3. Updates to Protocol Data Structures
3.1. RxAuthRequired
RxAuthRequired is a boolean parameter. Its default value MUST be TRUE. An implementation SHOULD make RxAuthRequired a per-interface parameter but MAY make it specific to the whole protocol instance. The conceptual purpose of RxAuthRequired is to enable a smooth migration from an unauthenticated Babel packet exchange to an authenticated Babel packet exchange and back (see Section 7.3). The current value of RxAuthRequired directly affects the receiving procedure defined in Section 5.4. An implementation SHOULD allow the operator to change the RxAuthRequired value at runtime or by means of a Babel speaker restart. An implementation MUST allow the operator to discover the effective value of RxAuthRequired at runtime or from the system documentation.3.2. LocalTS
LocalTS is a 32-bit unsigned integer variable. It is the TS part of a per-interface TS/PC number. LocalTS is a strictly per-interface variable not intended to be changed by the operator. Its initialization is explained in Section 5.1.3.3. LocalPC
LocalPC is a 16-bit unsigned integer variable. It is the PC part of a per-interface TS/PC number. LocalPC is a strictly per-interface variable not intended to be changed by the operator. Its initialization is explained in Section 5.1.3.4. MaxDigestsIn
MaxDigestsIn is an unsigned integer parameter conceptually purposed for limiting the amount of CPU time spent processing a received authenticated packet. The receiving procedure performs the most CPU-intensive operation -- the HMAC computation -- only at most MaxDigestsIn (Section 5.4 item 7) times for a given packet. The MaxDigestsIn value MUST be at least 2. An implementation SHOULD make MaxDigestsIn a per-interface parameter but MAY make it specific to the whole protocol instance. An implementation SHOULD allow the operator to change the value of MaxDigestsIn at runtime or by means of a Babel speaker restart. An implementation MUST allow the operator to discover the effective value of MaxDigestsIn at runtime or from the system documentation.
3.5. MaxDigestsOut
MaxDigestsOut is an unsigned integer parameter conceptually purposed for limiting the amount of a sent authenticated packet's space spent on authentication data. The sending procedure adds at most MaxDigestsOut (Section 5.3 item 5) HMAC results to a given packet. The MaxDigestsOut value MUST be at least 2. An implementation SHOULD make MaxDigestsOut a per-interface parameter but MAY make it specific to the whole protocol instance. An implementation SHOULD allow the operator to change the value of MaxDigestsOut at runtime or by means of a Babel speaker restart, in a safe range. The maximum safe value of MaxDigestsOut is implementation specific (see Section 6.2). An implementation MUST allow the operator to discover the effective value of MaxDigestsOut at runtime or from the system documentation.3.6. ANM Table
The ANM (Authentic Neighbours Memory) table resembles the neighbour table defined in Section 3.2.3 of [BABEL]. Note that the term "neighbour table" means the neighbour table of the original Babel specification, and the term "ANM table" means the table defined herein. Indexing of the ANM table is done in exactly the same way as indexing of the neighbour table, but its purpose, field set, and associated procedures are different. The conceptual purpose of the ANM table is to provide longer-term replay attack protection than would be possible using the neighbour table. Expiry of an inactive entry in the neighbour table depends on the last received Hello Interval of the neighbour and typically stands for tens to hundreds of seconds (see Appendixes A and B of [BABEL]). Expiry of an inactive entry in the ANM table depends only on the local speaker's configuration. The ANM table retains (for at least the amount of seconds set by the ANM timeout parameter as defined in Section 3.7) a copy of the TS/PC number advertised in authentic packets by each remote Babel speaker.
The ANM table is indexed by pairs of the form (Interface, Source). Every table entry consists of the following fields: o Interface An implementation-specific reference to the local node's interface through which the authentic packet was received. o Source The source address of the Babel speaker from which the authentic packet was received. o LastTS A 32-bit unsigned integer -- the TS part of a remote TS/PC number. o LastPC A 16-bit unsigned integer -- the PC part of a remote TS/PC number. Each ANM table entry has an associated aging timer, which is reset by the receiving procedure (Section 5.4 item 9). If the timer expires, the entry is deleted from the ANM table. An implementation SHOULD use persistent memory (NVRAM) to retain the contents of the ANM table across restarts of the Babel speaker, but only as long as both the Interface field reference and expiry of the aging timer remain correct. An implementation MUST be clear regarding if and how persistent memory is used for the ANM table. An implementation SHOULD allow the operator to retrieve the current contents of the ANM table at runtime. An implementation SHOULD allow the operator to remove some or all ANM table entries at runtime or by means of a Babel speaker restart.3.7. ANM Timeout
ANM timeout is an unsigned integer parameter. An implementation SHOULD make ANM timeout a per-interface parameter but MAY make it specific to the whole protocol instance. ANM timeout is conceptually purposed for limiting the maximum age (in seconds) of entries in the ANM table that stand for inactive Babel speakers. The maximum age is immediately related to replay attack protection strength. The strongest protection is achieved with the maximum possible value of ANM timeout set, but it may not provide the best overall result for specific network segments and implementations of this mechanism.
