3. Syntax Components
The generic URI syntax consists of a hierarchical sequence of components referred to as the scheme, authority, path, query, and fragment. URI = scheme ":" hier-part [ "?" query ] [ "#" fragment ] hier-part = "//" authority path-abempty / path-absolute / path-rootless / path-empty The scheme and path components are required, though the path may be empty (no characters). When authority is present, the path must either be empty or begin with a slash ("/") character. When authority is not present, the path cannot begin with two slash characters ("//"). These restrictions result in five different ABNF rules for a path (Section 3.3), only one of which will match any given URI reference. The following are two example URIs and their component parts: foo://example.com:8042/over/there?name=ferret#nose \_/ \______________/\_________/ \_________/ \__/ | | | | | scheme authority path query fragment | _____________________|__ / \ / \ urn:example:animal:ferret:nose
3.1. Scheme
Each URI begins with a scheme name that refers to a specification for assigning identifiers within that scheme. As such, the URI syntax is a federated and extensible naming system wherein each scheme's specification may further restrict the syntax and semantics of identifiers using that scheme. Scheme names consist of a sequence of characters beginning with a letter and followed by any combination of letters, digits, plus ("+"), period ("."), or hyphen ("-"). Although schemes are case- insensitive, the canonical form is lowercase and documents that specify schemes must do so with lowercase letters. An implementation should accept uppercase letters as equivalent to lowercase in scheme names (e.g., allow "HTTP" as well as "http") for the sake of robustness but should only produce lowercase scheme names for consistency. scheme = ALPHA *( ALPHA / DIGIT / "+" / "-" / "." ) Individual schemes are not specified by this document. The process for registration of new URI schemes is defined separately by [BCP35]. The scheme registry maintains the mapping between scheme names and their specifications. Advice for designers of new URI schemes can be found in [RFC2718]. URI scheme specifications must define their own syntax so that all strings matching their scheme-specific syntax will also match the <absolute-URI> grammar, as described in Section 4.3. When presented with a URI that violates one or more scheme-specific restrictions, the scheme-specific resolution process should flag the reference as an error rather than ignore the unused parts; doing so reduces the number of equivalent URIs and helps detect abuses of the generic syntax, which might indicate that the URI has been constructed to mislead the user (Section 7.6).3.2. Authority
Many URI schemes include a hierarchical element for a naming authority so that governance of the name space defined by the remainder of the URI is delegated to that authority (which may, in turn, delegate it further). The generic syntax provides a common means for distinguishing an authority based on a registered name or server address, along with optional port and user information. The authority component is preceded by a double slash ("//") and is terminated by the next slash ("/"), question mark ("?"), or number sign ("#") character, or by the end of the URI.
authority = [ userinfo "@" ] host [ ":" port ] URI producers and normalizers should omit the ":" delimiter that separates host from port if the port component is empty. Some schemes do not allow the userinfo and/or port subcomponents. If a URI contains an authority component, then the path component must either be empty or begin with a slash ("/") character. Non- validating parsers (those that merely separate a URI reference into its major components) will often ignore the subcomponent structure of authority, treating it as an opaque string from the double-slash to the first terminating delimiter, until such time as the URI is dereferenced.3.2.1. User Information
The userinfo subcomponent may consist of a user name and, optionally, scheme-specific information about how to gain authorization to access the resource. The user information, if present, is followed by a commercial at-sign ("@") that delimits it from the host. userinfo = *( unreserved / pct-encoded / sub-delims / ":" ) Use of the format "user:password" in the userinfo field is deprecated. Applications should not render as clear text any data after the first colon (":") character found within a userinfo subcomponent unless the data after the colon is the empty string (indicating no password). Applications may choose to ignore or reject such data when it is received as part of a reference and should reject the storage of such data in unencrypted form. The passing of authentication information in clear text has proven to be a security risk in almost every case where it has been used. Applications that render a URI for the sake of user feedback, such as in graphical hypertext browsing, should render userinfo in a way that is distinguished from the rest of a URI, when feasible. Such rendering will assist the user in cases where the userinfo has been misleadingly crafted to look like a trusted domain name (Section 7.6).3.2.2. Host
