Internet Engineering Task Force (IETF) J. Lentini Request for Comments: 7532 NetApp Category: Standards Track R. Tewari ISSN: 2070-1721 IBM Almaden C. Lever, Ed. Oracle Corporation March 2015 Namespace Database (NSDB) Protocol for Federated File SystemsAbstract
This document describes a file system federation protocol that enables file access and namespace traversal across collections of independently administered fileservers. The protocol specifies a set of interfaces by which fileservers with different administrators can form a fileserver federation that provides a namespace composed of the file systems physically hosted on and exported by the constituent fileservers. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7532.
Copyright Notice Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.
Table of Contents
1. Introduction ....................................................4 1.1. Requirements Language ......................................5 2. Overview of Features and Concepts ...............................5 2.1. File-Access Protocol .......................................5 2.2. File-Access Client .........................................5 2.3. Fileserver .................................................5 2.4. Referral ...................................................5 2.5. Namespace ..................................................6 2.6. Fileset ....................................................6 2.7. Fileset Name (FSN) .........................................6 2.8. Fileset Location (FSL) .....................................7 2.8.1. The NFS URI Scheme ..................................8 2.8.2. Mutual Consistency across Fileset Locations ........10 2.8.3. Caching of Fileset Locations .......................11 2.8.4. Generating a Referral from Fileset Locations .......12 2.9. Namespace Database (NSDB) .................................13 2.9.1. NSDB Client ........................................14 2.10. Junctions and Referrals ..................................14 2.11. Unified Namespace and the Root Fileset ...................15 2.12. UUID Considerations ......................................15 3. Examples .......................................................16 3.1. Creating a Fileset and Its FSL(s) .........................16 3.1.1. Creating a Fileset and an FSN ......................17 3.1.2. Adding a Replica of a Fileset ......................17 3.2. Junction Resolution .......................................17 3.3. Example Use Cases for Fileset Annotations .................18 4. NSDB Configuration and Schema ..................................19 4.1. LDAP Configuration ........................................19 4.2. LDAP Schema ...............................................21 4.2.1. LDAP Attributes ....................................23 4.2.2. LDAP Object Classes ................................38 5. NSDB Operations ................................................42 5.1. NSDB Operations for Administrators ........................43 5.1.1. Create an FSN ......................................43 5.1.2. Delete an FSN ......................................44 5.1.3. Create an FSL ......................................44 5.1.4. Delete an FSL ......................................47 5.1.5. Update an FSL ......................................48 5.2. NSDB Operations for Fileservers ...........................49 5.2.1. NSDB Container Entry (NCE) Enumeration .............49 5.2.2. Lookup FSLs for an FSN .............................49 5.3. NSDB Operations and LDAP Referrals ........................50 6. Security Considerations ........................................51 7. IANA Considerations ............................................52 7.1. Registry for the fedfsAnnotation Key Namespace ............52 7.2. Registry for FedFS Object Identifiers .....................52
7.3. LDAP Descriptor Registration ..............................55 8. Glossary .......................................................58 9. References .....................................................60 9.1. Normative References ......................................60 9.2. Informative References ....................................62 Acknowledgments ...................................................64 Authors' Addresses ................................................651. Introduction
A federated file system enables file access and namespace traversal in a uniform, secure, and consistent manner across multiple independent fileservers within an enterprise or across multiple enterprises. This document specifies a set of protocols that allow fileservers, possibly from different vendors and with different administrators, to cooperatively form a federation containing one or more federated file systems. Each federated file system's namespace is composed of the file systems physically hosted on and exported by the federation's fileservers. A federation comprises a common namespace across all its fileservers. A federation can project multiple namespaces and enable clients to traverse each one. A federation can contain an arbitrary number of namespace repositories, each belonging to a different administrative entity and each rendering a part of the namespace. A federation might also have an arbitrary number of administrative entities responsible for administering disjoint subsets of the fileservers. Traditionally, building a namespace that spans multiple fileservers has been difficult for two reasons. First, the fileservers that export pieces of the namespace are often not in the same administrative domain. Second, there is no standard mechanism for the fileservers to cooperatively present the namespace. Fileservers may provide proprietary management tools, and in some cases, an administrator may be able to use the proprietary tools to build a shared namespace out of the exported file systems. However, relying on vendor-specific proprietary tools does not work in larger enterprises or when collaborating across enterprises because the fileservers are likely to be from multiple vendors or use different software versions, each with their own namespace protocols, with no common mechanism to manage the namespace or exchange namespace information.
