Internet Engineering Task Force (IETF) N. Kuhn, Ed. Request for Comments: 7928 CNES, Telecom Bretagne Category: Informational P. Natarajan, Ed. ISSN: 2070-1721 Cisco Systems N. Khademi, Ed. University of Oslo D. Ros Simula Research Laboratory AS July 2016 Characterization Guidelines for Active Queue Management (AQM)Abstract
Unmanaged large buffers in today's networks have given rise to a slew of performance issues. These performance issues can be addressed by some form of Active Queue Management (AQM) mechanism, optionally in combination with a packet-scheduling scheme such as fair queuing. This document describes various criteria for performing characterizations of AQM schemes that can be used in lab testing during development, prior to deployment. Status of This Memo This document is not an Internet Standards Track specification; it is published for informational purposes. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7928.
Copyright Notice Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1. Reducing the Latency and Maximizing the Goodput . . . . . 5 1.2. Goals of This Document . . . . . . . . . . . . . . . . . 5 1.3. Requirements Language . . . . . . . . . . . . . . . . . . 6 1.4. Glossary . . . . . . . . . . . . . . . . . . . . . . . . 7 2. End-to-End Metrics . . . . . . . . . . . . . . . . . . . . . 7 2.1. Flow Completion Time . . . . . . . . . . . . . . . . . . 8 2.2. Flow Startup Time . . . . . . . . . . . . . . . . . . . . 8 2.3. Packet Loss . . . . . . . . . . . . . . . . . . . . . . . 9 2.4. Packet Loss Synchronization . . . . . . . . . . . . . . . 9 2.5. Goodput . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.6. Latency and Jitter . . . . . . . . . . . . . . . . . . . 11 2.7. Discussion on the Trade-Off between Latency and Goodput . 11 3. Generic Setup for Evaluations . . . . . . . . . . . . . . . . 12 3.1. Topology and Notations . . . . . . . . . . . . . . . . . 12 3.2. Buffer Size . . . . . . . . . . . . . . . . . . . . . . . 14 3.3. Congestion Controls . . . . . . . . . . . . . . . . . . . 14 4. Methodology, Metrics, AQM Comparisons, Packet Sizes, Scheduling, and ECN . . . . . . . . . . . . . . . . . . . . . 14 4.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . 14 4.2. Comments on Metrics Measurement . . . . . . . . . . . . . 15 4.3. Comparing AQM Schemes . . . . . . . . . . . . . . . . . . 15 4.3.1. Performance Comparison . . . . . . . . . . . . . . . 15 4.3.2. Deployment Comparison . . . . . . . . . . . . . . . . 16 4.4. Packet Sizes and Congestion Notification . . . . . . . . 16 4.5. Interaction with ECN . . . . . . . . . . . . . . . . . . 17 4.6. Interaction with Scheduling . . . . . . . . . . . . . . . 17 5. Transport Protocols . . . . . . . . . . . . . . . . . . . . . 18 5.1. TCP-Friendly Sender . . . . . . . . . . . . . . . . . . . 19 5.1.1. TCP-Friendly Sender with the Same Initial Congestion Window . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2. TCP-Friendly Sender with Different Initial Congestion Windows . . . . . . . . . . . . . . . . . . . . . . . 19 5.2. Aggressive Transport Sender . . . . . . . . . . . . . . . 19 5.3. Unresponsive Transport Sender . . . . . . . . . . . . . . 20 5.4. Less-than-Best-Effort Transport Sender . . . . . . . . . 20 6. Round-Trip Time Fairness . . . . . . . . . . . . . . . . . . 21 6.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . 21 6.2. Recommended Tests . . . . . . . . . . . . . . . . . . . . 21 6.3. Metrics to Evaluate the RTT Fairness . . . . . . . . . . 22 7. Burst Absorption . . . . . . . . . . . . . . . . . . . . . . 22 7.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . 22 7.2. Recommended Tests . . . . . . . . . . . . . . . . . . . . 23 8. Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . 24 8.2. Recommended Tests . . . . . . . . . . . . . . . . . . . . 24 8.2.1. Definition of the Congestion Level . . . . . . . . . 25 8.2.2. Mild Congestion . . . . . . . . . . . . . . . . . . . 25 8.2.3. Medium Congestion . . . . . . . . . . . . . . . . . . 25 8.2.4. Heavy Congestion . . . . . . . . . . . . . . . . . . 25 8.2.5. Varying the Congestion Level . . . . . . . . . . . . 26 8.2.6. Varying Available Capacity . . . . . . . . . . . . . 26 8.3. Parameter Sensitivity and Stability Analysis . . . . . . 27 9. Various Traffic Profiles . . . . . . . . . . . . . . . . . . 27 9.1. Traffic Mix . . . . . . . . . . . . . . . . . . . . . . . 28 9.2. Bidirectional Traffic . . . . . . . . . . . . . . . . . . 