Specifically, implementations unable to maintain the local TS/PC number strictly increasing across Babel speaker restarts will reuse the advertised TS/PC numbers after each restart (see Section 5.1). The neighbouring speakers will treat the new packets as replayed and discard them until the aging timer of the respective ANM table entry expires or the new TS/PC number exceeds the one stored in the entry. Another possible, but less probable, case could be an environment that uses IPv6 for the exchange of Babel datagrams and that involves physical moves of network-interface hardware between Babel speakers. Even when performed without restarting the speakers, these physical moves would cause random drops of the TS/PC number advertised for a given (Interface, Source) index, as viewed by neighbouring speakers, since IPv6 link-local addresses are typically derived from interface hardware addresses. Assuming that in such cases the operators would prefer to use a lower ANM timeout value to let the entries expire on their own rather than having to manually remove them from the ANM table each time, an implementation SHOULD set the default value of ANM timeout to a value between 30 and 300 seconds. At the same time, network segments may exist with every Babel speaker having its advertised TS/PC number strictly increasing over the deployed lifetime. Assuming that in such cases the operators would prefer using a much higher ANM timeout value, an implementation SHOULD allow the operator to change the value of ANM timeout at runtime or by means of a Babel speaker restart. An implementation MUST allow the operator to discover the effective value of ANM timeout at runtime or from the system documentation.3.8. Configured Security Associations
A Configured Security Association (CSA) is a data structure conceptually purposed for associating authentication keys and hash algorithms with Babel interfaces. All CSAs are managed in finite sequences, one sequence per interface (hereafter referred to as "interface's sequence of CSAs"). Each interface's sequence of CSAs, as an integral part of the Babel speaker configuration, MAY be intended for persistent storage as long as this conforms with the implementation's key-management policy. The default state of an interface's sequence of CSAs is empty, which has a special meaning of no authentication configured for the interface. The sending (Section 5.3 item 1) and the receiving (Section 5.4 item 1) procedures address this convention accordingly.
A single CSA structure consists of the following fields: o HashAlgo An implementation-specific reference to one of the hash algorithms supported by this implementation (see Section 2.1). o KeyChain A finite sequence of elements (hereafter referred to as "KeyChain sequence") representing authentication keys, each element being a structure consisting of the following fields: * LocalKeyID An unsigned integer of an implementation-specific bit length. * AuthKeyOctets A sequence of octets of an arbitrary, known length to be used as the authentication key. * KeyStartAccept The time that this Babel speaker will begin considering this authentication key for accepting packets with authentication data. * KeyStartGenerate The time that this Babel speaker will begin considering this authentication key for generating packet authentication data. * KeyStopGenerate The time that this Babel speaker will stop considering this authentication key for generating packet authentication data. * KeyStopAccept The time that this Babel speaker will stop considering this authentication key for accepting packets with authentication data. Since there is no limit imposed on the number of CSAs per interface, but the number of HMAC computations per sent/received packet is limited (through MaxDigestsOut and MaxDigestsIn, respectively), it may appear that only a fraction of the associated keys and hash
algorithms are used in the process. The ordering of elements within a sequence of CSAs and within a KeyChain sequence is important to make the association selection process deterministic and transparent. Once this ordering is deterministic at the Babel interface level, the intermediate data derived by the procedure defined in Section 5.2 will be deterministically ordered as well. An implementation SHOULD allow an operator to set any arbitrary order of elements within a given interface's sequence of CSAs and within the KeyChain sequence of a given CSA. Regardless of whether this requirement is or isn't met, the implementation MUST provide a means to discover the actual element order used. Whichever order is used by an implementation, it MUST be preserved across Babel speaker restarts. Note that none of the CSA structure fields is constrained to contain unique values. Section 6.4 explains this in more detail. It is possible for the KeyChain sequence to be empty, although this is not the intended manner of using CSAs. The KeyChain sequence has a direct prototype, which is the "key chain" syntax item of some existing router configuration languages. If an implementation already implements this syntax item, it is suggested that the implementation reuse it, that is, implement a CSA syntax item that refers to a key chain item rather than reimplement the latter in full.3.9. Effective Security Associations
An Effective Security Association (ESA) is a data structure immediately used in sending (Section 5.3) and receiving (Section 5.4) procedures. Its conceptual purpose is to determine a runtime interface between those procedures and the deriving procedure defined in Section 5.2. All ESAs are temporary data units managed as elements of finite sequences that are not intended for persistent storage. Element ordering within each such finite sequence (hereafter referred to as "sequence of ESAs") MUST be preserved as long as the sequence exists.
