Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 8360

Resource Public Key Infrastructure (RPKI) Validation Reconsidered

Pages: 29
Proposed Standard
Errata

Top   ToC   RFC8360 - Page 1
Internet Engineering Task Force (IETF)                         G. Huston
Request for Comments: 8360                                 G. Michaelson
Category: Standards Track                                          APNIC
ISSN: 2070-1721                                              C. Martinez
                                                                  LACNIC
                                                          T. Bruijnzeels
                                                                RIPE NCC
                                                               A. Newton
                                                                    ARIN
                                                                 D. Shaw
                                                                 AFRINIC
                                                              April 2018


   Resource Public Key Infrastructure (RPKI) Validation Reconsidered

Abstract

This document specifies an alternative to the certificate validation procedure specified in RFC 6487 that reduces aspects of operational fragility in the management of certificates in the Resource Public Key Infrastructure (RPKI), while retaining essential security features. The procedure specified in RFC 6487 requires that Resource Certificates are rejected entirely if they are found to overclaim any resources not contained on the issuing certificate, whereas the validation process defined here allows an issuing Certification Authority (CA) to chose to communicate that such Resource Certificates should be accepted for the intersection of their resources and the issuing certificate. It should be noted that the validation process defined here considers validation under a single trust anchor (TA) only. In particular, concerns regarding overclaims where multiple configured TAs claim overlapping resources are considered out of scope for this document. This choice is signaled by a set of alternative Object Identifiers (OIDs) per "X.509 Extensions for IP Addresses and AS Identifiers" (RFC 3779) and "Certificate Policy (CP) for the Resource Public Key Infrastructure (RPKI)" (RFC 6484). It should be noted that in case these OIDs are not used for any certificate under a trust anchor, the validation procedure defined here has the same outcome as the procedure defined in RFC 6487. Furthermore, this document provides an alternative to Route Origin Authorization (ROA) (RFC 6482) and BGPsec Router Certificate (BGPsec PKI Profiles -- publication requested) validation.
Top   ToC   RFC8360 - Page 2
Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8360.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
Top   ToC   RFC8360 - Page 3

Table of Contents

1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1. Requirements Notation . . . . . . . . . . . . . . . . . . 4 2. Certificate Validation in the RPKI . . . . . . . . . . . . . 4 3. Operational Considerations . . . . . . . . . . . . . . . . . 5 4. An Amended RPKI Certification Validation Process . . . . . . 7 4.1. Verified Resource Sets . . . . . . . . . . . . . . . . . 7 4.2. Differences with Existing Standards . . . . . . . . . . . 7 4.2.1. Certificate Policy (CP) for Use with Validation Reconsidered in the RPKI . . . . . . . . . . . . . . 7 4.2.2. An Alternative to X.509 Extensions for IP Addresses and AS Identifiers (RFC 3779) . . . . . . . . . . . . 8 4.2.3. Addendum to RFC 6268 . . . . . . . . . . . . . . . . 12 4.2.4. An Alternative to the Profile for X.509 PKIX Resource Certificates . . . . . . . . . . . . . . . . . . . . 14 4.2.5. An Alternative ROA Validation . . . . . . . . . . . . 18 4.2.6. An Alternative to BGPsec Router Certificate Validation . . . . . . . . . . . . . . . . . . . . . 18 5. Validation Examples . . . . . . . . . . . . . . . . . . . . . 19 5.1. Example 1 -- An RPKI Tree Using the Old OIDs Only . . . . 19 5.2. Example 2 -- An RPKI Tree Using the New OIDs Only . . . . 21 5.3. Example 3 -- An RPKI Tree Using a Mix of Old and New OIDs 23 6. Deployment Considerations . . . . . . . . . . . . . . . . . . 25 7. Security Considerations . . . . . . . . . . . . . . . . . . . 26 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 26 9. References . . . . . . . . . . . . . . . . . . . . . . . . . 27 9.1. Normative References . . . . . . . . . . . . . . . . . . 27 9.2. Informative References . . . . . . . . . . . . . . . . . 28 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 28 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 28
Top   ToC   RFC8360 - Page 4

1. Overview

This document specifies an alternative to the certificate validation procedure specified in RFC 6487. Where the procedure specified in RFC 6487 will require that Resource Certificates be rejected entirely if they are found to overclaim any resources not contained on the issuing certificate, the procedure defined here dictates that these Resource Certificates be accepted for the intersection of their resources and the issuing certificate only. The outcome of both procedures is the same as long as no overclaims occur. Furthermore, the new procedure can never lead to the acceptance of resources that are not validly held on the path of issuing certificates. However, the procedure defined here will limit the impact in case resources are no longer validly held on the path of issuing certificates to attestations, such as Route Origin Authorizations [RFC6482] that refer to these resources only.

