the IGP-Anycast segment. IGP-Adjacency Segment: an IGP-Adjacency segment is an IGP segment attached to a unidirectional adjacency or a set of unidirectional adjacencies. By default, an IGP-Adjacency segment is local (unless explicitly advertised otherwise) to the node that advertises it. Also referred to as "Adj-SID". Adj-SID: the SID of the IGP-Adjacency segment. IGP-Node Segment: an IGP-Node segment is an IGP-Prefix segment that identifies a specific router (e.g., a loopback). Also referred to as "Node Segment". Node-SID: the SID of the IGP-Node segment. SR Policy: an ordered list of segments. The headend of an SR Policy steers packets onto the SR Policy. The list of segments can be specified explicitly in SR-MPLS as a stack of labels and in SRv6 as an ordered list of SRv6 SIDs. Alternatively, the list of segments is computed based on a destination and a set of optimization objective and constraints (e.g., latency, affinity, SRLG, etc.). The computation can be local or delegated to a PCE server. An SR Policy can be configured by the operator, provisioned via NETCONF [RFC6241] or provisioned via PCEP [RFC5440]. An SR Policy can be used for Traffic Engineering (TE), Operations, Administration, and Maintenance (OAM), or Fast Reroute (FRR) reasons. Segment List Depth: the number of segments of an SR Policy. The entity instantiating an SR Policy at a node N should be able to discover the depth-insertion capability of the node N. For example, the PCEP SR capability advertisement described in [PCEP-SR-EXT] is one means of discovering this capability. Forwarding Information Base (FIB): the forwarding table of a node
3. Link-State IGP Segments
Within an SR domain, an SR-capable IGP node advertises segments for its attached prefixes and adjacencies. These segments are called "IGP segments" or "IGP SIDs". They play a key role in Segment Routing and use cases as they enable the expression of any path throughout the SR domain. Such a path is either expressed as a single IGP segment or a list of multiple IGP segments. Advertisement of IGP segments requires extensions in link-state IGP protocols. These extensions are defined in [ISIS-SR-EXT], [OSPF-SR-EXT], and [OSPFv3-SR-EXT].3.1. IGP-Prefix Segment (Prefix-SID)
An IGP-Prefix segment is an IGP segment attached to an IGP prefix. An IGP-Prefix segment is global (unless explicitly advertised otherwise) within the SR domain. The context for an IGP-Prefix segment includes the prefix, topology, and algorithm. Multiple SIDs MAY be allocated to the same prefix so long as the tuple <prefix, topology, algorithm> is unique. Multiple instances and topologies are defined in IS-IS and OSPF in: [RFC5120], [RFC8202], [RFC6549], and [RFC4915].3.1.1. Prefix-SID Algorithm
Segment Routing supports the use of multiple routing algorithms, i.e, different constraint-based shortest-path calculations can be supported. An algorithm identifier is included as part of a Prefix- SID advertisement. Specification of how an algorithm-specific path calculation is done is required in the document defining the algorithm. This document defines two algorithms: o Shortest Path First: this algorithm is the default behavior. The packet is forwarded along the well known ECMP-aware Shortest Path First (SPF) algorithm employed by the IGPs. However, it is explicitly allowed for a midpoint to implement another forwarding based on local policy. The Shortest Path First algorithm is, in fact, the default and current behavior of most of the networks where local policies may override the SPF decision. o Strict Shortest Path First (Strict-SPF): This algorithm mandates that the packet be forwarded according to the ECMP-aware SPF algorithm and instructs any router in the path to ignore any possible local policy overriding the SPF decision. The SID
advertised with the Strict-SPF algorithm ensures that the path the packet is going to take is the expected, and not altered, SPF path. Note that Fast Reroute (FRR) [RFC5714] mechanisms are still compliant with the Strict Shortest Path First algorithm. In other words, a packet received with a Strict-SPF SID may be rerouted through an FRR mechanism. Strict-SPF uses the same topology used by the Shortest Path First algorithm. Obviously, nodes that do not support Strict-SPF will not install forwarding entries for this algorithm. Restricting the topology only to those nodes that support this algorithm will not produce the desired forwarding paths since the desired behavior is to follow the path calculated by the Shortest Path First algorithm. Therefore, a source SR node MUST NOT use an SR Policy containing a strict SPF segment if the path crosses a node not supporting the Strict-SPF algorithm. An IGP-Prefix segment identifies the path, to the related prefix, computed as per the associated algorithm. A packet injected anywhere within the SR domain with an active Prefix-SID is expected to be forwarded along a path computed using the specified algorithm. For this to be possible, a fully connected topology of routers supporting the specified algorithm is required.3.1.2. SR-MPLS
When SR is used over the MPLS data plane, SIDs are an MPLS label or an index into an MPLS label space (either SRGB or SRLB). Where possible, it is recommended that identical SRGBs be configured on all nodes in an SR domain. This simplifies troubleshooting as the same label will be associated with the same prefix on all nodes. In addition, it simplifies support for anycast as detailed in Section 3.3. The following behaviors are associated with SR operating over the MPLS data plane: o The IGP signaling extension for IGP-Prefix segment includes a flag to indicate whether directly connected neighbors of the node on which the prefix is attached should perform the NEXT operation or the CONTINUE operation when processing the SID. This behavior is equivalent to Penultimate Hop Popping (NEXT) or Ultimate Hop Popping (CONTINUE) in MPLS. o A Prefix-SID is allocated in the form of an MPLS label (or an index in the SRGB) according to a process similar to IP address allocation. Typically, the Prefix-SID is allocated by policy by the operator (or Network Management System (NMS)), and the SID very rarely changes.