A single ESA structure consists of the following fields: o HashAlgo An implementation-specific reference to one of the hash algorithms supported by this implementation (see Section 2.1). o KeyID A 16-bit unsigned integer. o AuthKeyOctets A sequence of octets of an arbitrary, known length to be used as the authentication key. Note that among the protocol data structures introduced by this mechanism, the ESA structure is the only one not directly interfaced with the system operator (see Figure 1 in Appendix A); it is not immediately present in the protocol encoding, either. However, the ESA structure is not just a possible implementation technique but an integral part of this specification: the deriving (Section 5.2), the sending (Section 5.3), and the receiving (Section 5.4) procedures are defined in terms of the ESA structure and its semantics provided herein. The ESA structure is as meaningful for a correct implementation as the other protocol data structures.4. Updates to Protocol Encoding
4.1. Justification
The choice of encoding is very important in the long term. The protocol encoding limits various authentication mechanism designs and encodings, which in turn limit future developments of the protocol. Considering existing implementations of the Babel protocol instance itself and related modules of packet analysers, the current encoding of Babel allows for compact and robust decoders. At the same time, this encoding allows for future extensions of Babel by three (not excluding each other) principal means as defined in Sections 4.2 and 4.3 of [BABEL] and further discussed in [BABEL-EXTENSION]: a. A Babel packet consists of a four-octet header followed by a packet body, that is, a sequence of TLVs (see Figure 2 in Appendix A). Besides the header and the body, an actual Babel
datagram may have an arbitrary amount of trailing data between the end of the packet body and the end of the datagram. An instance of the original protocol silently ignores such trailing data. b. The packet body uses a binary format allowing for 256 TLV types and imposing no requirements on TLV ordering or number of TLVs of a given type in a packet. [BABEL] allocates TLV types 0 through 10 (see Table 1 in Appendix A), defines the TLV body structure for each, and establishes the requirement for a Babel protocol instance to ignore any unknown TLV types silently. This makes it possible to examine a packet body (to validate the framing and/or to pick particular TLVs for further processing), taking into account only the type (to distinguish between a Pad1 TLV and any other TLV) and the length of each TLV, regardless of whether any additional TLV types are eventually deployed (and if so, how many). c. Within each TLV of the packet body, there may be some extra data after the expected length of the TLV body. An instance of the original protocol silently ignores any such extra data. Note that any TLV types without the expected length defined (such as the PadN TLV) cannot be extended with the extra data. Considering each of these three principal extension means for the specific purpose of adding authentication data items to each protocol packet, the following arguments can be made: o The use of the TLV extra data of some existing TLV type would not be a solution, since no particular TLV type is guaranteed to be present in a Babel packet. o The use of the TLV extra data could also conflict with future developments of the protocol encoding. o Since the packet trailing data is currently unstructured, using it would involve defining an encoding structure and associated procedures; this would add to the complexity of both specification and implementation and would increase exposure to protocol attacks such as fuzzing. o A naive use of the packet trailing data would make it unavailable to any future extension of Babel. Since this mechanism is possibly not the last extension and since some other extensions may allow no other embedding means except the packet trailing data, the defined encoding structure would have to enable the multiplexing of data items belonging to different extensions. Such a definition is out of the scope of this work.