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Certificate Validation in the RPKI

As currently defined in Section 7.2 of [RFC6487], validation of PKIX certificates that conform to the RPKI profile relies on the use of a path validation process where each certificate in the validation path is required to meet the certificate validation criteria. These criteria require, in particular, that the Internet Number Resources (INRs) of each certificate in the validation path are "encompassed" by INRs on the issuing certificate. The first certificate in the path is required to be a trust anchor, and its resources are considered valid by definition.
Top   ToC   RFC8360 - Page 5
   For example, in the following sequence:

   Certificate 1 (trust anchor):
   Issuer TA,
   Subject TA,
   Resources 192.0.2.0/24, 198.51.100.0/24,
         2001:db8::/32, AS64496-AS64500

   Certificate 2:
   Issuer TA,
   Subject CA1,
   Resources 192.0.2.0/24, 198.51.100.0/24, 2001:db8::/32

   Certificate 3:
   Issuer CA1,
   Subject CA2,
   Resources 192.0.2.0/24, 198.51.100.0/24, 2001:db8::/32

   ROA 1:
   Embedded Certificate 4 (EE certificate):
   Issuer CA2,
   Subject R1,
   Resources 192.0.2.0/24

   Prefix 192.0.2.0/24, Max Length 24, ASN 64496

   All certificates in this scenario are considered valid since the INRs
   of each certificate are encompassed by those of the issuing
   certificate.  ROA1 is valid because the specified prefix is
   encompassed by the embedded end entity (EE) certificate, as required
   by [RFC6482].

3. Operational Considerations

The allocations recorded in the RPKI change as a result of resource transfers. For example, the CAs involved in transfer might choose to modify CA certificates in an order that causes some of these certificates to "overclaim" temporarily. A certificate is said to "overclaim" if it includes INRs not contained in the INRs of the CA that issued the certificate in question. It may also happen that a child CA does not voluntarily request a shrunk Resource Certificate when resources are being transferred or reclaimed by the parent. Furthermore, operational errors that may occur during management of RPKI databases also may create CA certificates that, temporarily, no longer encompass all of the INRs of subordinate certificates.
Top   ToC   RFC8360 - Page 6
   Consider the following sequence:

   Certificate 1 (trust anchor):
   Issuer TA,
   Subject TA,
   Resources 192.0.2.0/24, 198.51.100.0/24,
        2001:db8::/32, AS64496-AS64500

   Certificate 2:
   Issuer TA,
   Subject CA1,
   Resources 192.0.2.0/24, 2001:db8::/32

   Certificate 3 (invalid):
   Issuer CA1,
   Subject CA2,
   Resources 192.0.2.0/24, 198.51.100.0/24, 2001:db8::/32

   ROA 1 (invalid):
   Embedded Certificate 4 (EE certificate, invalid):
   Issuer CA2,
   Subject R1,
   Resources 192.0.2.0/24

   Prefix 192.0.2.0/24, Max Length 24, ASN 64496

   Here, Certificate 2 from the previous example was reissued by TA to
   CA1, and the prefix 198.51.100.0/24 was removed.  However, CA1 failed
   to reissue a new Certificate 3 to CA2.  As a result, Certificate 3 is
   now overclaiming and considered invalid; by recursion, the embedded
   Certificate 4 used for ROA1 is also invalid.  And ROA1 is invalid
   because the specified prefix contained in the ROA is no longer
   encompassed by a valid embedded EE certificate, as required by
   [RFC6482].

   However, it should be noted that ROA1 does not make use of any of the
   address resources that were removed from CA1's certificate; thus, it
   would be desirable if ROA1 could still be viewed as valid.
   Technically, CA1 should reissue a Certificate 3 to CA2 without
   198.51.100.0/24, and then ROA1 would be considered valid according to
   [RFC6482].  But as long as CA1 does not take this action, ROA1
   remains invalid.  It would be preferable if ROA1 could be considered
   valid, since the assertion it makes was not affected by the reduced
   scope of CA1's certificate.
Top   ToC   RFC8360 - Page 7

4. An Amended RPKI Certification Validation Process

4.1. Verified Resource Sets

The problem described above can be considered a low probability problem today. However, the potential impact on routing security would be high if an overclaiming occurred near the apex of the RPKI hierarchy, as this would invalidate the entirety of the subtree located below this point. The changes specified here to the validation procedure in [RFC6487] do not change the probability of this problem, but they do limit the impact to just the overclaimed resources. This revised validation algorithm is intended to avoid causing CA certificates to be treated as completely invalid as a result of overclaims. However, these changes are designed to not degrade the security offered by the RPKI. Specifically, ROAs and router certificates will be treated as valid only if all of the resources contained in them are encompassed by all superior certificates along a path to a trust anchor. The way this is achieved conceptually is by maintaining a Verified Resource Set (VRS) for each certificate that is separate from the INRs found in the resource extension [RFC3779] in the certificate.

4.2. Differences with Existing Standards

4.2.1. Certificate Policy (CP) for Use with Validation Reconsidered in the RPKI

Note that Section 1.2 of [RFC6484] defines the "Certificate Policy (CP) for the Resource PKI (RPKI)" with the following OID: id-cp-ipAddr-asNumber OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) cp(14) 2 } Per this document, a new OID for an alternative "Certificate Policy (CP) for use with validation reconsidered in the Resource PKI (RPKI)" has been assigned as follows: id-cp-ipAddr-asNumber-v2 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) cp(14) 3 } This alternative Certificate Policy is the same as the Certificate Policy described in [RFC6484], except that it is used to drive the decision in Step 8 of the validation procedure described in Section 4.2.4.4.
Top   ToC   RFC8360 - Page 8