o While SR allows a local segment to be attached to an IGP prefix, where the terminology "IGP-Prefix segment" or "Prefix-SID" is used, the segment is assumed to be global (i.e., the SID is defined from the advertised SRGB). This is consistent with all the described use cases that require global segments attached to IGP prefixes. o The allocation process MUST NOT allocate the same Prefix-SID to different prefixes. o If a node learns of a Prefix-SID that has a value that falls outside the locally configured SRGB range, then the node MUST NOT use the Prefix-SID and SHOULD issue an error log reporting a misconfiguration. o If a node N advertises Prefix-SID SID-R for a prefix R that is attached to N and specifies CONTINUE as the operation to be performed by directly connected neighbors, then N MUST maintain the following FIB entry: Incoming Active Segment: SID-R Ingress Operation: NEXT Egress interface: NULL o A remote node M MUST maintain the following FIB entry for any learned Prefix-SID SID-R attached to prefix R: Incoming Active Segment: SID-R Ingress Operation: If the next-hop of R is the originator of R and M has been instructed to remove the active segment: NEXT Else: CONTINUE Egress interface: the interface(s) towards the next-hop along the path computed using the algorithm advertised with the SID toward prefix R. As Prefix-SIDs are specific to a given algorithm, if traffic associated with an algorithm arrives at a node that does not support that algorithm, the traffic will be dropped as there will be no forwarding entry matching the incoming label.
3.1.3. SRv6
When SR is used over the IPv6 data plane: o A Prefix-SID is an IPv6 address. o An operator MUST explicitly instantiate an SRv6 SID. IPv6 node addresses are not SRv6 SIDs by default. A node N advertising an IPv6 address R usable as a segment identifier MUST maintain the following FIB entry: Incoming Active Segment: R Ingress Operation: NEXT Egress interface: NULL Note that forwarding to R does not require an entry in the FIBs of all other routers for R. Forwarding can be, and most often will be, achieved by a shorter mask prefix that covers R. Independent of SR support, any remote IPv6 node will maintain a plain IPv6 FIB entry for any prefix, no matter if the prefix represents a segment or not. This allows forwarding of packets to the node that owns the SID even by nodes that do not support SR. Support of multiple algorithms applies to SRv6. Since algorithm- specific SIDs are simply IPv6 addresses, algorithm-specific forwarding entries can be achieved by assigning algorithm-specific subnets to the (set of) algorithm specific SIDs that a node allocates. Nodes that do not support a given algorithm may still have a FIB entry covering an algorithm-specific address even though an algorithm-specific path has not been calculated by that node. This is mitigated by the fact that nodes that do not support a given algorithm will not be included in the topology associated with that algorithm-specific SPF; therefore, traffic using the algorithm- specific destination will normally not flow via the excluded node. If such traffic were to arrive and be forwarded by such a node, it will still progress towards the destination node. The next-hop will be either a node that supports the algorithm -- in which case, the packet will be forwarded along algorithm-specific paths (or be dropped if none are available) -- or a node that does NOT support the algorithm -- in which case, the packet will continue to be forwarded along Algorithm 0 paths towards the destination node.