The federated file system protocols in this document define how to construct a namespace accessible by a Network File System (NFS) version 4.0 [RFC7530], NFSv4.1 [RFC5661], or newer client and have been designed to accommodate other file-access protocols in the future. The requirements for federated file systems are described in [RFC5716]. A protocol for administering a fileserver's namespace is described in [RFC7533]. The mechanism for discovering the root of a federated namespace is described in [RFC6641]. In the rest of the document, the term "fileserver" denotes a fileserver that is part of a federation.1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].2. Overview of Features and Concepts
2.1. File-Access Protocol
A file-access protocol is a network protocol for accessing data. The NFSv4.0 protocol [RFC7530] is an example of a file-access protocol.2.2. File-Access Client
File-access clients are standard, off-the-shelf network-attached storage (NAS) clients that communicate with fileservers using a standard file-access protocol.2.3. Fileserver
Fileservers are servers that store physical fileset data or refer file-access clients to other fileservers. A fileserver provides access to its shared file system data via a file-access protocol. A fileserver may be implemented in a number of different ways, including a single system, a cluster of systems, or some other configuration.2.4. Referral
A referral is a mechanism by which a fileserver redirects a file- access client to a different fileserver or export. The exact information contained in a referral varies from one file-access protocol to another. The NFSv4.0 protocol, for example, defines the
fs_locations attribute for returning referral information to NFSv4.0 clients. The NFSv4.1 protocol introduces the fs_locations_info attribute that can return richer referral information to its clients. NFSv4.1 fileservers may use either attribute during a referral. Both attributes are defined in [RFC5661].2.5. Namespace
The goal of a unified namespace is to make all managed data available to any file-access client via the same path in a common file system namespace. This should be achieved with minimal or zero configuration on file-access clients. In particular, updates to the common namespace should not require configuration changes to any file-access client. Filesets, which are the units of data management, are a set of files and directories. From the perspective of file-access clients, the common namespace is constructed by mounting filesets that are physically located on different fileservers. The namespace, which is defined in terms of fileset names and locations, is stored in a set of namespace repositories, each managed by an administrative entity. The namespace schema defines the model used for populating, modifying, and querying the namespace repositories. It is not required by the federation that the namespace be common across all fileservers. It should be possible to have several independently rooted namespaces.2.6. Fileset
A fileset is loosely defined as a set of files and the directory tree that contains them. The fileset abstraction is the basic unit of data management. Depending on the configuration, a fileset may be anything from an individual directory of an exported file system to an entire exported file system on a fileserver.2.7. Fileset Name (FSN)
A fileset is uniquely represented by its fileset name (FSN). An FSN is considered unique across a federation. After an FSN is created, it is associated with one or more fileset locations (FSLs) on one or more fileservers.