4.2.2. An Alternative to X.509 Extensions for IP Addresses and AS Identifiers (RFC 3779)

This document defines an alternative to [RFC3779]. All specifications and procedures described in [RFC3779] apply, with the notable exceptions described in the following subsections.
4.2.2.1. OID for id-pe-ipAddrBlocks-v2
Per this document, an OID has been assigned for the extension id-pe-ipAddrBlocks-v2 (id-pe 28). This OID MUST only be used in conjunction with the alternative Certificate Policy OID defined in Section 4.2.1. The following is an amended specification to be used as an alternative to the specification in Section 2.2.1 of [RFC3779]. The OID for this extension is id-pe-ipAddrBlocks-v2. id-pe-ipAddrBlocks-v2 OBJECT IDENTIFIER ::= { id-pe 28 } where [RFC5280] defines: id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) } id-pe OBJECT IDENTIFIER ::= { id-pkix 1 }
Top   ToC   RFC8360 - Page 9
4.2.2.2. Syntax for id-pe-ipAddrBlocks-v2
id-pe-ipAddrBlocks-v2 OBJECT IDENTIFIER ::= { id-pe 28 } IPAddrBlocks ::= SEQUENCE OF IPAddressFamily IPAddressFamily ::= SEQUENCE { -- AFI & optional SAFI -- addressFamily OCTET STRING (SIZE (2..3)), ipAddressChoice IPAddressChoice } IPAddressChoice ::= CHOICE { inherit NULL, -- inherit from issuer -- addressesOrRanges SEQUENCE OF IPAddressOrRange } IPAddressOrRange ::= CHOICE { addressPrefix IPAddress, addressRange IPAddressRange } IPAddressRange ::= SEQUENCE { min IPAddress, max IPAddress } IPAddress ::= BIT STRING Note that the descriptions of objects referenced in the syntax above are defined in Sections 2.2.3.1 through 2.2.3.9 of [RFC3779].
4.2.2.3. OID for id-pe-autonomousSysIds-v2
Per this document, an OID has been assigned for the extension id-pe- autonomousSysIds-v2 (id-pe 29). This OID MUST only be used in conjunction with the alternative Certificate Policy OID defined in Section 4.2.1. The following is an amended specification to be used as an alternative to the specification in Section 3.2.1 of [RFC3779]. The OID for this extension is id-pe-autonomousSysIds-v2. id-pe-autonomousSysIds-v2 OBJECT IDENTIFIER ::= { id-pe 29 } where [RFC5280] defines: id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) } id-pe OBJECT IDENTIFIER ::= { id-pkix 1 }
Top   ToC   RFC8360 - Page 10
4.2.2.4. Syntax for id-pe-autonomousSysIds-v2
id-pe-autonomousSysIds-v2 OBJECT IDENTIFIER ::= { id-pe 29 } ASIdentifiers ::= SEQUENCE { asnum [0] EXPLICIT ASIdentifierChoice OPTIONAL, rdi [1] EXPLICIT ASIdentifierChoice OPTIONAL} ASIdentifierChoice ::= CHOICE { inherit NULL, -- inherit from issuer -- asIdsOrRanges SEQUENCE OF ASIdOrRange } ASIdOrRange ::= CHOICE { id ASId, range ASRange } ASRange ::= SEQUENCE { min ASId, max ASId } ASId ::= INTEGER
4.2.2.5. Amended IP Address Delegation Extension Certification Path Validation
Certificate path validation is performed as specified in Section 4.2.4.4.
4.2.2.6. Amended Autonomous System Identifier Delegation Extension Certification Path Validation
Certificate path validation is performed as specified in Section 4.2.4.4.
4.2.2.7. Amended ASN.1 Module
Per this document, an OID has been assigned for id-mod-ip-addr-and-as-ident-v2, as follows: IPAddrAndASCertExtn-v2 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) mod(0) id-mod-ip-addr-and-as-ident-v2(90) } The following is an amended specification to be used as an alternative to the specification in Appendix A of [RFC3779]. This normative appendix describes the extensions for IP address and AS identifier delegation used by conforming PKI components in ASN.1
Top   ToC   RFC8360 - Page 11
   syntax.

   IPAddrAndASCertExtn-v2 { iso(1) identified-organization(3) dod(6)
      internet(1) security(5) mechanisms(5) pkix(7) mod(0)
      id-mod-ip-addr-and-as-ident-v2(90) }

   DEFINITIONS EXPLICIT TAGS ::=

   BEGIN

   -- EXPORTS ALL --

   IMPORTS

   -- PKIX specific OIDs and arcs --

   id-pe FROM PKIX1Explicit88 { iso(1) identified-organization(3)
        dod(6) internet(1) security(5) mechanisms(5) pkix(7)
        id-mod(0) id-pkix1-explicit(18) }

   -- IP Address Block and AS Identifiers Syntax --

   IPAddrBlocks, ASIdentifiers FROM  IPAddrAndASCertExtn { iso(1)
      identified-organization(3) dod(6) internet(1) security(5)
      mechanisms(5) pkix(7) mod(0) id-mod-ip-addr-and-as-ident(30) }
   ;

   -- Validation Reconsidered IP Address Delegation Extension OID --

   id-pe-ipAddrBlocks-v2  OBJECT IDENTIFIER ::= { id-pe 28 }

   -- Validation Reconsidered IP Address Delegation Extension Syntax --
   -- Syntax is imported from RFC 3779 --