3.2. IGP-Node Segment (Node-SID)
An IGP Node-SID MUST NOT be associated with a prefix that is owned by more than one router within the same routing domain.3.3. IGP-Anycast Segment (Anycast-SID)
An Anycast segment or Anycast-SID enforces the ECMP-aware shortest- path forwarding towards the closest node of the anycast set. This is useful to express macro-engineering policies or protection mechanisms. An IGP-Anycast segment MUST NOT reference a particular node. Within an anycast group, all routers in an SR domain MUST advertise the same prefix with the same SID value.3.3.1. Anycast-SID in SR-MPLS
+--------------+ | Group A | |192.0.2.10/32 | | SID:100 | | | +-----------A1---A3----------+ | | | \ / | | | SID:10 | | | / | | | SID:30 203.0.113.1/32 | | | / \ | | | 203.0.113.3/32 PE1------R1----------A2---A4---------R3------PE3 \ /| | | |\ / \ / | +--------------+ | \ / \ / | | \ / / | | / / \ | | / \ / \ | +--------------+ | / \ / \| | | |/ \ PE2------R2----------B1---B3---------R4------PE4 203.0.113.2/32 | | | \ / | | | 203.0.113.4/32 SID:20 | | | / | | | SID:40 | | | / \ | | | +-----------B2---B4----------+ | | | Group B | | 192.0.2.1/32 | | SID:200 | +--------------+ Figure 1: Transit Device Groups
The Figure 1 illustrates a network example with two groups of transit devices. Group A consists of devices {A1, A2, A3, and A4}. They are all provisioned with the anycast address 192.0.2.10/32 and the Anycast-SID 100. Similarly, Group B consists of devices {B1, B2, B3, and B4}, and they are all provisioned with the anycast address 192.0.2.1/32 and the Anycast-SID 200. In the above network topology, each Provide Edge (PE) device has a path to each of the groups: A and B. PE1 can choose a particular transit device group when sending traffic to PE3 or PE4. This will be done by pushing the Anycast-SID of the group in the stack. Processing the anycast, and subsequent segments, requires special care. +-------------------------+ | Group A | | 192.0.2.10/32 | | SID:100 | |-------------------------| | | | SRGB: SRGB: | SID:10 |(1000-2000) (3000-4000)| SID:30 PE1---+ +-------A1-------------A3-------+ +---PE3 \ / | | \ / | | \ / \ / | | +-----+ / | | \ / SRGB: \ / | | \ / | | \ / SRGB: (7000-8000) R1 | | \ | | R3 (6000-7000) / \ | | / \ | | / \ / \ | | +-----+ \ | | / \ / \ | | / \ | | / \ PE2---+ +-------A2-------------A4-------+ +---PE4 SID:20 | SRGB: SRGB: | SID:40 |(2000-3000) (4000-5000)| | | +-------------------------+ Figure 2: Transit Paths via Anycast Group A
Considering an MPLS deployment, in the above topology, if device PE1 (or PE2) requires the sending of a packet to the device PE3 (or PE4), it needs to encapsulate the packet in an MPLS payload with the following stack of labels. o Label allocated by R1 for Anycast-SID 100 (outer label). o Label allocated by the nearest router in Group A for SID 30 (for destination PE3). In this case, the first label is easy to compute. However, because there is more than one device that is topologically nearest (A1 and A2), determining the second label is impossible unless A1 and A2 allocated the same label value to the same prefix. Devices A1 and A2 may be devices from different hardware vendors. If both don't allocate the same label value for SID 30, it is impossible to use the anycast Group A as a transit anycast group towards PE3. Hence, PE1 (or PE2) cannot compute an appropriate label stack to steer the packet exclusively through the Group A devices. Same holds true for devices PE3 and PE4 when trying to send a packet to PE1 or PE2. To ease the use of an anycast segment, it is recommended to configure identical SRGBs on all nodes of a particular anycast group. Using this method, as mentioned above, computation of the label following the anycast segment is straightforward. Using an anycast segment without configuring identical SRGBs on all nodes belonging to the same anycast group may lead to misrouting (in an MPLS VPN deployment, some traffic may leak between VPNs).3.4. IGP-Adjacency Segment (Adj-SID)
The adjacency is formed by the local node (i.e., the node advertising the adjacency in the IGP) and the remote node (i.e., the other end of the adjacency). The local node MUST be an IGP node. The remote node may be an adjacent IGP neighbor or a non-adjacent neighbor (e.g., a forwarding adjacency, [RFC4206]). A packet injected anywhere within the SR domain with a segment list {SN, SNL} where SN is the Node-SID of node N and SNL is an Adj-SID attached by node N to its adjacency over link L will be forwarded along the shortest path to N and then be switched by N, without any IP shortest-path consideration, towards link L. If the Adj-SID identifies a set of adjacencies, then the node N load-balances the traffic among the various members of the set.