o Deprecating an extension (or only its protocol encoding) that uses purely purpose-allocated TLVs is as simple as deprecating the TLVs. o The use of purpose-allocated TLVs is transparent for both the original protocol and any its future extensions, regardless of the embedding technique(s) used by the latter. Considering all of the above, this mechanism uses neither the packet trailing data nor the TLV extra data but uses two new TLV types: type 11 for a TS/PC number and type 12 for an HMAC result (see Table 1 in Appendix A).4.2. TS/PC TLV
The purpose of a TS/PC TLV is to store a single TS/PC number. There is exactly one TS/PC TLV in an authenticated Babel packet. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 11 | Length | PacketCounter | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Timestamp | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Fields: Type Set to 11 to indicate a TS/PC TLV. Length The length, in octets, of the body, exclusive of the Type and Length fields. PacketCounter A 16-bit unsigned integer in network byte order -- the PC part of a TS/PC number stored in this TLV. Timestamp A 32-bit unsigned integer in network byte order -- the TS part of a TS/PC number stored in this TLV. Note that the ordering of PacketCounter and Timestamp in the TLV structure is the opposite of the ordering of TS and PC in the TS/PC number and the 48-bit equivalent (see Section 2.3). Considering the expected length and the extra data as mentioned in Section 4.3 of [BABEL], the expected length of a TS/PC TLV body is unambiguously defined as 6 octets. The receiving procedure would correctly process any TS/PC TLV with body length not less than the expected length, ignoring any extra data (Section 5.4 items 3 and 9).
The sending procedure produces a TS/PC TLV with body length equal to the expected length and the Length field, respectively, set as described in Section 5.3 item 3. Future Babel extensions (such as sub-TLVs) MAY modify the sending procedure to include the extra data after the fixed-size TS/PC TLV body defined herein, making adjustments to the Length TLV field, the "Body length" packet header field, and output buffer management (as explained in Section 6.2) necessary.4.3. HMAC TLV
The purpose of an HMAC TLV is to store a single HMAC result. To assist a receiver in reproducing the HMAC computation, LocalKeyID modulo 2^16 of the authentication key is also provided in the TLV. There is at least one HMAC TLV in an authenticated Babel packet. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 12 | Length | KeyID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Digest... +-+-+-+-+-+-+-+-+-+-+-+- Fields: Type Set to 12 to indicate an HMAC TLV. Length The length, in octets, of the body, exclusive of the Type and Length fields. KeyID A 16-bit unsigned integer in network byte order. Digest A variable-length sequence of octets that is at least 16 octets long (see Section 2.2). Considering the expected length and the extra data as mentioned in Section 4.3 of [BABEL], the expected length of an HMAC TLV body is not defined. The receiving and padding procedures process every octet of the Digest field, deriving the field boundary from the Length field value (Section 5.4 item 7 and Section 2.2, respectively). The sending procedure produces HMAC TLVs with the Length field precisely sizing the Digest field to match the digest length of the hash algorithm used (Section 5.3 items 5 and 8). The HMAC TLV structure defined herein is final. Future Babel extensions MUST NOT extend it with any extra data.
5. Updates to Protocol Operation
5.1. Per-Interface TS/PC Number Updates
The LocalTS and LocalPC interface-specific variables constitute the TS/PC number of a Babel interface. This number is advertised in the TS/PC TLV of authenticated Babel packets sent from that interface. There is only one property that is mandatory for the advertised TS/PC number: its 48-bit equivalent (see Section 2.3) MUST be strictly increasing within the scope of a given interface of a Babel speaker as long as the protocol instance is continuously operating. This property, combined with ANM tables of neighbouring Babel speakers, provides them with the most basic replay attack protection. Initialization and increment are two principal updates performed on an interface TS/PC number. The initialization is performed when a new interface becomes a part of a Babel protocol instance. The increment is performed by the sending procedure (Section 5.3 item 2) before advertising the TS/PC number in a TS/PC TLV. Depending on the particular implementation method of these two updates, the advertised TS/PC number may possess additional properties that improve the replay attack protection strength. This includes, but is not limited to, the methods below. a. The most straightforward implementation would use LocalTS as a plain wrap counter, defining the updates as follows: initialization Set LocalPC to 0, and set LocalTS to 0. increment Increment LocalPC by 1. If LocalPC wraps (0xFFFF + 1 = 0x0000), increment LocalTS by 1. In this case, the advertised TS/PC numbers would be reused after each Babel protocol instance restart, making neighbouring speakers reject authenticated packets until the respective ANM table entries expire or the new TS/PC number exceeds the old (see Sections 3.6 and 3.7).