   -- Validation Reconsidered Autonomous System Identifier --
   --     Delegation Extension OID                         --

   id-pe-autonomousSysIds-v2  OBJECT IDENTIFIER ::= { id-pe 29 }

   -- Validation Reconsidered Autonomous System Identifier --
   --     Delegation Extension Syntax                      --

   -- Syntax is imported from RFC 3779 --

   END
Top   ToC   RFC8360 - Page 12

4.2.3. Addendum to RFC 6268

Per this document, an OID has been assigned for id-mod-ip-addr-and-as-ident-2v2 as follows: IPAddrAndASCertExtn-2010v2 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) mod(0) id-mod-ip-addr-and-as-ident-2v2(91) } [RFC6268] is an informational RFC that updates some auxiliary ASN.1 modules to conform to the 2008 version of ASN.1; the 1988 ASN.1 modules in Section 4.2.2.7 remain the normative version. The following is an additional module conforming to the 2008 version of ASN.1 to be used with the extensions defined in Sections 4.2.2.1 and 4.2.2.3. IPAddrAndASCertExtn-2010v2 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) mod(0) id-mod-ip-addr-and-as-ident-2v2(91) } DEFINITIONS EXPLICIT TAGS ::= BEGIN EXPORTS ALL; IMPORTS -- PKIX specific OIDs and arcs -- id-pe FROM PKIX1Explicit-2009 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-explicit-02(51)} EXTENSION FROM PKIX-CommonTypes-2009 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-pkixCommon-02(57)}
Top   ToC   RFC8360 - Page 13
    -- IP Address Block and AS Identifiers Syntax --

       IPAddrBlocks, ASIdentifiers
       FROM IPAddrAndASCertExtn-2010
          { iso(1) identified-organization(3) dod(6)
            internet(1) security(5) mechanisms(5) pkix(7) mod(0)
            id-mod-ip-addr-and-as-ident-2(72) }
       ;

       --
       -- Extensions contain the set of extensions defined in this
       -- module
       --
       -- These are intended to be placed in public key certificates
       -- and thus should be added to the CertExtensions extension
       -- set in PKIXImplicit-2009 defined for RFC 5280
       --

       Extensions EXTENSION ::= {
          ext-pe-ipAddrBlocks-v2 | ext-pe-autonomousSysIds-v2
       }

       -- Validation Reconsidered IP Address Delegation Extension OID --

       ext-pe-ipAddrBlocks-v2 EXTENSION ::= {
         SYNTAX IPAddrBlocks
         IDENTIFIED BY id-pe-ipAddrBlocks-v2
       }

       id-pe-ipAddrBlocks-v2  OBJECT IDENTIFIER ::= { id-pe 28 }

       -- Validation Reconsidered IP Address Delegation --
       --      Extension Syntax                         --

       -- Syntax is imported from RFC 6268 --

       -- Validation Reconsidered Autonomous System Identifier --
       --      Delegation Extension OID                        --

       ext-pe-autonomousSysIds-v2 EXTENSION ::= {
         SYNTAX ASIdentifiers
         IDENTIFIED BY id-pe-autonomousSysIds-v2
       }

       id-pe-autonomousSysIds OBJECT IDENTIFIER ::= { id-pe 29 }
Top   ToC   RFC8360 - Page 14
    -- Validation Reconsidered Autonomous System Identifier --
    --      Delegation Extension Syntax                     --

    -- Syntax is imported from RFC 6268 --

    END

4.2.4. An Alternative to the Profile for X.509 PKIX Resource Certificates

This document defines an alternative profile for X.509 PKIX Resource Certificates. This profile follows all definitions and procedures described in [RFC6487] with the following notable exceptions.
4.2.4.1. Amended Certificate Policies
The following is an amended specification to be used in this profile, in place of Section 4.8.9 of [RFC6487]. This extension MUST be present and MUST be marked critical. It MUST include exactly one policy of type id-cp-ipAddr-asNumber-v2, as specified in the updated RPKI CP in Section 4.2.1.
4.2.4.2. Amended IP Resources
The following is an amended specification to be used in this profile, in place of Section 4.8.10 of [RFC6487]. Either the IP resources extension or the AS resources extension, or both, MUST be present in all RPKI certificates and MUST be marked critical. This extension contains the list of IP address resources as per Section 4.2.2.1. The value may specify the "inherit" element for a particular Address Family Identifier (AFI) value. In the context of Resource Certificates describing public number resources for use in the public Internet, the Subsequent AFI (SAFI) value MUST NOT be used. This extension MUST either specify a non-empty set of IP address records or use the "inherit" setting to indicate that the IP address resource set of this certificate is inherited from that of the certificate's issuer.
Top   ToC   RFC8360 - Page 15
4.2.4.3. Amended AS Resources
The following is an amended specification to be used in this profile, in place of Section 4.8.11 of [RFC6487]. Either the AS resources extension or the IP resources extension, or both, MUST be present in all RPKI certificates and MUST be marked critical. This extension contains the list of AS number resources as per Section 4.2.2.3, or it may specify the "inherit" element. Routing Domain Identifier (RDI) values are NOT supported in this profile and MUST NOT be used. This extension MUST either specify a non-empty set of AS number records or use the "inherit" setting to indicate that the AS number resource set of this certificate is inherited from that of the certificate's issuer.
4.2.4.4. Amended Resource Certificate Path Validation
The following is an amended specification for path validation to be used in place of Section 7.2 of [RFC6487], which allows for the validation of both certificates following the profile defined in [RFC6487], as well as certificates following the profile described above. The following algorithm is employed to validate CA and EE resource certificates. It is modeled on the path validation algorithm from [RFC5280] but is modified to make use of the IP Address Delegation and AS Identifier Delegation extensions from [RFC3779]. There are two inputs to the validation algorithm: 1. a trust anchor 2. a certificate to be validated The algorithm is initialized with two new variables for use in the RPKI: Verified Resource Set-IP (VRS-IP) and Verified Resource Set-AS (VRS-AS). These sets are used to track the set of INRs (IP address space and AS numbers) that are considered valid for each CA certificate. The VRS-IP and VRS-AS sets are initially set to the IP Address Delegation and AS Identifier Delegation values, respectively, from the trust anchor used to perform validation.
Top   ToC   RFC8360 - Page 16
   This path validation algorithm verifies, among other things, that a
   prospective certification path (a sequence of n certificates)
   satisfies the following conditions:

   a.  for all 'x' in {1, ..., n-1}, the subject of certificate 'x' is
       the issuer of certificate ('x' + 1);

   b.  certificate '1' is issued by a trust anchor;

   c.  certificate 'n' is the certificate to be validated; and

   d.  for all 'x' in {1, ..., n}, certificate 'x' is valid.

   Certificate validation requires verifying that all of the following
   conditions hold, in addition to the certification path validation
   criteria specified in Section 6 of [RFC5280].

   1.  The signature of certificate x (x>1) is verified using the public
       key of the issuer's certificate (x-1), using the signature
       algorithm specified for that public key (in certificate x-1).

   2.  The current time lies within the interval defined by the
       NotBefore and NotAfter values in the Validity field of
       certificate x.

   3.  The Version, Issuer, and Subject fields of certificate x satisfy
       the constraints established in Sections 4.1 to 4.7 of RFC 6487.

   4.  If certificate x uses the Certificate Policy defined in
       Section 4.8.9 of [RFC6487], then the certificate MUST contain all
       extensions defined in Section 4.8 of [RFC6487] that must be
       present.  The value(s) for each of these extensions MUST satisfy
       the constraints established for each extension in the respective
       sections.  Any extension not thus identified MUST NOT appear in
       certificate x.

   5.  If certificate x uses the Certificate Policy defined in
       Section 4.2.4.1, then all extensions defined in Section 4.8 of
       [RFC6487], except Sections 4.8.9, 4.8.10, and 4.8.11 MUST be
       present.  The certificate MUST contain an extension as defined in
       Sections 4.2.4.2 or 4.2.4.3, or both.  The value(s) for each of
       these extensions MUST satisfy the constraints established for
       each extension in the respective sections.  Any extension not
       thus identified MUST NOT appear in certificate x.

   6.  Certificate x MUST NOT have been revoked, i.e., it MUST NOT
       appear on a Certificate Revocation List (CRL) issued by the CA
       represented by certificate x-1.
Top   ToC   RFC8360 - Page 17
   7.  Compute the VRS-IP and VRS-AS set values as indicated below:

       *  If the IP Address Delegation extension is present in
          certificate x and x=1, set the VRS-IP to the resources found
          in this extension.

       *  If the IP Address Delegation extension is present in
          certificate x and x>1, set the VRS-IP to the intersection of
          the resources between this extension and the value of the
          VRS-IP computed for certificate x-1.

       *  If the IP Address Delegation extension is absent in
          certificate x, set the VRS-IP to NULL.

       *  If the IP Address Delegation extension is present in
          certificate x and x=1, set the VRS-IP to the resources found
          in this extension.

       *  If the AS Identifier Delegation extension is present in
          certificate x and x>1, set the VRS-AS to the intersection of
          the resources between this extension and the value of the
          VRS-AS computed for certificate x-1.

       *  If the AS Identifier Delegation extension is absent in
          certificate x, set the VRS-AS to NULL.

   8.  If there is any difference in resources in the VRS-IP and the IP
       Address Delegation extension on certificate x, or the VRS-AS and
       the AS Identifier Delegation extension on certificate x, then:

       *  If certificate x uses the Certificate Policy defined in
          Section 4.2.4.1, a warning listing the overclaiming resources
          for certificate x SHOULD be issued.

       *  If certificate x uses the Certificate Policy defined in
          Section 4.8.9 of [RFC6487], then certificate x MUST be
          rejected.

   These rules allow a CA certificate to contain resources that are not
   present in (all of) the certificates along the path from the trust
   anchor to the CA certificate.  If none of the resources in the CA
   certificate are present in all certificates along the path, no
   subordinate certificates could be valid.  However, the certificate is
   not immediately rejected as this may be a transient condition.  Not
   immediately rejecting the certificate does not result in a security
   problem because the associated VRS sets accurately reflect the
   resources validly associated with the certificate in question.
Top   ToC   RFC8360 - Page 18

4.2.5. An Alternative ROA Validation

Section 4 of [RFC6482] currently has the following text on the validation of resources on a ROA: The IP address delegation extension [RFC3779] is present in the end-entity (EE) certificate (contained within the ROA), and each IP address prefix(es) in the ROA is contained within the set of IP addresses specified by the EE certificate's IP address delegation extension. If the end entity certificate uses the Certificate Policy defined in Section 4.2.4.1, then the following approach must be used instead. The amended IP Address Delegation extension described in Section 4.2.4.2 is present in the end entity (EE) certificate (contained within the ROA), and each IP address prefix(es) in the ROA is contained within the VRS-IP set that is specified as an outcome of EE certificate validation described in Section 4.2.4.4. Note that this ensures that ROAs can be valid only if all IP address prefixes in the ROA are encompassed by the VRS-IP of all certificates along the path to the trust anchor used to verify it. Operators MAY issue separate ROAs for each IP address prefix, so that the loss of one or more IP address prefixes from the VRS-IP of any certificate along the path to the trust anchor would not invalidate authorizations for other IP address prefixes.