The host subcomponent of authority is identified by an IP literal encapsulated within square brackets, an IPv4 address in dotted- decimal form, or a registered name. The host subcomponent is case- insensitive. The presence of a host subcomponent within a URI does not imply that the scheme requires access to the given host on the Internet. In many cases, the host syntax is used only for the sake
of reusing the existing registration process created and deployed for DNS, thus obtaining a globally unique name without the cost of deploying another registry. However, such use comes with its own costs: domain name ownership may change over time for reasons not anticipated by the URI producer. In other cases, the data within the host component identifies a registered name that has nothing to do with an Internet host. We use the name "host" for the ABNF rule because that is its most common purpose, not its only purpose. host = IP-literal / IPv4address / reg-name The syntax rule for host is ambiguous because it does not completely distinguish between an IPv4address and a reg-name. In order to disambiguate the syntax, we apply the "first-match-wins" algorithm: If host matches the rule for IPv4address, then it should be considered an IPv4 address literal and not a reg-name. Although host is case-insensitive, producers and normalizers should use lowercase for registered names and hexadecimal addresses for the sake of uniformity, while only using uppercase letters for percent-encodings. A host identified by an Internet Protocol literal address, version 6 [RFC3513] or later, is distinguished by enclosing the IP literal within square brackets ("[" and "]"). This is the only place where square bracket characters are allowed in the URI syntax. In anticipation of future, as-yet-undefined IP literal address formats, an implementation may use an optional version flag to indicate such a format explicitly rather than rely on heuristic determination. IP-literal = "[" ( IPv6address / IPvFuture ) "]" IPvFuture = "v" 1*HEXDIG "." 1*( unreserved / sub-delims / ":" ) The version flag does not indicate the IP version; rather, it indicates future versions of the literal format. As such, implementations must not provide the version flag for the existing IPv4 and IPv6 literal address forms described below. If a URI containing an IP-literal that starts with "v" (case-insensitive), indicating that the version flag is present, is dereferenced by an application that does not know the meaning of that version flag, then the application should return an appropriate error for "address mechanism not supported". A host identified by an IPv6 literal address is represented inside the square brackets without a preceding version flag. The ABNF provided here is a translation of the text definition of an IPv6 literal address provided in [RFC3513]. This syntax does not support IPv6 scoped addressing zone identifiers.
A 128-bit IPv6 address is divided into eight 16-bit pieces. Each piece is represented numerically in case-insensitive hexadecimal, using one to four hexadecimal digits (leading zeroes are permitted). The eight encoded pieces are given most-significant first, separated by colon characters. Optionally, the least-significant two pieces may instead be represented in IPv4 address textual format. A sequence of one or more consecutive zero-valued 16-bit pieces within the address may be elided, omitting all their digits and leaving exactly two consecutive colons in their place to mark the elision. IPv6address = 6( h16 ":" ) ls32 / "::" 5( h16 ":" ) ls32 / [ h16 ] "::" 4( h16 ":" ) ls32 / [ *1( h16 ":" ) h16 ] "::" 3( h16 ":" ) ls32 / [ *2( h16 ":" ) h16 ] "::" 2( h16 ":" ) ls32 / [ *3( h16 ":" ) h16 ] "::" h16 ":" ls32 / [ *4( h16 ":" ) h16 ] "::" ls32 / [ *5( h16 ":" ) h16 ] "::" h16 / [ *6( h16 ":" ) h16 ] "::" ls32 = ( h16 ":" h16 ) / IPv4address ; least-significant 32 bits of address h16 = 1*4HEXDIG ; 16 bits of address represented in hexadecimal A host identified by an IPv4 literal address is represented in dotted-decimal notation (a sequence of four decimal numbers in the range 0 to 255, separated by "."), as described in [RFC1123] by reference to [RFC0952]. Note that other forms of dotted notation may be interpreted on some platforms, as described in Section 7.4, but only the dotted-decimal form of four octets is allowed by this grammar. IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet dec-octet = DIGIT ; 0-9 / %x31-39 DIGIT ; 10-99 / "1" 2DIGIT ; 100-199 / "2" %x30-34 DIGIT ; 200-249 / "25" %x30-35 ; 250-255 A host identified by a registered name is a sequence of characters usually intended for lookup within a locally defined host or service name registry, though the URI's scheme-specific semantics may require that a specific registry (or fixed name table) be used instead. The most common name registry mechanism is the Domain Name System (DNS). A registered name intended for lookup in the DNS uses the syntax