b. A more advanced implementation could make use of any 32-bit unsigned integer timestamp (number of time units since an arbitrary epoch), such as the UNIX timestamp, if the timestamp itself spans a reasonable time range and is guaranteed against a decrease (such as one resulting from network time use). The updates would be defined as follows: initialization Set LocalPC to 0, and set LocalTS to 0. increment If the current timestamp is greater than LocalTS, set LocalTS to the current timestamp and LocalPC to 0, then consider the update complete. Otherwise, increment LocalPC by 1, and if LocalPC wraps, increment LocalTS by 1. In this case, the advertised TS/PC number would remain unique across the speaker's deployed lifetime without the need for any persistent storage. However, a suitable timestamp source is not available in every implementation case. c. Another advanced implementation could use LocalTS in a way similar to the "wrap/boot count" suggested in Section 4.1 of [OSPF3-AUTH-BIS], defining the updates as follows: initialization Set LocalPC to 0. If there is a TS value stored in NVRAM for the current interface, set LocalTS to the stored TS value, then increment the stored TS value by 1. Otherwise, set LocalTS to 0, and set the stored TS value to 1. increment Increment LocalPC by 1. If LocalPC wraps, set LocalTS to the TS value stored in NVRAM for the current interface, then increment the stored TS value by 1. In this case, the advertised TS/PC number would also remain unique across the speaker's deployed lifetime, relying on NVRAM for storing multiple TS numbers, one per interface. As long as the TS/PC number retains its mandatory property stated above, it is up to the implementor to determine which methods of TS/ PC number updates are available and whether the operator can configure the method per interface and/or at runtime. However, an implementation MUST disclose the essence of each update method it includes, in a comprehensible form such as natural language description, pseudocode, or source code. An implementation MUST allow the operator to discover which update method is effective for any given interface, either at runtime or from the system
documentation. These requirements are necessary to enable the optimal (see Section 3.7) management of ANM timeout in a network segment. Note that wrapping (0xFFFFFFFF + 1 = 0x00000000) of LastTS is unlikely, but possible, causing the advertised TS/PC number to be reused. Resolving this situation requires replacing all authentication keys of the involved interface. In addition to that, if the wrap was caused by a timestamp reaching its end of epoch, using this mechanism will be impossible for the involved interface until some different timestamp or update implementation method is used.5.2. Deriving ESAs from CSAs
Neither receiving nor sending procedures work with the contents of an interface's sequence of CSAs directly; both (Section 5.4 item 4 and Section 5.3 item 4, respectively) derive a sequence of ESAs from the sequence of CSAs and use the derived sequence (see Figure 1 in Appendix A). There are two main goals achieved through this indirection: o Elimination of expired authentication keys and deduplication of security associations. This is done as early as possible to keep subsequent procedures focused on their respective tasks. o Maintenance of particular ordering within the derived sequence of ESAs. The ordering deterministically depends on the ordering within the interface's sequence of CSAs and the ordering within the KeyChain sequence of each CSA. The particular correlation maintained by this procedure implements a concept of fair (independent of the number of keys contained by each) competition between CSAs. The deriving procedure uses the following input arguments: o input sequence of CSAs o direction (sending or receiving) o current time (CT)
The processing of input arguments begins with an empty output sequence of ESAs and consists of the following steps: 1. Make a temporary copy of the input sequence of CSAs. 2. Remove all expired authentication keys from each KeyChain sequence of the copy, that is, any keys such that: * for receiving: KeyStartAccept is greater than CT or KeyStopAccept is less than CT * for sending: KeyStartGenerate is greater than CT or KeyStopGenerate is less than CT Note well that there are no special exceptions. Remove all expired keys, even if there are no keys left after that (see Section 7.4). 3. Use the copy to populate the output sequence of ESAs as follows: 3.1. When the KeyChain sequence of the first CSA contains at least one key, use its first key to produce an ESA with fields set as follows: HashAlgo Set to HashAlgo of the current CSA. KeyID Set to LocalKeyID modulo 2^16 of the current key of the current CSA. AuthKeyOctets Set to AuthKeyOctets of the current key of the current CSA. Append this ESA to the end of the output sequence. 3.2. When the KeyChain sequence of the second CSA contains at least one key, use its first key the same way, and so forth until all first keys of the copy are processed. 3.3. When the KeyChain sequence of the first CSA contains at least two keys, use its second key the same way. 3.4. When the KeyChain sequence of the second CSA contains at least two keys, use its second key the same way, and so forth until all second keys of the copy are processed. 3.5. ...and so forth, until all keys of all CSAs of the copy are processed, exactly once each.