28 10. Example of a Multi-AQM Scenario . . . . . . . . . . . . . . . 29 10.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . 29 10.2. Details on the Evaluation Scenario . . . . . . . . . . . 29 11. Implementation Cost . . . . . . . . . . . . . . . . . . . . . 30 11.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . 30 11.2. Recommended Discussion . . . . . . . . . . . . . . . . . 30 12. Operator Control and Auto-Tuning . . . . . . . . . . . . . . 30 12.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . 30 12.2. Recommended Discussion . . . . . . . . . . . . . . . . . 31 13. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 14. Security Considerations . . . . . . . . . . . . . . . . . . . 32 15. References . . . . . . . . . . . . . . . . . . . . . . . . . 32 15.1. Normative References . . . . . . . . . . . . . . . . . . 32 15.2. Informative References . . . . . . . . . . . . . . . . . 33 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 36 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 37
1. Introduction
Active Queue Management (AQM) addresses the concerns arising from using unnecessarily large and unmanaged buffers to improve network and application performance, such as those presented in Section 1.2 of the AQM recommendations document [RFC7567]. Several AQM algorithms have been proposed in the past years, most notably Random Early Detection (RED) [FLOY1993], BLUE [FENG2002], Proportional Integral controller (PI) [HOLLO2001], and more recently, Controlled Delay (CoDel) [CODEL] and Proportional Integral controller Enhanced (PIE) [AQMPIE]. In general, these algorithms actively interact with the Transmission Control Protocol (TCP) and any other transport protocol that deploys a congestion control scheme to manage the amount of data they keep in the network. The available buffer space in the routers and switches should be large enough to accommodate the short-term buffering requirements. AQM schemes aim at reducing buffer occupancy, and therefore the end-to-end delay. Some of these algorithms, notably RED, have also been widely implemented in some network devices. However, the potential benefits of the RED scheme have not been realized since RED is reported to be usually turned off. A buffer is a physical volume of memory in which a queue or set of queues are stored. When speaking of a specific queue in this document, "buffer occupancy" refers to the amount of data (measured in bytes or packets) that are in the queue, and the "maximum buffer size" refers to the maximum buffer occupancy. In switches and routers, a global memory space is often shared between the available interfaces, and thus, the maximum buffer size for any given interface may vary over time. Bufferbloat [BB2011] is the consequence of deploying large, unmanaged buffers on the Internet -- the buffering has often been measured to be ten times or a hundred times larger than needed. Large buffer sizes in combination with TCP and/or unresponsive flows increases end-to-end delay. This results in poor performance for latency- sensitive applications such as real-time multimedia (e.g., voice, video, gaming, etc.). The degree to which this affects modern networking equipment, especially consumer-grade equipment, produces problems even with commonly used web services. Active queue management is thus essential to control queuing delay and decrease network latency. The Active Queue Management and Packet Scheduling Working Group (AQM WG) was chartered to address the problems with large unmanaged buffers in the Internet. Specifically, the AQM WG is tasked with standardizing AQM schemes that not only address concerns with such buffers, but are also robust under a wide variety of operating
conditions. This document provides characterization guidelines that can be used to assess the applicability, performance, and deployability of an AQM, whether it is a candidate for standardization at IETF or not. The AQM algorithm implemented in a router can be separated from the scheduling of packets sent out by the router as discussed in the AQM recommendations document [RFC7567]. The rest of this memo refers to the AQM as a dropping/marking policy as a separate feature to any interface-scheduling scheme. This document may be complemented with another one on guidelines for assessing the combination of packet scheduling and AQM. We note that such a document will inherit all the guidelines from this document, plus any additional scenarios relevant for packet scheduling such as flow-starvation evaluation or the impact of the number of hash buckets.1.1. Reducing the Latency and Maximizing the Goodput
