7. Registration Model
Registry: The administrative operation of a zone that allows registration of names within that zone. People often use this term to refer only to those organizations that perform registration in large delegation-centric zones (such as TLDs); but formally, whoever decides what data goes into a zone is the registry for that zone. This definition of "registry" is from a DNS point of view; for some zones, the policies that determine what can go in the zone are decided by superior zones and not the registry operator. Registrant: An individual or organization on whose behalf a name in a zone is registered by the registry. In many zones, the registry and the registrant may be the same entity, but in TLDs they often are not. Registrar: A service provider that acts as a go-between for registrants and registries. Not all registrations require a registrar, though it is common to have registrars involved in registrations in TLDs. EPP: The Extensible Provisioning Protocol (EPP), which is commonly used for communication of registration information between registries and registrars. EPP is defined in [RFC5730]. WHOIS: A protocol specified in [RFC3912], often used for querying registry databases. WHOIS data is frequently used to associate registration data (such as zone management contacts) with domain names. The term "WHOIS data" is often used as a synonym for the registry database, even though that database may be served by different protocols, particularly RDAP. The WHOIS protocol is also used with IP address registry data. RDAP: The Registration Data Access Protocol, defined in [RFC7480], [RFC7481], [RFC7482], [RFC7483], [RFC7484], and [RFC7485]. The RDAP protocol and data format are meant as a replacement for WHOIS. DNS operator: An entity responsible for running DNS servers. For a zone's authoritative servers, the registrant may act as their own DNS operator, or their registrar may do it on their behalf, or they may use a third-party operator. For some zones, the registry function is performed by the DNS operator plus other entities who decide about the allowed contents of the zone.
8. General DNSSEC
Most DNSSEC terms are defined in [RFC4033], [RFC4034], [RFC4035], and [RFC5155]. The terms that have caused confusion in the DNS community are highlighted here. DNSSEC-aware and DNSSEC-unaware: These two terms, which are used in some RFCs, have not been formally defined. However, Section 2 of [RFC4033] defines many types of resolvers and validators, including "non-validating security-aware stub resolver", "non- validating stub resolver", "security-aware name server", "security-aware recursive name server", "security-aware resolver", "security-aware stub resolver", and "security-oblivious 'anything'". (Note that the term "validating resolver", which is used in some places in DNSSEC-related documents, is also not defined.) Signed zone: "A zone whose RRsets are signed and that contains properly constructed DNSKEY, Resource Record Signature (RRSIG), Next Secure (NSEC), and (optionally) DS records." (Quoted from [RFC4033], Section 2.) It has been noted in other contexts that the zone itself is not really signed, but all the relevant RRsets in the zone are signed. Nevertheless, if a zone that should be signed contains any RRsets that are not signed (or opted out), those RRsets will be treated as bogus, so the whole zone needs to be handled in some way. It should also be noted that, since the publication of [RFC6840], NSEC records are no longer required for signed zones: a signed zone might include NSEC3 records instead. [RFC7129] provides additional background commentary and some context for the NSEC and NSEC3 mechanisms used by DNSSEC to provide authenticated denial- of-existence responses. Unsigned zone: Section 2 of [RFC4033] defines this as "a zone that is not signed". Section 2 of [RFC4035] defines this as "A zone that does not include these records [properly constructed DNSKEY, Resource Record Signature (RRSIG), Next Secure (NSEC), and (optionally) DS records] according to the rules in this section". There is an important note at the end of Section 5.2 of [RFC4035] that defines an additional situation in which a zone is considered unsigned: "If the resolver does not support any of the algorithms listed in an authenticated DS RRset, then the resolver will not be able to verify the authentication path to the child zone. In this case, the resolver SHOULD treat the child zone as if it were unsigned."