4.2.6. An Alternative to BGPsec Router Certificate Validation

If a BGPsec Router Certificate [RFC8209] uses the Certificate Policy defined in Section 4.2.4.1, then in addition to the BGPsec Router Certificate Validation defined in Section 3.3 of [RFC8209], the following constraint MUST be met: o The VRS-AS of BGPsec Router Certificates MUST encompass all Autonomous System Numbers (ASNs) in the AS Resource Identifier Delegation extension. Operators MAY issue separate BGPsec Router Certificates for different ASNs, so that the loss of an ASN from the VRS-AS of any certificate along the path to the trust anchor would not invalidate router keys for other ASNs.
Top   ToC   RFC8360 - Page 19

5. Validation Examples

In this section, we will demonstrate the outcome of RPKI validation performed using the algorithm and procedures described in Sections 4.2.4.4, 4.2.5, and 4.2.6, under three deployment scenarios: o An RPKI tree consisting of certificates using the old OIDs only o An RPKI tree consisting of certificates using the new OIDs only o An RPKI tree consisting of a mix of certificates using either the old or the new OIDs In this context, we refer to a certificate as using the 'old' OIDs, if the certificate uses a combination of the OIDs defined in Section 1.2 of [RFC6484], Section 2.2.1 of [RFC3779], and/or Section 3.2.1 of [RFC3779]. We refer to a certificate as using the 'new' OIDS, if the certificate uses a combination of OIDs defined in Sections 4.2.4.1, 4.2.2.1, and/or Section 4.2.2.3.

5.1. Example 1 -- An RPKI Tree Using the Old OIDs Only

Consider the following example: Certificate 1 (trust anchor): Issuer: TA, Subject: TA, OIDs: OLD, Resources: 0/0, ::0, AS0-4294967295 (all resources) Verified Resource Set: 0/0, ::0, AS0-4294967295 (all resources) Warnings: none Certificate 2: Issuer: TA, Subject: CA1, OIDs: OLD, Resources: 192.0.2.0/24, 2001:db8::/32, AS64496 Verified Resource Set: 192.0.2.0/24, 2001:db8::/32, AS64496 Warnings: none
Top   ToC   RFC8360 - Page 20
     Certificate 3 (invalid):
      Issuer: CA1,
      Subject: CA2,
      OIDs: OLD,
      Resources: 192.0.2.0/24, 198.51.100.0/24, AS64496

       Verified Resource Set: 192.0.2.0/24, AS64496

       Certificate 3 is considered invalid because resources
       contains 198.51.100.0/24, which is not found in the
       Verified Resource Set.

     ROA 1 (invalid):
      Embedded Certificate 4 (EE certificate invalid):
       Issuer: CA2,
       Subject: R1,
       OIDs: OLD,
       Resources: 192.0.2.0/24
         Prefix 192.0.2.0/24, Max Length 24, ASN 64496

       ROA1 is considered invalid because Certificate 3 is invalid.

     ROA 2 (invalid):
      Embedded Certificate 5 (EE certificate invalid):
       Issuer: CA2,
       Subject: R2,
       OIDs: OLD,
       Resources: 198.51.100.0/24
        Prefix 198.51.100.0/24, Max Length 24, ASN 64496

       ROA2 is considered invalid because Certificate 3 is invalid.

     BGPsec Certificate 1 (invalid):
      Issuer: CA2,
      Subject: ROUTER-64496,
      OIDs: NEW,
      Resources: AS64496

       BGPsec Certificate 1 is invalid because Certificate 3 is invalid.

     BGPsec Certificate 2 (invalid):
      Issuer: CA2,
      Subject: ALL-ROUTERS,
      OIDs: NEW,
      Resources: AS64496-AS64497

       BGPsec Certificate 2 is invalid because Certificate 3 is invalid.
Top   ToC   RFC8360 - Page 21

5.2. Example 2 -- An RPKI Tree Using the New OIDs Only

Consider the following example under the amended approach: Certificate 1 (trust anchor): Issuer: TA, Subject: TA, OIDs: NEW, Resources: 0/0, ::0, AS0-4294967295 (all resources) Verified Resource Set: 0/0, ::0, AS0-4294967295 (all resources) Warnings: none Certificate 2: Issuer: TA, Subject: CA1, OIDs: NEW, Resources: 192.0.2.0/24, 2001:db8::/32, AS64496 Verified Resource Set: 192.0.2.0/24, 2001:db8::/32, AS64496 Warnings: none Certificate 3: Issuer: CA1, Subject: CA2, OIDs: NEW, Resources: 192.0.2.0/24, 198.51.100.0/24, AS64496 Verified Resource Set: 192.0.2.0/24, AS64496 Warnings: overclaim for 198.51.100.0/24 ROA 1 (valid): Embedded Certificate 4 (EE certificate): Issuer: CA2, Subject: R1, OIDs: NEW, Resources: 192.0.2.0/24 Prefix 192.0.2.0/24, Max Length 24, ASN 64496 Verified Resource Set: 192.0.2.0/24 Warnings: none ROA1 is considered valid because the prefix matches the Verified Resource Set on the embedded EE certificate.
Top   ToC   RFC8360 - Page 22
     ROA 2 (invalid):
      Embedded Certificate 5 (EE certificate invalid):
       Issuer: CA2,
       Subject: R2,
       OIDs: NEW,
       Resources: 198.51.100.0/24
         Prefix 198.51.100.0/24, Max Length 24, ASN 64496