An FSN consists of: NsdbName: the network location of the Namespace Database (NSDB) node that contains authoritative information for this FSN. FsnUuid: a UUID (universally unique identifier), conforming to [RFC4122], that is used to uniquely identify an FSN. FsnTTL: the time-to-live of the FSN's FSL information, in seconds. Fileservers MUST NOT use cached FSL records after the parent FSN's FsnTTL has expired. An FsnTTL value of zero indicates that fileservers MUST NOT cache the results of resolving this FSN. The NsdbName is not physically stored as an attribute of the record. The NsdbName is obvious to any client that accesses an NSDB and is indeed authenticated in cases where Transport Layer Security (TLS) is in effect. The FsnUuid and NsdbName values never change during an FSN's lifetime. However, an FSN's FSL information can change over time and is typically cached on fileservers for performance. More detail on FSL caching is provided in Section 2.8.3. An FSN record may also contain: Annotations: name/value pairs that can be interpreted by a fileserver. The semantics of this field are not defined by this document. These tuples are intended to be used by higher- level protocols. Descriptions: text descriptions. The semantics of this field are not defined by this document.2.8. Fileset Location (FSL)
An FSL describes one physical location where a complete copy of the fileset's data resides. An FSL contains generic and type-specific information that together describe how to access the fileset data at this location. An FSL's attributes can be used by a fileserver to decide which locations it will return to a file-access client.
An FSL consists of: FslUuid: a UUID, conforming to [RFC4122], that is used to uniquely identify an FSL. FsnUuid: the UUID of the FSL's FSN. NsdbName: the network location of the NSDB node that contains authoritative information for this FSL. The NsdbName is not stored as an attribute of an FSL record for the same reason it is not stored in FSN records. An FSL record may also contain: Annotations: name/value pairs that can be interpreted by a fileserver. The semantics of this field are not defined by this document. These tuples are intended to be used by higher- level protocols. Descriptions: text descriptions. The semantics of this field are not defined by this document. In addition to the attributes defined above, an FSL record contains attributes that allow a fileserver to construct referrals. For each file-access protocol, a corresponding FSL record subtype is defined. This document defines an FSL subtype for NFS. An NFS FSL contains information suitable for use in one of the NFSv4 referral attributes (e.g., fs_locations or fs_locations_info, described in [RFC5661]). Section 4.2.2.4 describes the contents of an NFS FSL record. A fileset may also be accessible by file-access protocols other than NFS. The contents and format of such FSL subtypes are not defined in this document.2.8.1. The NFS URI Scheme
To capture the location of an NFSv4 fileset, we extend the NFS URL scheme specified in [RFC2224]. This extension follows rules for defining Uniform Resource Identifier schemes (see [RFC3986]). In the following text, we refer to this extended NFS URL scheme as an NFS URI. An NFS URI MUST contain both an authority and a path component. It MUST NOT contain a query component or a fragment component. Use of the familiar "nfs" scheme name is retained.
2.8.1.1. The NFS URI Authority Component
The rules for encoding the authority component of a generic URI are specified in section 3.2 of [RFC3986]. The authority component of an NFS URI MUST contain the host subcomponent. For globally scoped NFS URIs, a hostname used in such URIs SHOULD be a fully qualified domain name. See section 3.2.2 of [RFC3986] for rules on encoding non-ASCII characters in hostnames. An NFS URI MAY contain a port subcomponent as described in section 3.2.3 of [RFC3986]. If this subcomponent is missing, a port value of 2049 is assumed, as specified in [RFC7530], Section 3.1.2.8.1.2. The NFS URI Path Component
The rules for encoding the path component of a generic URI are specified in Section 3.3 of [RFC3986]. According to Sections 5 and 6 of [RFC2224], NFS URLs specify a pathname relative to an NFS fileserver's public filehandle. However, NFSv4 fileservers do not expose a public filehandle. Instead, NFSv4 pathnames contained in an NFS URI are evaluated relative to the pseudoroot of the fileserver identified in the URI's authority component. Each component of an NFSv4 pathname is represented as a component4 string (see Section 3.2, "Basic Data Types", of [RFC5661]). The component4 elements of an NFSv4 pathname are encoded as path segments in an NFS URI. NFSv4 pathnames MUST be expressed in an NFS URI as an absolute path. An NFS URI path component MUST NOT be empty. The NFS URI path component starts with a slash ("/") character, followed by one or more path segments that each start with a slash ("/") character [RFC3986]. Therefore, a double slash always follows the authority component of an NFS URI. For example, the NFSv4 pathname "/" is represented by two slash ("/") characters following an NFS URI's authority component. The component names of an NFSv4 pathname MUST be prepared using the component name rules defined in Section 12 ("Internationalization") of [RFC7530] prior to encoding the path component of an NFS URI. As specified in [RFC3986], any non-ASCII characters and any URI-reserved characters, such as the slash ("/") character, contained in a component4 element MUST be represented by URI percent encoding.