The trade-off between reducing the latency and maximizing the goodput is intrinsically linked to each AQM scheme and is key to evaluating its performance. To ensure the safety deployment of an AQM, its behavior should be assessed in a variety of scenarios. Whenever possible, solutions ought to aim at both maximizing goodput and minimizing latency.1.2. Goals of This Document
This document recommends a generic list of scenarios against which an AQM proposal should be evaluated, considering both potential performance gain and safety of deployment. The guidelines help to quantify performance of AQM schemes in terms of latency reduction, goodput maximization, and the trade-off between these two. The document presents central aspects of an AQM algorithm that should be considered, whatever the context, such as burst absorption capacity, RTT fairness, or resilience to fluctuating network conditions. The guidelines also discuss methods to understand the various aspects associated with safely deploying and operating the AQM scheme. Thus, one of the key objectives behind formulating the guidelines is to help ascertain whether a specific AQM is not only better than drop- tail (i.e., without AQM and with a BDP-sized buffer), but also safe to deploy: the guidelines can be used to compare several AQM proposals with each other, but should be used to compare a proposal with drop-tail. This memo details generic characterization scenarios against which any AQM proposal should be evaluated, irrespective of whether or not an AQM is standardized by the IETF. This document recommends the relevant scenarios and metrics to be considered. This document
presents central aspects of an AQM algorithm that should be considered whatever the context, such as burst absorption capacity, RTT fairness, or resilience to fluctuating network conditions. These guidelines do not define and are not bound to a particular deployment scenario or evaluation toolset. Instead, the guidelines can be used to assert the potential gain of introducing an AQM for the particular environment, which is of interest to the testers. These guidelines do not cover every possible aspect of a particular algorithm. These guidelines do not present context-dependent scenarios (such as IEEE 802.11 WLANs, data centers, or rural broadband networks). To keep the guidelines generic, a number of potential router components and algorithms (such as Diffserv) are omitted. The goals of this document can thus be summarized as follows: o The present characterization guidelines provide a non-exhaustive list of scenarios to help ascertain whether an AQM is not only better than drop-tail (with a BDP-sized buffer), but also safe to deploy; the guidelines can also be used to compare several AQM proposals with each other. o The present characterization guidelines (1) are not bound to a particular evaluation toolset and (2) can be used for various deployment contexts; testers are free to select a toolset that is best suited for the environment in which their proposal will be deployed. o The present characterization guidelines are intended to provide guidance for better selecting an AQM for a specific environment; it is not required that an AQM proposal is evaluated following these guidelines for its standardization.1.3. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
1.4. Glossary
o Application-limited traffic: A type of traffic that does not have an unlimited amount of data to transmit. o AQM: The Active Queue Management (AQM) algorithm implemented in a router can be separated from the scheduling of packets sent by the router. The rest of this memo refers to the AQM as a dropping/ marking policy as a separate feature to any interface scheduling scheme [RFC7567]. o BDP: Bandwidth Delay Product. o Buffer: A physical volume of memory in which a queue or set of queues are stored. o Buffer Occupancy: The amount of data stored in a buffer, measured in bytes or packets. o Buffer Size: The maximum buffer occupancy, that is the maximum amount of data that may be stored in a buffer, measured in bytes or packets. o Initial Window 10 (IW10): TCP initial congestion window set to 10 packets. o Latency: One-way delay of packets across Internet paths. This definition suits transport layer definition of the latency, which should not be confused with an application-layer view of the latency. o Goodput: Goodput is defined as the number of bits per unit of time forwarded to the correct destination, minus any bits lost or retransmitted [RFC2647]. The goodput should be determined for each flow and not for aggregates of flows. o SQRT: The square root function. o ROUND: The round function.2. End-to-End Metrics