defined in Section 3.5 of [RFC1034] and Section 2.1 of [RFC1123]. Such a name consists of a sequence of domain labels separated by ".", each domain label starting and ending with an alphanumeric character and possibly also containing "-" characters. The rightmost domain label of a fully qualified domain name in DNS may be followed by a single "." and should be if it is necessary to distinguish between the complete domain name and some local domain. reg-name = *( unreserved / pct-encoded / sub-delims ) If the URI scheme defines a default for host, then that default applies when the host subcomponent is undefined or when the registered name is empty (zero length). For example, the "file" URI scheme is defined so that no authority, an empty host, and "localhost" all mean the end-user's machine, whereas the "http" scheme considers a missing authority or empty host invalid. This specification does not mandate a particular registered name lookup technology and therefore does not restrict the syntax of reg- name beyond what is necessary for interoperability. Instead, it delegates the issue of registered name syntax conformance to the operating system of each application performing URI resolution, and that operating system decides what it will allow for the purpose of host identification. A URI resolution implementation might use DNS, host tables, yellow pages, NetInfo, WINS, or any other system for lookup of registered names. However, a globally scoped naming system, such as DNS fully qualified domain names, is necessary for URIs intended to have global scope. URI producers should use names that conform to the DNS syntax, even when use of DNS is not immediately apparent, and should limit these names to no more than 255 characters in length. The reg-name syntax allows percent-encoded octets in order to represent non-ASCII registered names in a uniform way that is independent of the underlying name resolution technology. Non-ASCII characters must first be encoded according to UTF-8 [STD63], and then each octet of the corresponding UTF-8 sequence must be percent- encoded to be represented as URI characters. URI producing applications must not use percent-encoding in host unless it is used to represent a UTF-8 character sequence. When a non-ASCII registered name represents an internationalized domain name intended for resolution via the DNS, the name must be transformed to the IDNA encoding [RFC3490] prior to name lookup. URI producers should provide these registered names in the IDNA encoding, rather than a percent-encoding, if they wish to maximize interoperability with legacy URI resolvers.
3.2.3. Port
The port subcomponent of authority is designated by an optional port number in decimal following the host and delimited from it by a single colon (":") character. port = *DIGIT A scheme may define a default port. For example, the "http" scheme defines a default port of "80", corresponding to its reserved TCP port number. The type of port designated by the port number (e.g., TCP, UDP, SCTP) is defined by the URI scheme. URI producers and normalizers should omit the port component and its ":" delimiter if port is empty or if its value would be the same as that of the scheme's default.3.3. Path
The path component contains data, usually organized in hierarchical form, that, along with data in the non-hierarchical query component (Section 3.4), serves to identify a resource within the scope of the URI's scheme and naming authority (if any). The path is terminated by the first question mark ("?") or number sign ("#") character, or by the end of the URI. If a URI contains an authority component, then the path component must either be empty or begin with a slash ("/") character. If a URI does not contain an authority component, then the path cannot begin with two slash characters ("//"). In addition, a URI reference (Section 4.1) may be a relative-path reference, in which case the first path segment cannot contain a colon (":") character. The ABNF requires five separate rules to disambiguate these cases, only one of which will match the path substring within a given URI reference. We use the generic term "path component" to describe the URI substring matched by the parser to one of these rules. path = path-abempty ; begins with "/" or is empty / path-absolute ; begins with "/" but not "//" / path-noscheme ; begins with a non-colon segment / path-rootless ; begins with a segment / path-empty ; zero characters path-abempty = *( "/" segment ) path-absolute = "/" [ segment-nz *( "/" segment ) ] path-noscheme = segment-nz-nc *( "/" segment ) path-rootless = segment-nz *( "/" segment ) path-empty = 0<pchar>