NSEC: "The NSEC record allows a security-aware resolver to authenticate a negative reply for either name or type non- existence with the same mechanisms used to authenticate other DNS replies." (Quoted from [RFC4033], Section 3.2.) In short, an NSEC record provides authenticated denial of existence. "The NSEC resource record lists two separate things: the next owner name (in the canonical ordering of the zone) that contains authoritative data or a delegation point NS RRset, and the set of RR types present at the NSEC RR's owner name." (Quoted from Section 4 of RFC 4034) NSEC3: Like the NSEC record, the NSEC3 record also provides authenticated denial of existence; however, NSEC3 records mitigate against zone enumeration and support Opt-Out. NSEC3 resource records are defined in [RFC5155]. Note that [RFC6840] says that [RFC5155] "is now considered part of the DNS Security Document Family as described by Section 10 of [RFC4033]". This means that some of the definitions from earlier RFCs that only talk about NSEC records should probably be considered to be talking about both NSEC and NSEC3. Opt-out: "The Opt-Out Flag indicates whether this NSEC3 RR may cover unsigned delegations." (Quoted from [RFC5155], Section 3.1.2.1.) Opt-out tackles the high costs of securing a delegation to an insecure zone. When using Opt-Out, names that are an insecure delegation (and empty non-terminals that are only derived from insecure delegations) don't require an NSEC3 record or its corresponding RRSIG records. Opt-Out NSEC3 records are not able to prove or deny the existence of the insecure delegations. (Adapted from [RFC7129], Section 5.1) Zone enumeration: "The practice of discovering the full content of a zone via successive queries." (Quoted from [RFC5155], Section 1.3.) This is also sometimes called "zone walking". Zone enumeration is different from zone content guessing where the guesser uses a large dictionary of possible labels and sends successive queries for them, or matches the contents of NSEC3 records against such a dictionary. Key signing key (KSK): DNSSEC keys that "only sign the apex DNSKEY RRset in a zone."(Quoted from [RFC6781], Section 3.1)
Zone signing key (ZSK): "DNSSEC keys that can be used to sign all the RRsets in a zone that require signatures, other than the apex DNSKEY RRset." (Quoted from [RFC6781], Section 3.1) Note that the roles KSK and ZSK are not mutually exclusive: a single key can be both KSK and ZSK at the same time. Also note that a ZSK is sometimes used to sign the apex DNSKEY RRset. Combined signing key (CSK): "In cases where the differentiation between the KSK and ZSK is not made, i.e., where keys have the role of both KSK and ZSK, we talk about a Single-Type Signing Scheme." (Quoted from [RFC6781], Section 3.1) This is sometimes called a "combined signing key" or CSK. It is operational practice, not protocol, that determines whether a particular key is a ZSK, a KSK, or a CSK. Secure Entry Point (SEP): A flag in the DNSKEY RDATA that "can be used to distinguish between keys that are intended to be used as the secure entry point into the zone when building chains of trust, i.e., they are (to be) pointed to by parental DS RRs or configured as a trust anchor. Therefore, it is suggested that the SEP flag be set on keys that are used as KSKs and not on keys that are used as ZSKs, while in those cases where a distinction between a KSK and ZSK is not made (i.e., for a Single-Type Signing Scheme), it is suggested that the SEP flag be set on all keys." (Quoted from [RFC6781], Section 3.2.3.) Note that the SEP flag is only a hint, and its presence or absence may not be used to disqualify a given DNSKEY RR from use as a KSK or ZSK during validation. DNSSEC Policy (DP): A statement that "sets forth the security requirements and standards to be implemented for a DNSSEC-signed zone." (Quoted from [RFC6841], Section 2) DNSSEC Practice Statement (DPS): "A practices disclosure document that may support and be a supplemental document to the DNSSEC Policy (if such exists), and it states how the management of a given zone implements procedures and controls at a high level." (Quoted from [RFC6841], Section 2)9. DNSSEC States
A validating resolver can determine that a response is in one of four states: secure, insecure, bogus, or indeterminate. These states are defined in [RFC4033] and [RFC4035], although the two definitions differ a bit. This document makes no effort to reconcile the two definitions, and takes no position as to whether they need to be reconciled.