In the description above, the ordinals ("first", "second", and so on) with regard to keys stand for an element position after the removal of expired keys, not before. For example, if a KeyChain sequence was { Ka, Kb, Kc, Kd } before the removal and became { Ka, Kd } after, then Ka would be the "first" element and Kd would be the "second". 4. Deduplicate the ESAs in the output sequence; that is, wherever two or more ESAs exist that share the same (HashAlgo, KeyID, AuthKeyOctets) triplet value, remove all of these ESAs except the one closest to the beginning of the sequence. The resulting sequence will contain zero or more unique ESAs, ordered in a way deterministically correlated with the ordering of CSAs within the original input sequence of CSAs and the ordering of keys within each KeyChain sequence. This ordering maximizes the probability of having an equal amount of keys per original CSA in any N first elements of the resulting sequence. Possible optimizations of this deriving procedure are outlined in Section 6.3.5.3. Updates to Packet Sending
Perform the following authentication-specific processing after the instance of the original protocol considers an outgoing Babel packet ready for sending, but before the packet is actually sent (see Figure 1 in Appendix A). After that, send the packet, regardless of whether the authentication-specific processing modified the outgoing packet or left it intact. 1. If the current outgoing interface's sequence of CSAs is empty, finish authentication-specific processing and consider the packet ready for sending. 2. Increment the TS/PC number of the current outgoing interface, as explained in Section 5.1. 3. Add to the packet body (see the note at the end of this section) a TS/PC TLV with fields set as follows: Type Set to 11. Length Set to 6. PacketCounter Set to the current value of the LocalPC variable of the current outgoing interface.
Timestamp Set to the current value of the LocalTS variable of the current outgoing interface. Note that the current step may involve byte order conversion. 4. Derive a sequence of ESAs, using the procedure defined in Section 5.2, with the current interface's sequence of CSAs as the input sequence of CSAs, the current time as CT, and "sending" as the direction. Proceed to the next step even if the derived sequence is empty. 5. Iterate over the derived sequence, using its ordering. For each ESA, add to the packet body (see the note at the end of this section) an HMAC TLV with fields set as follows: Type Set to 12. Length Set to 2 plus the digest length of HashAlgo of the current ESA. KeyID Set to KeyID of the current ESA. Digest Size exactly equal to the digest length of HashAlgo of the current ESA. Pad (see Section 2.2), using the source address of the current packet (see Section 6.1). As soon as there are MaxDigestsOut HMAC TLVs added to the current packet body, immediately proceed to the next step. Note that the current step may involve byte order conversion. 6. Increment the "Body length" field value of the current packet header by the total length of TS/PC and HMAC TLVs appended to the current packet body so far. Note that the current step may involve byte order conversion. 7. Make a temporary copy of the current packet.
8. Iterate over the derived sequence again, using the same order and number of elements. For each ESA (and, respectively, for each HMAC TLV recently appended to the current packet body), compute an HMAC result (see Section 2.4), using the temporary copy (not the original packet) as Text, HashAlgo of the current ESA as H, and AuthKeyOctets of the current ESA as K. Write the HMAC result to the Digest field of the current HMAC TLV (see Table 4 in Appendix A) of the current packet (not the copy). 9. After this point, allow no more changes to the current packet header and body, and consider it ready for sending. Note that even when the derived sequence of ESAs is empty, the packet is sent anyway, with only a TS/PC TLV appended to its body. Although such a packet would not be authenticated, the presence of the sole TS/PC TLV would indicate authentication key exhaustion to operators of neighbouring Babel speakers. See also Section 7.4. Also note that it is possible to place the authentication-specific TLVs in the packet's sequence of TLVs in a number of different valid ways so long as there is exactly one TS/PC TLV in the sequence and the ordering of HMAC TLVs relative to each other, as produced in step 5 above, is preserved. For example, see Figure 2 in Appendix A. The diagrams represent a Babel packet without (D1) and with (D2, D3, D4) authentication- specific TLVs. The optional trailing data block that is present in D1 is preserved in D2, D3, and D4. Indexing (1, 2, ..., n) of the HMAC TLVs means the order in which the sending procedure produced them (and, respectively, the HMAC results). In D2, the added TLVs are appended: the previously existing TLVs are followed by the TS/PC TLV, which is followed by the HMAC TLVs. In D3, the added TLVs are prepended: the TS/PC TLV is the first and is followed by the HMAC TLVs, which are followed by the previously existing TLVs. In D4, the added TLVs are intermixed with the previously existing TLVs and the TS/PC TLV is placed after the HMAC TLVs. All three packets meet the requirements above. Implementors SHOULD use appending (D2) for adding the authentication- specific TLVs to the sequence; this is expected to result in more straightforward implementation and troubleshooting in most use cases.