segment = *pchar segment-nz = 1*pchar segment-nz-nc = 1*( unreserved / pct-encoded / sub-delims / "@" ) ; non-zero-length segment without any colon ":" pchar = unreserved / pct-encoded / sub-delims / ":" / "@" A path consists of a sequence of path segments separated by a slash ("/") character. A path is always defined for a URI, though the defined path may be empty (zero length). Use of the slash character to indicate hierarchy is only required when a URI will be used as the context for relative references. For example, the URI <mailto:fred@example.com> has a path of "fred@example.com", whereas the URI <foo://info.example.com?fred> has an empty path. The path segments "." and "..", also known as dot-segments, are defined for relative reference within the path name hierarchy. They are intended for use at the beginning of a relative-path reference (Section 4.2) to indicate relative position within the hierarchical tree of names. This is similar to their role within some operating systems' file directory structures to indicate the current directory and parent directory, respectively. However, unlike in a file system, these dot-segments are only interpreted within the URI path hierarchy and are removed as part of the resolution process (Section 5.2). Aside from dot-segments in hierarchical paths, a path segment is considered opaque by the generic syntax. URI producing applications often use the reserved characters allowed in a segment to delimit scheme-specific or dereference-handler-specific subcomponents. For example, the semicolon (";") and equals ("=") reserved characters are often used to delimit parameters and parameter values applicable to that segment. The comma (",") reserved character is often used for similar purposes. For example, one URI producer might use a segment such as "name;v=1.1" to indicate a reference to version 1.1 of "name", whereas another might use a segment such as "name,1.1" to indicate the same. Parameter types may be defined by scheme-specific semantics, but in most cases the syntax of a parameter is specific to the implementation of the URI's dereferencing algorithm.3.4. Query
The query component contains non-hierarchical data that, along with data in the path component (Section 3.3), serves to identify a resource within the scope of the URI's scheme and naming authority (if any). The query component is indicated by the first question mark ("?") character and terminated by a number sign ("#") character or by the end of the URI.
query = *( pchar / "/" / "?" ) The characters slash ("/") and question mark ("?") may represent data within the query component. Beware that some older, erroneous implementations may not handle such data correctly when it is used as the base URI for relative references (Section 5.1), apparently because they fail to distinguish query data from path data when looking for hierarchical separators. However, as query components are often used to carry identifying information in the form of "key=value" pairs and one frequently used value is a reference to another URI, it is sometimes better for usability to avoid percent- encoding those characters.3.5. Fragment
The fragment identifier component of a URI allows indirect identification of a secondary resource by reference to a primary resource and additional identifying information. The identified secondary resource may be some portion or subset of the primary resource, some view on representations of the primary resource, or some other resource defined or described by those representations. A fragment identifier component is indicated by the presence of a number sign ("#") character and terminated by the end of the URI. fragment = *( pchar / "/" / "?" ) The semantics of a fragment identifier are defined by the set of representations that might result from a retrieval action on the primary resource. The fragment's format and resolution is therefore dependent on the media type [RFC2046] of a potentially retrieved representation, even though such a retrieval is only performed if the URI is dereferenced. If no such representation exists, then the semantics of the fragment are considered unknown and are effectively unconstrained. Fragment identifier semantics are independent of the URI scheme and thus cannot be redefined by scheme specifications. Individual media types may define their own restrictions on or structures within the fragment identifier syntax for specifying different types of subsets, views, or external references that are identifiable as secondary resources by that media type. If the primary resource has multiple representations, as is often the case for resources whose representation is selected based on attributes of the retrieval request (a.k.a., content negotiation), then whatever is identified by the fragment should be consistent across all of those representations. Each representation should either define the fragment so that it corresponds to the same secondary resource, regardless of how it is represented, or should leave the fragment undefined (i.e., not found).