2.8.1.3. Encoding an NFS Location in an FSL
The path component of an NFS URI encodes the rootpath field of the NFSv4 fs_location4 data type or the "fli_rootpath" of the NFSv4 fs_locations_item4 data type (see [RFC5661]). In its server field, the NFSv4 fs_location4 data type contains a list of universal addresses and DNS labels. Each may optionally include a port number. The exact encoding requirements for this information is found in Section 12.6 of [RFC7530]. The NFSv4 fs_locations_item4 data type encodes the same data in its fli_entries field (see [RFC5661]). This information is encoded in the authority component of an NFS URI. The server and fli_entries fields can encode multiple server hostnames that share the same pathname. An NFS URI, and hence an FSL record, represents only a single hostname and pathname pair. An NFS fileserver MUST NOT combine a set of FSL records into a single fs_location4 or fs_locations_item4 unless each FSL record in the set contains the same rootpath value and extended file system information.2.8.2. Mutual Consistency across Fileset Locations
All of the FSLs that have the same FSN (and thereby reference the same fileset) are equivalent from the point of view of access by a file-access client. Different fileset locations for an FSN represent the same data, though potentially at different points in time. Fileset locations are equivalent but not identical. Locations may be either read-only or read-write. Typically, multiple read-write locations are backed by a clustered file system while read-only locations are replicas created by a federation-initiated or external replication operation. Read-only locations may represent consistent point-in-time copies of a read-write location. The federation protocols, however, cannot prevent subsequent changes to a read-only location nor guarantee point-in-time consistency of a read-only location if the read-write location is changing. Regardless of the type, one file-access client may be referred to a location described by one FSL while another client chooses to use a location described by another FSL. Since updates to each fileset location are not controlled by the federation protocol, it is the responsibility of administrators to guarantee the functional equivalence of the data. The federation protocols do not guarantee that different fileset locations are mutually consistent in terms of the currency of their data. However, they provide a means to publish currency information
so that all fileservers in a federation can convey the same information to file-access clients during referrals. Clients use this information to ensure they do not revert to an out-of-date version of a fileset's data when switching between fileset locations. NFSv4.1 provides guidance on how replication can be handled in such a manner. In particular, see Section 11.7 of [RFC5661].2.8.3. Caching of Fileset Locations
To resolve an FSN to a set of FSL records, a fileserver queries the NSDB node named in the FSN for FSL records associated with this FSN. The parent FSN's FsnTTL attribute (see Section 2.7) specifies the period of time during which a fileserver may cache these FSL records. The combination of FSL caching and FSL migration presents a challenge. For example, suppose there are three fileservers named A, B, and C. Suppose further that fileserver A contains a junction J to fileset X stored on fileserver B (see Section 2.10 for a description of junctions). Now suppose that fileset X is migrated from fileserver B to fileserver C, and the corresponding FSL information for fileset X in the authoritative NSDB is updated. If fileserver A has cached FSLs for fileset X, a file-access client traversing junction J on fileserver A will be referred to fileserver B, even though fileset X has migrated to fileserver C. If fileserver A had not cached the FSL records, it would have queried the NSDB and obtained the correct location of fileset X. Typically, the process of fileset migration leaves a redirection on the source fileserver in place of a migrated fileset (without such a redirection, file-access clients would find an empty space where the migrated fileset was, which defeats the purpose of a managed migration). This redirection might be a new junction that targets the same FSN as other junctions referring to the migrated fileset, or it might be some other kind of directive, depending on the fileserver implementation, that simply refers file-access clients to the new location of the migrated fileset.