5.4. Updates to Packet Receiving
Perform the following authentication-specific processing after an incoming Babel packet is received from the local network stack but before it is acted upon by the Babel protocol instance (see Figure 1 in Appendix A). The final action conceptually depends not only upon the result of the authentication-specific processing but also on the current value of the RxAuthRequired parameter. Immediately after any processing step below accepts or refuses the packet, either deliver the packet to the instance of the original protocol (when the packet is accepted or RxAuthRequired is FALSE) or discard it (when the packet is refused and RxAuthRequired is TRUE). 1. If the current incoming interface's sequence of CSAs is empty, accept the packet. 2. If the current packet does not contain exactly one TS/PC TLV, refuse it. 3. Perform a lookup in the ANM table for an entry having Interface equal to the current incoming interface and Source equal to the source address of the current packet. If such an entry does not exist, immediately proceed to the next step. Otherwise, compare the entry's LastTS and LastPC field values with the Timestamp and PacketCounter values, respectively, of the TS/PC TLV of the packet. That is, refuse the packet if at least one of the following two conditions is true: * Timestamp is less than LastTS * Timestamp is equal to LastTS and PacketCounter is not greater than LastPC Note that the current step may involve byte order conversion. 4. Derive a sequence of ESAs, using the procedure defined in Section 5.2, with the current interface's sequence of CSAs as the input sequence of CSAs, current time as CT, and "receiving" as the direction. If the derived sequence is empty, refuse the packet. 5. Make a temporary copy of the current packet. 6. Pad (see Section 2.2) every HMAC TLV present in the temporary copy (not the original packet), using the source address of the original packet.
7. Iterate over all the HMAC TLVs of the original input packet (not the copy), using their order of appearance in the packet. For each HMAC TLV, look up all ESAs in the derived sequence such that 2 plus the digest length of HashAlgo of the ESA is equal to Length of the TLV and KeyID of the ESA is equal to the value of KeyID of the TLV. Iterate over these ESAs in the relative order of their appearance on the full sequence of ESAs. Note that nesting the iterations the opposite way (over ESAs, then over HMAC TLVs) would be wrong. For each of these ESAs, compute an HMAC result (see Section 2.4), using the temporary copy (not the original packet) as Text, HashAlgo of the current ESA as H, and AuthKeyOctets of the current ESA as K. If the current HMAC result exactly matches the contents of the Digest field of the current HMAC TLV, immediately proceed to the next step. Otherwise, if the number of HMAC computations done for the current packet so far is equal to MaxDigestsIn, immediately proceed to the next step. Otherwise, follow the normal order of iterations. Note that the current step may involve byte order conversion. 8. Refuse the input packet unless there was a matching HMAC result in the previous step. 9. Modify the ANM table, using the same index as for the entry lookup above, to contain an entry with LastTS set to the value of Timestamp and LastPC set to the value of PacketCounter fields of the TS/PC TLV of the current packet. That is, either add a new ANM table entry or update the existing one, depending on the result of the entry lookup above. Reset the entry's aging timer to the current value of ANM timeout. Note that the current step may involve byte order conversion. 10. Accept the input packet. Before performing the authentication-specific processing above, an implementation SHOULD perform those basic procedures of the original protocol that don't take any protocol actions on the contents of the packet but that will discard the packet if it is not sufficiently well formed for further processing. Although the exact composition of such procedures belongs to the scope of the original protocol, it seems reasonable to state that a packet SHOULD be discarded early, regardless of whether any authentication-specific processing is due, unless its source address conforms to Section 3.1 of [BABEL] and is not the receiving speaker's own address (see item (e) of Section 8).
Note that RxAuthRequired affects only the final action but not the defined flow of authentication-specific processing. The purpose of this is to preserve authentication-specific processing feedback (such as log messages and event-counter updates), even with RxAuthRequired set to FALSE. This allows an operator to predict the effect of changing RxAuthRequired from FALSE to TRUE during a migration scenario (Section 7.3) implementation.5.5. Authentication-Specific Statistics Maintenance
A Babel speaker implementing this mechanism SHOULD maintain a set of counters for the following events, per protocol instance and per interface: a. Sending an unauthenticated Babel packet through an interface having an empty sequence of CSAs (Section 5.3 item 1). b. Sending an unauthenticated Babel packet with a TS/PC TLV but without any HMAC TLVs, due to an empty derived sequence of ESAs (Section 5.3 item 4). c. Sending an authenticated Babel packet containing both TS/PC and HMAC TLVs (Section 5.3 item 9). d. Accepting a Babel packet received through an interface having an empty sequence of CSAs (Section 5.4 item 1). e. Refusing a received Babel packet due to an empty derived sequence of ESAs (Section 5.4 item 4). f. Refusing a received Babel packet that does not contain exactly one TS/PC TLV (Section 5.4 item 2). g. Refusing a received Babel packet due to the TS/PC TLV failing the ANM table check (Section 5.4 item 3). With possible future extensions in mind, in implementations of this mechanism, this event SHOULD leave out some small amount, per current (Interface, Source, LastTS, LastPC) tuple, of the packets refused due to the Timestamp value being equal to LastTS and the PacketCounter value being equal to LastPC. h. Refusing a received Babel packet missing any HMAC TLVs (Section 5.4 item 8). i. Refusing a received Babel packet due to none of the processed HMAC TLVs passing the ESA check (Section 5.4 item 8).