As with any URI, use of a fragment identifier component does not imply that a retrieval action will take place. A URI with a fragment identifier may be used to refer to the secondary resource without any implication that the primary resource is accessible or will ever be accessed. Fragment identifiers have a special role in information retrieval systems as the primary form of client-side indirect referencing, allowing an author to specifically identify aspects of an existing resource that are only indirectly provided by the resource owner. As such, the fragment identifier is not used in the scheme-specific processing of a URI; instead, the fragment identifier is separated from the rest of the URI prior to a dereference, and thus the identifying information within the fragment itself is dereferenced solely by the user agent, regardless of the URI scheme. Although this separate handling is often perceived to be a loss of information, particularly for accurate redirection of references as resources move over time, it also serves to prevent information providers from denying reference authors the right to refer to information within a resource selectively. Indirect referencing also provides additional flexibility and extensibility to systems that use URIs, as new media types are easier to define and deploy than new schemes of identification. The characters slash ("/") and question mark ("?") are allowed to represent data within the fragment identifier. Beware that some older, erroneous implementations may not handle this data correctly when it is used as the base URI for relative references (Section 5.1).4. Usage
When applications make reference to a URI, they do not always use the full form of reference defined by the "URI" syntax rule. To save space and take advantage of hierarchical locality, many Internet protocol elements and media type formats allow an abbreviation of a URI, whereas others restrict the syntax to a particular form of URI. We define the most common forms of reference syntax in this specification because they impact and depend upon the design of the generic syntax, requiring a uniform parsing algorithm in order to be interpreted consistently.4.1. URI Reference
URI-reference is used to denote the most common usage of a resource identifier. URI-reference = URI / relative-ref
A URI-reference is either a URI or a relative reference. If the URI-reference's prefix does not match the syntax of a scheme followed by its colon separator, then the URI-reference is a relative reference. A URI-reference is typically parsed first into the five URI components, in order to determine what components are present and whether the reference is relative. Then, each component is parsed for its subparts and their validation. The ABNF of URI-reference, along with the "first-match-wins" disambiguation rule, is sufficient to define a validating parser for the generic syntax. Readers familiar with regular expressions should see Appendix B for an example of a non-validating URI-reference parser that will take any given string and extract the URI components.4.2. Relative Reference
A relative reference takes advantage of the hierarchical syntax (Section 1.2.3) to express a URI reference relative to the name space of another hierarchical URI. relative-ref = relative-part [ "?" query ] [ "#" fragment ] relative-part = "//" authority path-abempty / path-absolute / path-noscheme / path-empty The URI referred to by a relative reference, also known as the target URI, is obtained by applying the reference resolution algorithm of Section 5. A relative reference that begins with two slash characters is termed a network-path reference; such references are rarely used. A relative reference that begins with a single slash character is termed an absolute-path reference. A relative reference that does not begin with a slash character is termed a relative-path reference. A path segment that contains a colon character (e.g., "this:that") cannot be used as the first segment of a relative-path reference, as it would be mistaken for a scheme name. Such a segment must be preceded by a dot-segment (e.g., "./this:that") to make a relative- path reference.
4.3. Absolute URI
Some protocol elements allow only the absolute form of a URI without a fragment identifier. For example, defining a base URI for later use by relative references calls for an absolute-URI syntax rule that does not allow a fragment. absolute-URI = scheme ":" hier-part [ "?" query ] URI scheme specifications must define their own syntax so that all strings matching their scheme-specific syntax will also match the <absolute-URI> grammar. Scheme specifications will not define fragment identifier syntax or usage, regardless of its applicability to resources identifiable via that scheme, as fragment identification is orthogonal to scheme definition. However, scheme specifications are encouraged to include a wide range of examples, including examples that show use of the scheme's URIs with fragment identifiers when such usage is appropriate.4.4. Same-Document Reference
When a URI reference refers to a URI that is, aside from its fragment component (if any), identical to the base URI (Section 5.1), that reference is called a "same-document" reference. The most frequent examples of same-document references are relative references that are empty or include only the number sign ("#") separator followed by a fragment identifier. When a same-document reference is dereferenced for a retrieval action, the target of that reference is defined to be within the same entity (representation, document, or message) as the reference; therefore, a dereference should not result in a new retrieval action. Normalization of the base and target URIs prior to their comparison, as described in Sections 6.2.2 and 6.2.3, is allowed but rarely performed in practice. Normalization may increase the set of same- document references, which may be of benefit to some caching applications. As such, reference authors should not assume that a slightly different, though equivalent, reference URI will (or will not) be interpreted as a same-document reference by any given application.4.5. Suffix Reference