End-to-end delay is the result of propagation delay, serialization delay, service delay in a switch, medium-access delay, and queuing delay, summed over the network elements along the path. AQM schemes may reduce the queuing delay by providing signals to the sender on the emergence of congestion, but any impact on the goodput must be carefully considered. This section presents the metrics that could
be used to better quantify (1) the reduction of latency, (2) maximization of goodput, and (3) the trade-off between these two. This section provides normative requirements for metrics that can be used to assess the performance of an AQM scheme. Some metrics listed in this section are not suited to every type of traffic detailed in the rest of this document. It is therefore not necessary to measure all of the following metrics: the chosen metric may not be relevant to the context of the evaluation scenario (e.g., latency vs. goodput trade-off in application-limited traffic scenarios). Guidance is provided for each metric.2.1. Flow Completion Time
The flow completion time is an important performance metric for the end-user when the flow size is finite. The definition of the flow size may be a source of contradictions, thus, this metric can consider a flow as a single file. Considering the fact that an AQM scheme may drop/mark packets, the flow completion time is directly linked to the dropping/marking policy of the AQM scheme. This metric helps to better assess the performance of an AQM depending on the flow size. The Flow Completion Time (FCT) is related to the flow size (Fs) and the goodput for the flow (G) as follows: FCT [s] = Fs [byte] / ( G [bit/s] / 8 [bit/byte] ) Where flow size is the size of the transport-layer payload in bits and goodput is the transport-layer payload transfer time (described in Section 2.5). If this metric is used to evaluate the performance of web transfers, it is suggested to rather consider the time needed to download all the objects that compose the web page, as this makes more sense in terms of user experience, rather than assessing the time needed to download each object.2.2. Flow Startup Time
The flow startup time is the time between when the request was sent from the client and when the server starts to transmit data. The amount of packets dropped by an AQM may seriously affect the waiting period during which the data transfer has not started. This metric would specifically focus on the operations such as DNS lookups, TCP opens, and Secure Socket Layer (SSL) handshakes.
2.3. Packet Loss
Packet loss can occur en route, this can impact the end-to-end performance measured at the receiver end. The tester should evaluate the loss experienced at the receiver end using one of two metrics: o The packet loss ratio: This metric is to be frequently measured during the experiment. The long-term loss ratio is of interest for steady-state scenarios only; o The interval between consecutive losses: The time between two losses is to be measured. The packet loss ratio can be assessed by simply evaluating the loss ratio as a function of the number of lost packets and the total number of packets sent. This might not be easily done in laboratory testing, for which these guidelines advise the tester: o To check that for every packet, a corresponding packet was received within a reasonable time, as presented in the document that proposes a metric for one-way packet loss across Internet paths [RFC7680]. o To keep a count of all packets sent, and a count of the non- duplicate packets received, as discussed in [RFC2544], which presents a benchmarking methodology. The interval between consecutive losses, which is also called a "gap", is a metric of interest for Voice over IP (VoIP) traffic [RFC3611].2.4. Packet Loss Synchronization