Section 5 of [RFC4033] says: A validating resolver can determine the following 4 states: Secure: The validating resolver has a trust anchor, has a chain of trust, and is able to verify all the signatures in the response. Insecure: The validating resolver has a trust anchor, a chain of trust, and, at some delegation point, signed proof of the non-existence of a DS record. This indicates that subsequent branches in the tree are provably insecure. A validating resolver may have a local policy to mark parts of the domain space as insecure. Bogus: The validating resolver has a trust anchor and a secure delegation indicating that subsidiary data is signed, but the response fails to validate for some reason: missing signatures, expired signatures, signatures with unsupported algorithms, data missing that the relevant NSEC RR says should be present, and so forth. Indeterminate: There is no trust anchor that would indicate that a specific portion of the tree is secure. This is the default operation mode. Section 4.3 of [RFC4035] says: A security-aware resolver must be able to distinguish between four cases: Secure: An RRset for which the resolver is able to build a chain of signed DNSKEY and DS RRs from a trusted security anchor to the RRset. In this case, the RRset should be signed and is subject to signature validation, as described above. Insecure: An RRset for which the resolver knows that it has no chain of signed DNSKEY and DS RRs from any trusted starting point to the RRset. This can occur when the target RRset lies in an unsigned zone or in a descendent [sic] of an unsigned zone. In this case, the RRset may or may not be signed, but the resolver will not be able to verify the signature.
Bogus: An RRset for which the resolver believes that it ought to be able to establish a chain of trust but for which it is unable to do so, either due to signatures that for some reason fail to validate or due to missing data that the relevant DNSSEC RRs indicate should be present. This case may indicate an attack but may also indicate a configuration error or some form of data corruption. Indeterminate: An RRset for which the resolver is not able to determine whether the RRset should be signed, as the resolver is not able to obtain the necessary DNSSEC RRs. This can occur when the security-aware resolver is not able to contact security-aware name servers for the relevant zones.10. Security Considerations
These definitions do not change any security considerations for the DNS.11. References
11.1. Normative References
[RFC882] Mockapetris, P., "Domain names: Concepts and facilities", RFC 882, DOI 10.17487/RFC0882, November 1983, <http://www.rfc-editor.org/info/rfc882>. [RFC1034] Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987, <http://www.rfc-editor.org/info/rfc1034>. [RFC1035] Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, DOI 10.17487/RFC1035, November 1987, <http://www.rfc-editor.org/info/rfc1035>. [RFC1123] Braden, R., Ed., "Requirements for Internet Hosts - Application and Support", STD 3, RFC 1123, DOI 10.17487/RFC1123, October 1989, <http://www.rfc-editor.org/info/rfc1123>. [RFC1996] Vixie, P., "A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)", RFC 1996, DOI 10.17487/RFC1996, August 1996, <http://www.rfc-editor.org/info/rfc1996>. [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound, "Dynamic Updates in the Domain Name System (DNS UPDATE)", RFC 2136, DOI 10.17487/RFC2136, April 1997, <http://www.rfc-editor.org/info/rfc2136>.
[RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997, <http://www.rfc-editor.org/info/rfc2181>. [RFC2182] Elz, R., Bush, R., Bradner, S., and M. Patton, "Selection and Operation of Secondary DNS Servers", BCP 16, RFC 2182, DOI 10.17487/RFC2182, July 1997, <http://www.rfc-editor.org/info/rfc2182>. [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998, <http://www.rfc-editor.org/info/rfc2308>. [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "DNS Security Introduction and Requirements", RFC 4033, DOI 10.17487/RFC4033, March 2005, <http://www.rfc-editor.org/info/rfc4033>. [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "Resource Records for the DNS Security Extensions", RFC 4034, DOI 10.17487/RFC4034, March 2005, <http://www.rfc-editor.org/info/rfc4034>. [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "Protocol Modifications for the DNS Security Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005, <http://www.rfc-editor.org/info/rfc4035>. [RFC4592] Lewis, E., "The Role of Wildcards in the Domain Name System", RFC 4592, DOI 10.17487/RFC4592, July 2006, <http://www.rfc-editor.org/info/rfc4592>. [RFC5155] Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS Security (DNSSEC) Hashed Authenticated Denial of Existence", RFC 5155, DOI 10.17487/RFC5155, March 2008, <http://www.rfc-editor.org/info/rfc5155>. [RFC5730] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)", STD 69, RFC 5730, DOI 10.17487/RFC5730, August 2009, <http://www.rfc-editor.org/info/rfc5730>. [RFC5936] Lewis, E. and A. Hoenes, Ed., "DNS Zone Transfer Protocol (AXFR)", RFC 5936, DOI 10.17487/RFC5936, June 2010, <http://www.rfc-editor.org/info/rfc5936>.