         Verified Resource Set: none (empty set)
         Warnings: 198.51.100.0/24

       ROA2 is considered invalid because the ROA prefix 198.51.100.0/24
       is not contained in the Verified Resource Set.

     BGPsec Certificate 1 (valid):
      Issuer: CA2,
      Subject: ROUTER-64496,
      OIDs: NEW,
      Resources: AS64496

       Verified Resource Set: AS64496
       Warnings: none

     BGPsec Certificate 2 (invalid):
      Issuer: CA2,
      Subject: ALL-ROUTERS,
      OIDs: NEW,
      Resources: AS64496-AS64497

        Verified Resource Set: AS64496

       BGPsec Certificate 2 is invalid because not all of its resources
       are contained in the Verified Resource Set.

       Note that this problem can be mitigated by issuing separate
       certificates for each AS number.
Top   ToC   RFC8360 - Page 23

5.3. Example 3 -- An RPKI Tree Using a Mix of Old and New OIDs

In the following example, new OIDs are used only for CA certificates where the issuing CA anticipates that an overclaim could occur and has a desire to limit the impact of this to just the overclaimed resources in question: Certificate 1 (trust anchor): Issuer: TA, Subject: TA, OIDs: OLD, Resources: 0/0, ::0, AS0-4294967295 (all resources) Verified Resource Set: 0/0, ::0, AS0-4294967295 (all resources) Warnings: none Note that a trust anchor certificate cannot be found to overclaim. So, using the new OIDs here would not change anything with regards to the validity of this certificate. Certificate 2: Issuer: TA, Subject: CA1, OIDs: OLD, Resources: 192.0.2.0/24, 2001:db8::/32, AS64496 Verified Resource Set: 192.0.2.0/24, 2001:db8::/32, AS64496 Warnings: none Note that since the TA certificate claims all resources, it is impossible to issue a certificate below it that could be found to be overclaiming. Therefore, there is no benefit in using the new OIDs for Certificate 2. Certificate 3: Issuer: CA1, Subject: CA2, OIDs: NEW, Resources: 192.0.2.0/24, 198.51.100.0/24, AS64496 Verified Resource Set: 192.0.2.0/24, AS64496 Warnings: overclaim for 198.51.100.0/24 Note that CA1 anticipated that it might invalid Certificate 3 issued to CA2, if its own resources on Certificate 2 were modified and old OIDs were used on Certificate 3.
Top   ToC   RFC8360 - Page 24
   ROA 1 (valid):
    Embedded Certificate 4 (EE certificate):
     Issuer: CA2,
     Subject: R1,
     OIDs: OLD,
     Resources: 192.0.2.0/24
      Prefix 192.0.2.0/24, Max Length 24, ASN 64496

      Verified Resource Set: 192.0.2.0/24
      Warnings: none

     ROA1 is considered valid because the prefix matches the Verified
     Resource Set on the embedded EE certificate.

   ROA 2 (invalid):
    Embedded Certificate 5 (EE certificate invalid):
     Issuer: CA2,
     Subject: R2,
     OIDs: OLD,
     Resources: 198.51.100.0/24
       Prefix 198.51.100.0/24, Max Length 24, ASN 64496

       Verified Resource Set: none (empty set)

     ROA2 is considered invalid because resources on its EE
     certificate contains 198.51.100.0/24, which is not contained
     in its Verified Resource Set.

     Note that if new OIDs were used here (as in example 2), ROA 2
     would be considered invalid because the prefix is not
     contained in the Verified Resource Set.

     So, if there is no difference in the validity outcome, one could
     argue that using old OIDs here is clearest, because any
     overclaim of ROA prefixes MUST result in it being considered
     invalid (as described in Section 4.2.5).

   BGPsec Certificate 1 (valid):
    Issuer: CA2,
    Subject: ROUTER-64496,
    OIDs: OLD,
    Resources: AS64496

     Verified Resource Set: AS64496
     Warnings: none
Top   ToC   RFC8360 - Page 25
   BGPsec Certificate 2 (invalid):
    Issuer: CA2,
    Subject: ALL-ROUTERS,
    OIDs: OLD,
    Resources: AS64496-AS64497

      Verified Resource Set: AS64496

     BGPsec Certificate 2 is considered invalid because resources
     contains AS64497, which is not contained in its Verified Resource
     Set.

     Note that if new OIDs were used here (as in example 2), BGPsec
     Certificate 2 would be considered invalid because the prefix is not
     contained in the Verified Resource Set.

     So, if there is no difference in the validity outcome, one could
     argue that using old OIDs here is the clearest, because any
     overclaim on this certificate MUST result in it being considered
     invalid (as described in Section 4.2.6).