The URI syntax is designed for unambiguous reference to resources and extensibility via the URI scheme. However, as URI identification and usage have become commonplace, traditional media (television, radio, newspapers, billboards, etc.) have increasingly used a suffix of the
URI as a reference, consisting of only the authority and path portions of the URI, such as www.w3.org/Addressing/ or simply a DNS registered name on its own. Such references are primarily intended for human interpretation rather than for machines, with the assumption that context-based heuristics are sufficient to complete the URI (e.g., most registered names beginning with "www" are likely to have a URI prefix of "http://"). Although there is no standard set of heuristics for disambiguating a URI suffix, many client implementations allow them to be entered by the user and heuristically resolved. Although this practice of using suffix references is common, it should be avoided whenever possible and should never be used in situations where long-term references are expected. The heuristics noted above will change over time, particularly when a new URI scheme becomes popular, and are often incorrect when used out of context. Furthermore, they can lead to security issues along the lines of those described in [RFC1535]. As a URI suffix has the same syntax as a relative-path reference, a suffix reference cannot be used in contexts where a relative reference is expected. As a result, suffix references are limited to places where there is no defined base URI, such as dialog boxes and off-line advertisements.5. Reference Resolution
This section defines the process of resolving a URI reference within a context that allows relative references so that the result is a string matching the <URI> syntax rule of Section 3.5.1. Establishing a Base URI
The term "relative" implies that a "base URI" exists against which the relative reference is applied. Aside from fragment-only references (Section 4.4), relative references are only usable when a base URI is known. A base URI must be established by the parser prior to parsing URI references that might be relative. A base URI must conform to the <absolute-URI> syntax rule (Section 4.3). If the base URI is obtained from a URI reference, then that reference must be converted to absolute form and stripped of any fragment component prior to its use as a base URI.
The base URI of a reference can be established in one of four ways, discussed below in order of precedence. The order of precedence can be thought of in terms of layers, where the innermost defined base URI has the highest precedence. This can be visualized graphically as follows: .----------------------------------------------------------. | .----------------------------------------------------. | | | .----------------------------------------------. | | | | | .----------------------------------------. | | | | | | | .----------------------------------. | | | | | | | | | <relative-reference> | | | | | | | | | `----------------------------------' | | | | | | | | (5.1.1) Base URI embedded in content | | | | | | | `----------------------------------------' | | | | | | (5.1.2) Base URI of the encapsulating entity | | | | | | (message, representation, or none) | | | | | `----------------------------------------------' | | | | (5.1.3) URI used to retrieve the entity | | | `----------------------------------------------------' | | (5.1.4) Default Base URI (application-dependent) | `----------------------------------------------------------'5.1.1. Base URI Embedded in Content
Within certain media types, a base URI for relative references can be embedded within the content itself so that it can be readily obtained by a parser. This can be useful for descriptive documents, such as tables of contents, which may be transmitted to others through protocols other than their usual retrieval context (e.g., email or USENET news). It is beyond the scope of this specification to specify how, for each media type, a base URI can be embedded. The appropriate syntax, when available, is described by the data format specification associated with each media type.5.1.2. Base URI from the Encapsulating Entity
If no base URI is embedded, the base URI is defined by the representation's retrieval context. For a document that is enclosed within another entity, such as a message or archive, the retrieval context is that entity. Thus, the default base URI of a representation is the base URI of the entity in which the representation is encapsulated.
A mechanism for embedding a base URI within MIME container types (e.g., the message and multipart types) is defined by MHTML [RFC2557]. Protocols that do not use the MIME message header syntax, but that do allow some form of tagged metadata to be included within messages, may define their own syntax for defining a base URI as part of a message.5.1.3. Base URI from the Retrieval URI
If no base URI is embedded and the representation is not encapsulated within some other entity, then, if a URI was used to retrieve the representation, that URI shall be considered the base URI. Note that if the retrieval was the result of a redirected request, the last URI used (i.e., the URI that resulted in the actual retrieval of the representation) is the base URI.5.1.4. Default Base URI
If none of the conditions described above apply, then the base URI is defined by the context of the application. As this definition is necessarily application-dependent, failing to define a base URI by using one of the other methods may result in the same content being interpreted differently by different types of applications. A sender of a representation containing relative references is responsible for ensuring that a base URI for those references can be established. Aside from fragment-only references, relative references can only be used reliably in situations where the base URI is well defined.5.2. Relative Resolution
This section describes an algorithm for converting a URI reference that might be relative to a given base URI into the parsed components of the reference's target. The components can then be recomposed, as described in Section 5.3, to form the target URI. This algorithm provides definitive results that can be used to test the output of other implementations. Applications may implement relative reference resolution by using some other algorithm, provided that the results match what would be given by this one.