Back to our example. Suppose, as part of the migration process, a junction replaces fileset X on fileserver B. Later, either: o New file-access clients are referred to fileserver B by stale FSL information cached on fileserver A, or o File-access clients continue to access fileserver B because they cache stale location data for fileset X. In either case, thanks to the redirection, file-access clients are informed by fileserver B that fileset X has moved to fileserver C. Such redirecting junctions (here, on fileserver B) would not be required to be in place forever. They need to stay in place at least until FSL entries cached on fileservers and locations cached on file- access clients for the target fileset are invalidated. The FsnTTL field in the FSL's parent FSN (see Section 2.7) specifies an upper bound for the lifetime of cached FSL information and thus can act as a lower bound for the lifetime of redirecting junctions. For example, suppose the FsnTTL field contains the value 3600 seconds (one hour). In such a case, administrators SHOULD keep the redirection in place for at least one hour after a fileset migration has taken place because a referring fileserver might cache the FSL data during that time before refreshing it. To get file-access clients to access the destination fileserver more quickly, administrators SHOULD set the FsnTTL field of the migrated fileset to a low number or zero before migration begins. It can be reset to a more reasonable number at a later point. Note that some file-access protocols do not communicate location cache expiry information to file-access clients. In some cases, it may be difficult to determine an appropriate lifetime for redirecting junctions because file-access clients may cache location information indefinitely.2.8.4. Generating a Referral from Fileset Locations
After resolving an FSN to a set of FSL records, the fileserver generates a referral to redirect a file-access client to one or more of the FSN's FSLs. The fileserver converts the FSL records to a referral format understood by a particular file-access client, such as an NFSv4 fs_locations or fs_locations_info attribute.
To give file-access clients as many options as possible, the fileserver SHOULD include the maximum possible number of FSL records in a referral. However, the fileserver MAY omit some of the FSL records from the referral. For example, the fileserver might omit an FSL record because of limitations in the file-access protocol's referral format. For a given FSL record, the fileserver MAY convert or reduce the FSL record's contents in a manner appropriate to the referral format. For example, an NFS FSL record contains all the data necessary to construct an fs_locations_info attribute, but an fs_locations_info attribute contains several pieces of information that are not found in the simpler fs_locations attribute. A fileserver constructs entries in an fs_locations attribute using the relevant contents of an NFS FSL record. Whenever the fileserver converts or reduces FSL data, the fileserver SHOULD attempt to maintain the original meaning where possible. For example, an NFS FSL record contains the rank and order information that is included in an fs_locations_info attribute (see NFSv4.1's FSLI4BX_READRANK, FSLI4BX_READORDER, FSLI4BX_WRITERANK, and FSLI4BX_WRITEORDER). While this rank and order information is not explicitly expressible in an fs_locations attribute, the fileserver can arrange the fs_locations attribute's locations list based on the rank and order values. Another example: A single NFS FSL record contains the hostname of one fileserver. A single fs_locations attribute can contain a list of fileserver names. An NFS fileserver MAY combine two or more FSL records into a single entry in an fs_locations or fs_locations_info array only if each FSL record contains the same pathname and extended file system information. Refer to Sections 11.9 and 11.10 of the NFSv4.1 protocol specification [RFC5661] for further details.2.9. Namespace Database (NSDB)
The NSDB service is a federation-wide service that provides interfaces to define, update, and query FSN information, FSL information, and FSN-to-FSL mapping information. An individual repository of namespace information is called an NSDB node. The difference between the NSDB service and an NSDB node is analogous to that between the DNS service and a particular DNS server.