[RFC6561] Livingood, J., Mody, N., and M. O'Reirdan, "Recommendations for the Remediation of Bots in ISP Networks", RFC 6561, DOI 10.17487/RFC6561, March 2012, <http://www.rfc-editor.org/info/rfc6561>. [RFC6672] Rose, S. and W. Wijngaards, "DNAME Redirection in the DNS", RFC 6672, DOI 10.17487/RFC6672, June 2012, <http://www.rfc-editor.org/info/rfc6672>. [RFC6781] Kolkman, O., Mekking, W., and R. Gieben, "DNSSEC Operational Practices, Version 2", RFC 6781, DOI 10.17487/RFC6781, December 2012, <http://www.rfc-editor.org/info/rfc6781>. [RFC6840] Weiler, S., Ed. and D. Blacka, Ed., "Clarifications and Implementation Notes for DNS Security (DNSSEC)", RFC 6840, DOI 10.17487/RFC6840, February 2013, <http://www.rfc-editor.org/info/rfc6840>. [RFC6841] Ljunggren, F., Eklund Lowinder, AM., and T. Okubo, "A Framework for DNSSEC Policies and DNSSEC Practice Statements", RFC 6841, DOI 10.17487/RFC6841, January 2013, <http://www.rfc-editor.org/info/rfc6841>. [RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms for DNS (EDNS(0))", STD 75, RFC 6891, DOI 10.17487/RFC6891, April 2013, <http://www.rfc-editor.org/info/rfc6891>. [RFC7344] Kumari, W., Gudmundsson, O., and G. Barwood, "Automating DNSSEC Delegation Trust Maintenance", RFC 7344, DOI 10.17487/RFC7344, September 2014, <http://www.rfc-editor.org/info/rfc7344>.11.2. Informative References
[DBOUND] IETF, "Domain Boundaries (dbound) Working Group", 2015, <https://datatracker.ietf.org/wg/dbound/charter/>. [RFC819] Su, Z. and J. Postel, "The Domain Naming Convention for Internet User Applications", RFC 819, DOI 10.17487/RFC0819, August 1982, <http://www.rfc-editor.org/info/rfc819>. [RFC952] Harrenstien, K., Stahl, M., and E. Feinler, "DoD Internet host table specification", RFC 952, DOI 10.17487/RFC0952, October 1985, <http://www.rfc-editor.org/info/rfc952>.
[RFC1995] Ohta, M., "Incremental Zone Transfer in DNS", RFC 1995, DOI 10.17487/RFC1995, August 1996, <http://www.rfc-editor.org/info/rfc1995>. [RFC3912] Daigle, L., "WHOIS Protocol Specification", RFC 3912, DOI 10.17487/RFC3912, September 2004, <http://www.rfc-editor.org/info/rfc3912>. [RFC4641] Kolkman, O. and R. Gieben, "DNSSEC Operational Practices", RFC 4641, DOI 10.17487/RFC4641, September 2006, <http://www.rfc-editor.org/info/rfc4641>. [RFC4697] Larson, M. and P. Barber, "Observed DNS Resolution Misbehavior", BCP 123, RFC 4697, DOI 10.17487/RFC4697, October 2006, <http://www.rfc-editor.org/info/rfc4697>. [RFC4786] Abley, J. and K. Lindqvist, "Operation of Anycast Services", BCP 126, RFC 4786, DOI 10.17487/RFC4786, December 2006, <http://www.rfc-editor.org/info/rfc4786>. [RFC4956] Arends, R., Kosters, M., and D. Blacka, "DNS Security (DNSSEC) Opt-In", RFC 4956, DOI 10.17487/RFC4956, July 2007, <http://www.rfc-editor.org/info/rfc4956>. [RFC5625] Bellis, R., "DNS Proxy Implementation Guidelines", BCP 152, RFC 5625, DOI 10.17487/RFC5625, August 2009, <http://www.rfc-editor.org/info/rfc5625>. [RFC5890] Klensin, J., "Internationalized Domain Names for Applications (IDNA): Definitions and Document Framework", RFC 5890, DOI 10.17487/RFC5890, August 2010, <http://www.rfc-editor.org/info/rfc5890>. [RFC5891] Klensin, J., "Internationalized Domain Names in Applications (IDNA): Protocol", RFC 5891, DOI 10.17487/RFC5891, August 2010, <http://www.rfc-editor.org/info/rfc5891>. [RFC5892] Faltstrom, P., Ed., "The Unicode Code Points and Internationalized Domain Names for Applications (IDNA)", RFC 5892, DOI 10.17487/RFC5892, August 2010, <http://www.rfc-editor.org/info/rfc5892>. [RFC5893] Alvestrand, H., Ed. and C. Karp, "Right-to-Left Scripts for Internationalized Domain Names for Applications (IDNA)", RFC 5893, DOI 10.17487/RFC5893, August 2010, <http://www.rfc-editor.org/info/rfc5893>.