One goal of an AQM algorithm is to help to avoid global synchronization of flows sharing a bottleneck buffer on which the AQM operates ([RFC2309] and [RFC7567]). The "degree" of packet-loss synchronization between flows should be assessed, with and without the AQM under consideration. Loss synchronization among flows may be quantified by several slightly different metrics that capture different aspects of the same issue [HASS2008]. However, in real-world measurements the choice of metric could be imposed by practical considerations -- e.g., whether fine-grained information on packet losses at the bottleneck is available or not. For the purpose of AQM characterization, a good candidate metric is the global synchronization ratio, measuring the
proportion of flows losing packets during a loss event. This metric can be used in real-world experiments to characterize synchronization along arbitrary Internet paths [JAY2006]. If an AQM scheme is evaluated using real-life network environments, it is worth pointing out that some network events, such as failed link restoration may cause synchronized losses between active flows, and thus confuse the meaning of this metric.2.5. Goodput
The goodput has been defined as the number of bits per the unit of time forwarded to the correct destination interface, minus any bits lost or retransmitted, such as proposed in Section 3.17 of [RFC2647], which describes the benchmarking terminology for firewall performances. This definition requires that the test setup needs to be qualified to assure that it is not generating losses on its own. Measuring the end-to-end goodput provides an appreciation of how well an AQM scheme improves transport and application performance. The measured end-to-end goodput is linked to the dropping/marking policy of the AQM scheme -- e.g., the fewer the number of packet drops, the fewer packets need retransmission, minimizing the impact of AQM on transport and application performance. Additionally, an AQM scheme may resort to Explicit Congestion Notification (ECN) marking as an initial means to control delay. Again, marking packets instead of dropping them reduces the number of packet retransmissions and increases goodput. End-to-end goodput values help to evaluate the AQM scheme's effectiveness in minimizing packet drops that impact application performance and to estimate how well the AQM scheme works with ECN. The measurement of the goodput allows the tester to evaluate to what extent an AQM is able to maintain a high bottleneck utilization. This metric should also be obtained frequently during an experiment, as the long-term goodput is relevant for steady-state scenarios only and may not necessarily reflect how the introduction of an AQM actually impacts the link utilization during a certain period of time. Fluctuations in the values obtained from these measurements may depend on other factors than the introduction of an AQM, such as link-layer losses due to external noise or corruption, fluctuating bandwidths (IEEE 802.11 WLANs), heavy congestion levels, or the transport layer's rate reduction by the congestion control mechanism.
2.6. Latency and Jitter
The latency, or the one-way delay metric, is discussed in [RFC7679]. There is a consensus on an adequate metric for the jitter that represents the one-way delay variations for packets from the same flow: the Packet Delay Variation (PDV) serves well in all use cases [RFC5481]. The end-to-end latency includes components other than just the queuing delay, such as the signal-processing delay, transmission delay, and processing delay. Moreover, the jitter is caused by variations in queuing and processing delay (e.g., scheduling effects). The introduction of an AQM scheme would impact end-to-end latency and jitter, and therefore these metrics should be considered in the end-to-end evaluation of performance.2.7. Discussion on the Trade-Off between Latency and Goodput
The metrics presented in this section may be considered in order to discuss and quantify the trade-off between latency and goodput. With regards to the goodput, and in addition to the long-term stationary goodput value, it is recommended to take measurements at every multiple of the minimum RTT (minRTT) between A and B. It is suggested to take measurements at least every K * minRTT (to smooth out the fluctuations), with K=10. Higher values for K can be considered whenever it is more appropriate for the presentation of the results, since the value for K may depend on the network's path characteristics. The measurement period must be disclosed for each experiment, and when