5.2.1. Pre-parse the Base URI
The base URI (Base) is established according to the procedure of Section 5.1 and parsed into the five main components described in Section 3. Note that only the scheme component is required to be present in a base URI; the other components may be empty or undefined. A component is undefined if its associated delimiter does not appear in the URI reference; the path component is never undefined, though it may be empty. Normalization of the base URI, as described in Sections 6.2.2 and 6.2.3, is optional. A URI reference must be transformed to its target URI before it can be normalized.5.2.2. Transform References
For each URI reference (R), the following pseudocode describes an algorithm for transforming R into its target URI (T): -- The URI reference is parsed into the five URI components -- (R.scheme, R.authority, R.path, R.query, R.fragment) = parse(R); -- A non-strict parser may ignore a scheme in the reference -- if it is identical to the base URI's scheme. -- if ((not strict) and (R.scheme == Base.scheme)) then undefine(R.scheme); endif;
if defined(R.scheme) then T.scheme = R.scheme; T.authority = R.authority; T.path = remove_dot_segments(R.path); T.query = R.query; else if defined(R.authority) then T.authority = R.authority; T.path = remove_dot_segments(R.path); T.query = R.query; else if (R.path == "") then T.path = Base.path; if defined(R.query) then T.query = R.query; else T.query = Base.query; endif; else if (R.path starts-with "/") then T.path = remove_dot_segments(R.path); else T.path = merge(Base.path, R.path); T.path = remove_dot_segments(T.path); endif; T.query = R.query; endif; T.authority = Base.authority; endif; T.scheme = Base.scheme; endif; T.fragment = R.fragment;5.2.3. Merge Paths
The pseudocode above refers to a "merge" routine for merging a relative-path reference with the path of the base URI. This is accomplished as follows: o If the base URI has a defined authority component and an empty path, then return a string consisting of "/" concatenated with the reference's path; otherwise,
o return a string consisting of the reference's path component appended to all but the last segment of the base URI's path (i.e., excluding any characters after the right-most "/" in the base URI path, or excluding the entire base URI path if it does not contain any "/" characters).5.2.4. Remove Dot Segments
The pseudocode also refers to a "remove_dot_segments" routine for interpreting and removing the special "." and ".." complete path segments from a referenced path. This is done after the path is extracted from a reference, whether or not the path was relative, in order to remove any invalid or extraneous dot-segments prior to forming the target URI. Although there are many ways to accomplish this removal process, we describe a simple method using two string buffers. 1. The input buffer is initialized with the now-appended path components and the output buffer is initialized to the empty string. 2. While the input buffer is not empty, loop as follows: A. If the input buffer begins with a prefix of "../" or "./", then remove that prefix from the input buffer; otherwise, B. if the input buffer begins with a prefix of "/./" or "/.", where "." is a complete path segment, then replace that prefix with "/" in the input buffer; otherwise, C. if the input buffer begins with a prefix of "/../" or "/..", where ".." is a complete path segment, then replace that prefix with "/" in the input buffer and remove the last segment and its preceding "/" (if any) from the output buffer; otherwise, D. if the input buffer consists only of "." or "..", then remove that from the input buffer; otherwise, E. move the first path segment in the input buffer to the end of the output buffer, including the initial "/" character (if any) and any subsequent characters up to, but not including, the next "/" character or the end of the input buffer. 3. Finally, the output buffer is returned as the result of remove_dot_segments.
Note that dot-segments are intended for use in URI references to express an identifier relative to the hierarchy of names in the base URI. The remove_dot_segments algorithm respects that hierarchy by removing extra dot-segments rather than treat them as an error or leaving them to be misinterpreted by dereference implementations. The following illustrates how the above steps are applied for two examples of merged paths, showing the state of the two buffers after each step. STEP OUTPUT BUFFER INPUT BUFFER 1 : /a/b/c/./../../g 2E: /a /b/c/./../../g 2E: /a/b /c/./../../g 2E: /a/b/c /./../../g 2B: /a/b/c /../../g 2C: /a/b /../g 2C: /a /g 2E: /a/g STEP OUTPUT BUFFER INPUT BUFFER 1 : mid/content=5/../6 2E: mid /content=5/../6 2E: mid/content=5 /../6 2C: mid /6 2E: mid/6 Some applications may find it more efficient to implement the remove_dot_segments algorithm by using two segment stacks rather than strings. Note: Beware that some older, erroneous implementations will fail to separate a reference's query component from its path component prior to merging the base and reference paths, resulting in an interoperability failure if the query component contains the strings "/../" or "/./".