Each NSDB node is managed by a single administrative entity. A single administrative entity can manage multiple NSDB nodes. Each NSDB node stores the definition of the FSNs for which it is authoritative. It also stores the definitions of the FSLs associated with those FSNs. An NSDB node is authoritative for the filesets that it defines. An NSDB MAY be replicated throughout the federation. If an NSDB is replicated, the NSDB MUST exhibit loose, converging consistency as defined in [RFC3254]. The mechanism by which this is achieved is outside the scope of this document. Many Lightweight Directory Access Protocol (LDAP) implementations support replication. These features MAY be used to replicate the NSDB.2.9.1. NSDB Client
Each NSDB node supports an LDAP [RFC4510] interface. An NSDB client is software that uses the LDAP protocol to access or update namespace information stored on an NSDB node. A domain's administrative entity uses NSDB client software to manage information stored on NSDB nodes. Details of these transactions are discussed in Section 5.1. Fileservers act as an NSDB client when contacting a particular NSDB node to resolve an FSN to a set of FSL records. The resulting location information is then transferred to file-access clients via referrals. Therefore, file-access clients never need to access NSDBs directly. These transactions are described in Section 5.2.2.10. Junctions and Referrals
A junction is a point in a particular fileset namespace where a specific target fileset may be attached. If a file-access client traverses the path leading from the root of a federated namespace to the junction referring to a target fileset, it should be able to mount and access the data in that target fileset (assuming appropriate permissions). In other words, a junction can be viewed as a reference from a directory in one fileset to the root of the target fileset. A junction can be implemented as a special marker on a directory or by some other mechanism in the fileserver's underlying file system. What data is used by the fileserver to represent junctions is not defined by this document. The essential property is that given a junction, a fileserver must be able to find the FSN for the target fileset.
When a file-access client reaches a junction, the fileserver refers the client to a list of FSLs associated with the FSN targeted by the junction. The client can then mount one of the associated FSLs. The federation protocols do not limit where and how many times a fileset is mounted in the namespace. Filesets can be nested; a fileset can be mounted under another fileset.2.11. Unified Namespace and the Root Fileset
The root fileset, when defined, is the top-level fileset of the federation-wide namespace. The root of the unified namespace is the top level directory of this fileset. A set of designated fileservers in the federation can export the root fileset to render the federation-wide unified namespace. When a file-access client mounts the root fileset from any of these designated fileservers, it can view a common federation-wide namespace.2.12. UUID Considerations
To ensure FSN and FSL records are unique across a domain, Federated File System (FedFS) employs UUIDs conforming to [RFC4122] to form the distinguished names of LDAP records containing FedFS data (see Section 4.2.2.2). Because junctions store a tuple containing an FSN UUID and the name and port of an NSDB node, an FSN UUID must be unique only on a single NSDB node. An FSN UUID collision can be detected immediately when an administrator attempts to publish an FSN or FSL by storing it under a specific NSDB Container Entry (NCE) on an authoritative NSDB host. Note that one NSDB node may store multiple NCEs, each under a different namingContext. If an NSDB node must contain more than one NCE, the federation's admin entity SHOULD provide a robust method for preventing FSN UUID collisions between FSNs that reside on the same NSDB node but under different NCEs. Because FSLs are children of FSNs, FSL UUIDs must be unique for just a single FSN. As with FSNs, as soon as an FSL is published, its uniqueness is guaranteed. A fileserver performs the operations described in Section 5.2 as an unauthenticated user. Thus, distinguished names of FSN and FSL records, as well as the FSN and FSL records themselves, are required to be readable by anyone who can bind anonymously to an NSDB node. Therefore, FSN and FSL UUIDs should be considered public information.
Version 1 UUIDs contain a host's Media Access Control (MAC) address and a timestamp in the clear. This gives provenance to each UUID, but attackers can use such details to guess information about the host where the UUID was generated. Security-sensitive installations should be aware that on externally facing NSDBs, UUIDs can reveal information about the hosts where they are generated. In addition, version 1 UUIDs depend on the notion that a hardware MAC address is unique across machines. As virtual machines do not depend on unique physical MAC addresses and, in any event, an administrator can modify the physical MAC address, version 1 UUIDs are no longer considered sufficient. To minimize the probability of UUIDs colliding, a consistent procedure for generating UUIDs should be used throughout a federation. Within a federation, UUIDs SHOULD be generated using the procedure described for version 4 of the UUID variant specified in [RFC4122].