results/values are compared across different AQM schemes, the comparisons should use exactly the same measurement periods. With regards to latency, it is recommended to take the samples on a per-packet basis whenever possible, depending on the features provided by the hardware and software and the impact of sampling itself on the hardware performance. From each of these sets of measurements, the cumulative density function (CDF) of the considered metrics should be computed. If the considered scenario introduces dynamically varying parameters, temporal evolution of the metrics could also be generated. For each scenario, the following graph may be generated: the x-axis shows a queuing delay (that is, the average per-packet delay in excess of minimum RTT), the y-axis the goodput. Ellipses are computed as detailed in [WINS2014]: "We take each individual [...] run [...] as one point, and then compute the 1-epsilon elliptic contour of the maximum-likelihood 2D Gaussian distribution that explains the points. [...] we plot the median per-sender throughput and queueing delay as a circle. [...] The orientation of an ellipse represents the
covariance between the throughput and delay measured for the protocol." This graph provides part of a better understanding of (1) the delay/goodput trade-off for a given congestion control mechanism (Section 5), and (2) how the goodput and average queue delay vary as a function of the traffic load (Section 8.2).3. Generic Setup for Evaluations
This section presents the topology that can be used for each of the following scenarios, the corresponding notations, and discusses various assumptions that have been made in the document.3.1. Topology and Notations
+--------------+ +--------------+ |sender A_i | |receive B_i | |--------------| |--------------| | SEN.Flow1.1 +---------+ +-----------+ REC.Flow1.1 | | + | | | | + | | | | | | | | | | + | | | | + | | SEN.Flow1.X +-----+ | | +--------+ REC.Flow1.X | +--------------+ | | | | +--------------+ + +-+---+---+ +--+--+---+ + | |Router L | |Router R | | | |---------| |---------| | | | AQM | | | | | | BuffSize| | BuffSize| | | | (Bsize) +-----+ (Bsize) | | | +-----+--++ ++-+------+ | + | | | | + +--------------+ | | | | +--------------+ |sender A_n | | | | | |receive B_n | |--------------| | | | | |--------------| | SEN.FlowN.1 +---------+ | | +-----------+ REC.FlowN.1 | | + | | | | + | | | | | | | | | | + | | | | + | | SEN.FlowN.Y +------------+ +-------------+ REC.FlowN.Y | +--------------+ +--------------+ Figure 1: Topology and Notations
Figure 1 is a generic topology where: o The traffic profile is a set of flows with similar characteristics -- RTT, congestion control scheme, transport protocol, etc.; o Senders with different traffic characteristics (i.e., traffic profiles) can be introduced; o The timing of each flow could be different (i.e., when does each flow start and stop?); o Each traffic profile can comprise various number of flows; o Each link is characterized by a couple (one-way delay, capacity); o Sender A_i is instantiated for each traffic profile. A corresponding receiver B_i is instantiated for receiving the flows in the profile; o Flows share a bottleneck (the link between routers L and R); o The tester should consider both scenarios of asymmetric and symmetric bottleneck links in terms of bandwidth. In the case of an asymmetric link, the capacity from senders to receivers is higher than the one from receivers to senders; the symmetric link scenario provides a basic understanding of the operation of the AQM mechanism, whereas the asymmetric link scenario evaluates an AQM mechanism in a more realistic setup; o In asymmetric link scenarios, the tester should study the bidirectional traffic between A and B (downlink and uplink) with the AQM mechanism deployed in one direction only. The tester may additionally consider a scenario with the AQM mechanism being deployed in both directions. In each scenario, the tester should investigate the impact of the drop policy of the AQM on TCP ACK packets and its impact on the performance (Section 9.2). Although this topology may not perfectly reflect actual topologies, the simple topology is commonly used in the world of simulations and small testbeds. It can be considered as adequate to evaluate AQM proposals [TCPEVAL]. Testers ought to pay attention to the topology used to evaluate an AQM scheme when comparing it with a newly proposed AQM scheme.