5.3. Component Recomposition
Parsed URI components can be recomposed to obtain the corresponding URI reference string. Using pseudocode, this would be: result = "" if defined(scheme) then append scheme to result; append ":" to result; endif; if defined(authority) then append "//" to result; append authority to result; endif; append path to result; if defined(query) then append "?" to result; append query to result; endif; if defined(fragment) then append "#" to result; append fragment to result; endif; return result; Note that we are careful to preserve the distinction between a component that is undefined, meaning that its separator was not present in the reference, and a component that is empty, meaning that the separator was present and was immediately followed by the next component separator or the end of the reference.5.4. Reference Resolution Examples
Within a representation with a well defined base URI of http://a/b/c/d;p?q a relative reference is transformed to its target URI as follows.
5.4.1. Normal Examples
"g:h" = "g:h" "g" = "http://a/b/c/g" "./g" = "http://a/b/c/g" "g/" = "http://a/b/c/g/" "/g" = "http://a/g" "//g" = "http://g" "?y" = "http://a/b/c/d;p?y" "g?y" = "http://a/b/c/g?y" "#s" = "http://a/b/c/d;p?q#s" "g#s" = "http://a/b/c/g#s" "g?y#s" = "http://a/b/c/g?y#s" ";x" = "http://a/b/c/;x" "g;x" = "http://a/b/c/g;x" "g;x?y#s" = "http://a/b/c/g;x?y#s" "" = "http://a/b/c/d;p?q" "." = "http://a/b/c/" "./" = "http://a/b/c/" ".." = "http://a/b/" "../" = "http://a/b/" "../g" = "http://a/b/g" "../.." = "http://a/" "../../" = "http://a/" "../../g" = "http://a/g"5.4.2. Abnormal Examples
Although the following abnormal examples are unlikely to occur in normal practice, all URI parsers should be capable of resolving them consistently. Each example uses the same base as that above. Parsers must be careful in handling cases where there are more ".." segments in a relative-path reference than there are hierarchical levels in the base URI's path. Note that the ".." syntax cannot be used to change the authority component of a URI. "../../../g" = "http://a/g" "../../../../g" = "http://a/g"
Similarly, parsers must remove the dot-segments "." and ".." when they are complete components of a path, but not when they are only part of a segment. "/./g" = "http://a/g" "/../g" = "http://a/g" "g." = "http://a/b/c/g." ".g" = "http://a/b/c/.g" "g.." = "http://a/b/c/g.." "..g" = "http://a/b/c/..g" Less likely are cases where the relative reference uses unnecessary or nonsensical forms of the "." and ".." complete path segments. "./../g" = "http://a/b/g" "./g/." = "http://a/b/c/g/" "g/./h" = "http://a/b/c/g/h" "g/../h" = "http://a/b/c/h" "g;x=1/./y" = "http://a/b/c/g;x=1/y" "g;x=1/../y" = "http://a/b/c/y" Some applications fail to separate the reference's query and/or fragment components from the path component before merging it with the base path and removing dot-segments. This error is rarely noticed, as typical usage of a fragment never includes the hierarchy ("/") character and the query component is not normally used within relative references. "g?y/./x" = "http://a/b/c/g?y/./x" "g?y/../x" = "http://a/b/c/g?y/../x" "g#s/./x" = "http://a/b/c/g#s/./x" "g#s/../x" = "http://a/b/c/g#s/../x" Some parsers allow the scheme name to be present in a relative reference if it is the same as the base URI scheme. This is considered to be a loophole in prior specifications of partial URI [RFC1630]. Its use should be avoided but is allowed for backward compatibility. "http:g" = "http:g" ; for strict parsers / "http://a/b/c/g" ; for backward compatibility