     Also note that, as in example 2, this problem can be mitigated by
     issuing separate certificates for each AS number.

6. Deployment Considerations

This document defines an alternative RPKI validation algorithm, but it does not dictate how this algorithm will be deployed. This should be discussed as a separate effort. That said, the following observations may help this discussion. Because this document introduces new OIDs and an alternative to the profile for X.509 PKIX Resource Certificates described in [RFC6487], the use of such certificates in the global RPKI will lead to the rejection of such certificates by Relying Party tools that do not (yet) implement the alternative profile described in this document. For this reason, it is important that such tools are updated before Certification Authorities start to use this specification. However, because the OIDs are defined in each RPKI certificate, there is no strict requirement for all Certification Authorities, or even for all the certificates they issue, to migrate to the new OIDs at the same time. The example in Section 5.3 illustrates a possible deployment where the new OIDs are used only in CA certificates where an accidental overclaim may occur.
Top   ToC   RFC8360 - Page 26

7. Security Considerations

The authors believe that the revised validation algorithm introduces no new security vulnerabilities into the RPKI, because it cannot lead to any ROA and/or router certificates to be accepted if they contain resources that are not held by the issuer.

8. IANA Considerations

IANA has added the following to the "SMI Security for PKIX Certificate Policies" registry: Decimal Description References 3 id-cp-ipAddr-asNumber-v2 Section 4.2.1 IANA has added the following to the "SMI Security for PKIX Certificate Extension" registry: Decimal Description References 28 id-pe-ipAddrBlocks-v2 Section 4.2.2.1 29 id-pe-autonomousSysIds-v2 Section 4.2.2.3 IANA has added the following to the "SMI Security for PKIX Module Identifier" registry: Decimal Description References 90 id-mod-ip-addr-and-as-ident-v2 Section 4.2.2.7 91 id-mod-ip-addr-and-as-ident-2v2 Section 4.2.3
Top   ToC   RFC8360 - Page 27

9. References

9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>. [RFC3779] Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP Addresses and AS Identifiers", RFC 3779, DOI 10.17487/RFC3779, June 2004, <https://www.rfc-editor.org/info/rfc3779>. [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, <https://www.rfc-editor.org/info/rfc5280>. [RFC6482] Lepinski, M., Kent, S., and D. Kong, "A Profile for Route Origin Authorizations (ROAs)", RFC 6482, DOI 10.17487/RFC6482, February 2012, <https://www.rfc-editor.org/info/rfc6482>. [RFC6484] Kent, S., Kong, D., Seo, K., and R. Watro, "Certificate Policy (CP) for the Resource Public Key Infrastructure (RPKI)", BCP 173, RFC 6484, DOI 10.17487/RFC6484, February 2012, <https://www.rfc-editor.org/info/rfc6484>. [RFC6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile for X.509 PKIX Resource Certificates", RFC 6487, DOI 10.17487/RFC6487, February 2012, <https://www.rfc-editor.org/info/rfc6487>. [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>. [RFC8209] Reynolds, M., Turner, S., and S. Kent, "A Profile for BGPsec Router Certificates, Certificate Revocation Lists, and Certification Requests", RFC 8209, DOI 10.17487/RFC8209, September 2017, <https://www.rfc-editor.org/info/rfc8209>.
Top   ToC   RFC8360 - Page 28

9.2. Informative References

[RFC6268] Schaad, J. and S. Turner, "Additional New ASN.1 Modules for the Cryptographic Message Syntax (CMS) and the Public Key Infrastructure Using X.509 (PKIX)", RFC 6268, DOI 10.17487/RFC6268, July 2011, <https://www.rfc-editor.org/info/rfc6268>.

Acknowledgements

The authors would like to thank Stephen Kent for reviewing and contributing to this document. We would like to thank Rob Austein for suggesting that separate OIDs should be used to make the behavior of Relying Party tools deterministic, and we would like to thank Russ Housley, Sean Turner, and Tom Petch for their contributions on OID and ASN.1 updates. Finally, we would like to thank Tom Harrison for a general review of this document.

Authors' Addresses

Geoff Huston Asia Pacific Network Information Centre 6 Cordelia St South Brisbane, QLD 4101 Australia Phone: +61 7 3858 3100 Email: gih@apnic.net George Michaelson Asia Pacific Network Information Centre 6 Cordelia St South Brisbane, QLD 4101 Australia Phone: +61 7 3858 3100 Email: ggm@apnic.net Carlos M. Martinez Latin American and Caribbean Internet Address Registry Rambla Mexico 6125 Montevideo 11400 Uruguay Phone: +598 2604 2222 Email: carlos@lacnic.net
Top   ToC   RFC8360 - Page 29
   Tim Bruijnzeels
   RIPE Network Coordination Centre
   Singel 258
   Amsterdam  1016 AB
   The Netherlands

   Email: tim@ripe.net


   Andrew Lee Newton
   American Registry for Internet Numbers
   3635 Concorde Parkway
   Chantilly, VA  20151
   United States of America

   Email: andy@arin.net


   Daniel Shaw
   African Network Information Centre (AFRINIC)
   11th Floor, Standard Chartered Tower
   Cybercity, Ebene
   Mauritius

   Phone: +230 403 51 00
   Email: daniel@afrinic.net