[RFC5894] Klensin, J., "Internationalized Domain Names for Applications (IDNA): Background, Explanation, and Rationale", RFC 5894, DOI 10.17487/RFC5894, August 2010, <http://www.rfc-editor.org/info/rfc5894>. [RFC6055] Thaler, D., Klensin, J., and S. Cheshire, "IAB Thoughts on Encodings for Internationalized Domain Names", RFC 6055, DOI 10.17487/RFC6055, February 2011, <http://www.rfc-editor.org/info/rfc6055>. [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265, DOI 10.17487/RFC6265, April 2011, <http://www.rfc-editor.org/info/rfc6265>. [RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in Internationalization in the IETF", BCP 166, RFC 6365, DOI 10.17487/RFC6365, September 2011, <http://www.rfc-editor.org/info/rfc6365>. [RFC7129] Gieben, R. and W. Mekking, "Authenticated Denial of Existence in the DNS", RFC 7129, DOI 10.17487/RFC7129, February 2014, <http://www.rfc-editor.org/info/rfc7129>. [RFC7480] Newton, A., Ellacott, B., and N. Kong, "HTTP Usage in the Registration Data Access Protocol (RDAP)", RFC 7480, DOI 10.17487/RFC7480, March 2015, <http://www.rfc-editor.org/info/rfc7480>. [RFC7481] Hollenbeck, S. and N. Kong, "Security Services for the Registration Data Access Protocol (RDAP)", RFC 7481, DOI 10.17487/RFC7481, March 2015, <http://www.rfc-editor.org/info/rfc7481>. [RFC7482] Newton, A. and S. Hollenbeck, "Registration Data Access Protocol (RDAP) Query Format", RFC 7482, DOI 10.17487/RFC7482, March 2015, <http://www.rfc-editor.org/info/rfc7482>. [RFC7483] Newton, A. and S. Hollenbeck, "JSON Responses for the Registration Data Access Protocol (RDAP)", RFC 7483, DOI 10.17487/RFC7483, March 2015, <http://www.rfc-editor.org/info/rfc7483>. [RFC7484] Blanchet, M., "Finding the Authoritative Registration Data (RDAP) Service", RFC 7484, DOI 10.17487/RFC7484, March 2015, <http://www.rfc-editor.org/info/rfc7484>.
[RFC7485] Zhou, L., Kong, N., Shen, S., Sheng, S., and A. Servin, "Inventory and Analysis of WHOIS Registration Objects", RFC 7485, DOI 10.17487/RFC7485, March 2015, <http://www.rfc-editor.org/info/rfc7485>.Acknowledgements
The authors gratefully acknowledge all of the authors of DNS-related RFCs that proceed this one. Comments from Tony Finch, Stephane Bortzmeyer, Niall O'Reilly, Colm MacCarthaigh, Ray Bellis, John Kristoff, Robert Edmonds, Paul Wouters, Shumon Huque, Paul Ebersman, David Lawrence, Matthijs Mekking, Casey Deccio, Bob Harold, Ed Lewis, John Klensin, David Black, and many others in the DNSOP Working Group have helped shape this document.Authors' Addresses
Paul Hoffman ICANN Email: paul.hoffman@icann.org Andrew Sullivan Dyn 150 Dow Street, Tower 2 Manchester, NH 03101 United States Email: asullivan@dyn.com Kazunori Fujiwara Japan Registry Services Co., Ltd. Chiyoda First Bldg. East 13F, 3-8-1 Nishi-Kanda Chiyoda-ku, Tokyo 101-0065 Japan Phone: +81 3 5215 8451 Email: fujiwara@jprs.co.jp