3.2. Buffer Size
The size of the buffers should be carefully chosen, and may be set to the bandwidth-delay product; the bandwidth being the bottleneck capacity and the delay being the largest RTT in the considered network. The size of the buffer can impact the AQM performance and is a dimensioning parameter that will be considered when comparing AQM proposals. If a specific buffer size is required, the tester must justify and detail the way the maximum queue size is set. Indeed, the maximum size of the buffer may affect the AQM's performance and its choice should be elaborated for a fair comparison between AQM proposals. While comparing AQM schemes, the buffer size should remain the same across the tests.3.3. Congestion Controls
This document considers running three different congestion control algorithms between A and B: o Standard TCP congestion control: The base-line congestion control is TCP NewReno with selective acknowledgment (SACK) [RFC5681]. o Aggressive congestion controls: A base-line congestion control for this category is CUBIC [CUBIC]. o Less-than-Best-Effort (LBE) congestion controls: Per [RFC6297], an LBE service "results in smaller bandwidth and/or delay impact on standard TCP than standard TCP itself, when sharing a bottleneck with it." A base-line congestion control for this category is Low Extra Delay Background Transport (LEDBAT) [RFC6817]. Other transport congestion controls can OPTIONALLY be evaluated in addition. Recent transport layer protocols are not mentioned in the following sections, for the sake of simplicity.4. Methodology, Metrics, AQM Comparisons, Packet Sizes, Scheduling, and ECN
4.1. Methodology
A description of each test setup should be detailed to allow this test to be compared with other tests. This also allows others to replicate the tests if needed. This test setup should detail software and hardware versions. The tester could make its data available.
The proposals should be evaluated on real-life systems, or they may be evaluated with event-driven simulations (such as ns-2, ns-3, OMNET, etc.). The proposed scenarios are not bound to a particular evaluation toolset. The tester is encouraged to make the detailed test setup and the results publicly available.4.2. Comments on Metrics Measurement
This document presents the end-to-end metrics that ought to be used to evaluate the trade-off between latency and goodput as described in Section 2. In addition to the end-to-end metrics, the queue-level metrics (normally collected at the device operating the AQM) provide a better understanding of the AQM behavior under study and the impact of its internal parameters. Whenever it is possible (e.g., depending on the features provided by the hardware/software), these guidelines advise considering queue-level metrics, such as link utilization, queuing delay, queue size, or packet drop/mark statistics in addition to the AQM-specific parameters. However, the evaluation must be primarily based on externally observed end-to-end metrics. These guidelines do not aim to detail the way these metrics can be measured, since that is expected to depend on the evaluation toolset.4.3. Comparing AQM Schemes
This document recognizes that these guidelines may be used for comparing AQM schemes. AQM schemes need to be compared against both performance and deployment categories. In addition, this section details how best to achieve a fair comparison of AQM schemes by avoiding certain pitfalls.4.3.1. Performance Comparison
AQM schemes should be compared against the generic scenarios that are summarized in Section 13. AQM schemes may be compared for specific network environments such as data centers, home networks, etc. If an AQM scheme has parameter(s) that were externally tuned for optimization or other purposes, these values must be disclosed. AQM schemes belong to different varieties such as queue-length based schemes (for example, RED) or queuing-delay based scheme (for example, CoDel, PIE). AQM schemes expose different control knobs associated with different semantics. For example, while both PIE and CoDel are queuing-delay based schemes and each expose a knob to
control the queuing delay -- PIE's "queuing delay reference" vs. CoDel's "queuing delay target", the two tuning parameters of the two schemes have different semantics, resulting in different control points. Such differences in AQM schemes can be easily overlooked while making comparisons. This document recommends the following procedures for a fair performance comparison between the AQM schemes: 1. Similar control parameters and implications: Testers should be aware of the control parameters of the different schemes that control similar behavior. Testers should also be aware of the input value ranges and corresponding implications. For example, consider two different schemes -- (A) queue-length based AQM scheme, and (B) queuing-delay based scheme. A and B are likely to have different kinds of control inputs