Similarly, when using a global Adj-SID, a packet injected anywhere within the SR domain with a segment list {SNL}, where SNL is a global Adj-SID attached by node N to its adjacency over link L, will be forwarded along the shortest path to N and then be switched by N, without any IP shortest-path consideration, towards link L. If the Adj-SID identifies a set of adjacencies, then the node N does load- balance the traffic among the various members of the set. The use of global Adj-SID allows to reduce the size of the segment list when expressing a path at the cost of additional state (i.e., the global Adj-SID will be inserted by all routers within the area in their forwarding table). An "IGP-Adjacency segment" or "Adj-SID" enforces the switching of the packet from a node towards a defined interface or set of interfaces. This is key to theoretically prove that any path can be expressed as a list of segments. The encodings of the Adj-SID include a set of flags supporting the following functionalities: o Eligible for Protection (e.g., using IPFRR or MPLS-FRR). Protection allows that in the event the interface(s) associated with the Adj-SID are down, that the packet can still be forwarded via an alternate path. The use of protection is clearly a policy- based decision; that is, for a given policy protection may or may not be desirable. o Indication whether the Adj-SID has local or global scope. Default scope SHOULD be local. o Indication whether the Adj-SID is persistent across control plane restarts. Persistence is a key attribute in ensuring that an SR Policy does not temporarily result in misforwarding due to reassignment of an Adj-SID. A weight (as described below) is also associated with the Adj-SID advertisement. A node SHOULD allocate one Adj-SID for each of its adjacencies. A node MAY allocate multiple Adj-SIDs for the same adjacency. An example is to support an Adj-SID that is eligible for protection and an Adj-SID that is NOT eligible for protection. A node MAY associate the same Adj-SID to multiple adjacencies.
In order to be able to advertise in the IGP all the Adj-SIDs representing the IGP adjacencies between two nodes, parallel adjacency suppression MUST NOT be performed by the IGP. When a node binds an Adj-SID V to a local data-link L, the node MUST install the following FIB entry: Incoming Active Segment: V Ingress Operation: NEXT Egress Interface: L The Adj-SID implies, from the router advertising it, the forwarding of the packet through the adjacency or adjacencies identified by the Adj-SID, regardless of its IGP/SPF cost. In other words, the use of adjacency segments overrides the routing decision made by the SPF algorithm.3.4.1. Parallel Adjacencies
Adj-SIDs can be used in order to represent a set of parallel interfaces between two adjacent routers. A node MUST install a FIB entry for any locally originated Adj-SID of value W attached to a set of links B with: Incoming Active Segment: W Ingress Operation: NEXT Egress interfaces: load-balance between any data-link within set B When parallel adjacencies are used and associated with the same Adj- SID, and, in order to optimize the load-balancing function, a "weight" factor can be associated with the Adj-SID advertised with each adjacency. The weight tells the ingress (or an SDN/ orchestration system) about the load-balancing factor over the parallel adjacencies. As shown in Figure 3, A and B are connected through two parallel adjacencies Link-1 +--------+ | | S---A B---C | | +--------+ Link-2 Figure 3: Parallel Links and Adj-SIDs
Node A advertises following Adj-SIDs and weights: o Link-1: Adj-SID 1000, weight: 1 o Link-2: Adj-SID 1000, weight: 2 Node S receives the advertisements of the parallel adjacencies and understands that by using Adj-SID 1000 node A will load-balance the traffic across the parallel links (Link-1 and Link-2) according to a 1:2 ratio i.e., twice as many packets will flow over Link-2 as compared to Link-1.3.4.2. LAN Adjacency Segments
In LAN subnetworks, link-state protocols define the concept of Designated Router (DR, in OSPF) or Designated Intermediate System (DIS, in IS-IS) that conduct flooding in broadcast subnetworks and that describe the LAN topology in a special routing update (OSPF Type2 LSA or IS-IS Pseudonode LSP). The difficulty with LANs is that each router only advertises its connectivity to the DR/DIS and not to each of the individual nodes in the LAN. Therefore, additional protocol mechanisms (IS-IS and OSPF) are necessary in order for each router in the LAN to advertise an Adj-SID associated with each neighbor in the LAN.3.5. Inter-Area Considerations
In the following example diagram, it is assumed that the all areas are part of a single SR domain. The Figure 4 assumes the IPv6 control plane with the MPLS data plane. ! ! ! ! B------C-----F----G-----K / | | | S---A/ | | | \ | | | \D------I----------J-----L----Z (2001:DB8::2:1/128, Node-SID 150) ! ! Area 1 ! Backbone ! Area 2 ! area ! Figure 4: Inter-Area Topology Example
In Area 2, node Z allocates Node-SID 150 to his local IPv6 prefix 2001:DB8::2:1/128. Area Border Routers (ABRs) G and J will propagate the prefix and its SIDs into the backbone area by creating a new instance of the prefix according to normal inter-area/level IGP propagation rules. Nodes C and I will apply the same behavior when leaking prefixes from the backbone area down to area 1. Therefore, node S will see prefix 2001:DB8::2:1/128 with Prefix-SID 150 and advertised by nodes C and I. Therefore, the result is that a Prefix-SID remains attached to its related IGP prefix through the inter-area process, which is the expected behavior in a single SR domain. When node S sends traffic to 2001:DB8::2:1/128, it pushes Node- SID(150) as an active segment and forwards it to A. When a packet arrives at ABR I (or C), the ABR forwards the packet according to the active segment (Node-SID(150)). Forwarding continues across area borders, using the same Node-SID(150) until the packet reaches its destination.