to control the target delay -- the target queue length in A vs. target queuing delay in B, for example. Setting parameter values such as 100 MB for A vs. 10 ms for B will have different implications depending on evaluation context. Such context-dependent implications must be considered before drawing conclusions on performance comparisons. Also, it would be preferable if an AQM proposal listed such parameters and discussed how each relates to network characteristics such as capacity, average RTT, etc. 2. Compare over a range of input configurations: There could be situations when the set of control parameters that affect a specific behavior have different semantics between the two AQM schemes. As mentioned above, PIE has tuning parameters to control queue delay that have different semantics from those used in CoDel. In such situations, these schemes need to be compared over a range of input configurations. For example, compare PIE vs. CoDel over the range of target delay input configurations.4.3.2. Deployment Comparison
AQM schemes must be compared against deployment criteria such as the parameter sensitivity (Section 8.3), auto-tuning (Section 12), or implementation cost (Section 11).4.4. Packet Sizes and Congestion Notification
An AQM scheme may be considering packet sizes while generating congestion signals [RFC7141]. For example, control packets such as DNS requests/responses, TCP SYNs/ACKs are small, but their loss can severely impact application performance. An AQM scheme may therefore be biased towards small packets by dropping them with lower probability compared to larger packets. However, such an AQM scheme
is unfair to data senders generating larger packets. Data senders, malicious or otherwise, are motivated to take advantage of such an AQM scheme by transmitting smaller packets, and this could result in unsafe deployments and unhealthy transport and/or application designs. An AQM scheme should adhere to the recommendations outlined in the Best Current Practice for dropping and marking packets [BCP41], and should not provide undue advantage to flows with smaller packets, such as discussed in Section 4.4 of the AQM recommendation document [RFC7567]. In order to evaluate if an AQM scheme is biased towards flows with smaller size packets, traffic can be generated, as defined in Section 8.2.2, where half of the flows have smaller packets (e.g., 500-byte packets) than the other half of the flow (e.g., 1500-byte packets). In this case, the metrics reported could be the same as in Section 6.3, where Category I is the set of flows with smaller packets and Category II the one with larger packets. The bidirectional scenario could also be considered (Section 9.2).4.5. Interaction with ECN
ECN [RFC3168] is an alternative that allows AQM schemes to signal to receivers about network congestion that does not use packet drops. There are benefits to providing ECN support for an AQM scheme [WELZ2015]. If the tested AQM scheme can support ECN, the testers must discuss and describe the support of ECN, such as discussed in the AQM recommendation document [RFC7567]. Also, the AQM's ECN support can be studied and verified by replicating tests in Section 6.2 with ECN turned ON at the TCP senders. The results can be used not only to evaluate the performance of the tested AQM with and without ECN markings, but also to quantify the interest of enabling ECN.4.6. Interaction with Scheduling
A network device may use per-flow or per-class queuing with a scheduling algorithm to either prioritize certain applications or classes of traffic, limit the rate of transmission, or to provide isolation between different traffic flows within a common class, such as discussed in Section 2.1 of the AQM recommendation document [RFC7567]. The scheduling and the AQM conjointly impact the end-to-end performance. Therefore, the AQM proposal must discuss the feasibility of adding scheduling combined with the AQM algorithm. It can be explained whether the dropping policy is applied when packets are being enqueued or dequeued.
These guidelines do not propose guidelines to assess the performance of scheduling algorithms. Indeed, as opposed to characterizing AQM schemes that is related to their capacity to control the queuing delay in a queue, characterizing scheduling schemes is related to the scheduling itself and its interaction with the AQM scheme. As one example, the scheduler may create sub-queues and the AQM scheme may be applied on each of the sub-queues, and/or the AQM could be applied on the whole queue. Also, schedulers might, such as FQ-CoDel [HOEI2015] or FavorQueue [ANEL2014], introduce flow prioritization. In these cases, specific scenarios should be proposed to ascertain that these scheduler schemes not only help in tackling the bufferbloat, but also are robust under a wide variety of operating conditions. This is out of the scope of this document, which focuses on dropping and/or marking AQM schemes.