j. Accepting a received Babel packet having both TS/PC and HMAC TLVs (Section 5.4 item 10). k. Delivery of a refused packet to the instance of the original protocol due to the RxAuthRequired parameter being set to FALSE. Note that the terms "accepting" and "refusing" are used in the sense of the receiving procedure; that is, "accepting" does not mean a packet delivered to the instance of the original protocol purely because the RxAuthRequired parameter is set to FALSE. Event-counter readings SHOULD be available to the operator at runtime.6. Implementation Notes
6.1. Source Address Selection for Sending
Section 3.1 of [BABEL] allows for the exchange of protocol datagrams, using IPv4, IPv6, or both. The source address of the datagram is a unicast (link-local in the case of IPv6) address. Within an address family used by a Babel speaker, there may be more than one address eligible for the exchange and assigned to the same network interface. The original specification considers this case out of scope and leaves it up to the speaker's network stack to select one particular address as the datagram source address, but the sending procedure requires (Section 5.3 item 5) exact knowledge of the packet source address for proper padding of HMAC TLVs. As long as a network interface has more than one address eligible for the exchange within the same address family, the Babel speaker SHOULD internally choose one of those addresses for Babel packet sending purposes and then indicate this choice to both the sending procedure and the network stack (see Figure 1 in Appendix A). Wherever this requirement cannot be met, this limitation MUST be clearly stated in the system documentation to allow an operator to plan network address management accordingly.6.2. Output Buffer Management
An instance of the original protocol will buffer produced TLVs until the buffer becomes full or a delay timer has expired. This is performed independently for each Babel interface, with each buffer sized according to the interface MTU (see Sections 3.1 and 4 of [BABEL]).
Since TS/PC TLVs, HMAC TLVs, and any other TLVs -- and most likely the TLVs of the original protocol -- share the same packet space (see Figure 2 in Appendix A) and, respectively, the same buffer space, a particular portion of each interface buffer needs to be reserved for one TS/PC TLV and up to MaxDigestsOut HMAC TLVs. The amount (R) of this reserved buffer space is calculated as follows: R = St + MaxDigestsOut * Sh R = 8 + MaxDigestsOut * (4 + Lmax) St The size of a TS/PC TLV. Sh The size of an HMAC TLV. Lmax The maximum possible digest length in octets for a particular interface. It SHOULD be calculated based on the particular interface's sequence of CSAs but MAY be taken as the maximum digest length supported by a particular implementation. An implementation allowing for a per-interface value of MaxDigestsOut or Lmax has to account for a different value of R across different interfaces, even interfaces having the same MTU. An implementation allowing for a runtime change to the value of R (due to MaxDigestsOut or Lmax) has to take care of the TLVs already buffered by the time of the change -- specifically, when the value of R increases. The maximum safe value of the MaxDigestsOut parameter depends on the interface MTU and maximum digest length used. In general, at least 200-300 octets of a Babel packet should always be available to data other than TS/PC and HMAC TLVs. An implementation following the requirements of Section 4 of [BABEL] would send packets of 512 octets or larger. If, for example, the maximum digest length is 64 octets and the MaxDigestsOut value is 4, the value of R would be 280, leaving less than half of a 512-octet packet for any other TLVs. As long as the interface MTU is larger or the digest length is smaller, higher values of MaxDigestsOut can be used safely.6.3. Optimizations of Deriving Procedure for ESAs
The following optimizations of the deriving procedure for ESAs can reduce the amount of CPU time consumed by authentication-specific processing, preserving an implementation's effective behaviour. a. The most straightforward implementation would treat the deriving procedure as a per-packet action, but since the procedure is deterministic (its output depends on its input only), it is possible to significantly reduce the number of times the procedure is performed.
The procedure would obviously return the same result for the same input arguments (sequence of CSAs, direction, CT) values. However, it is possible to predict when the result will remain the same, even for a different input. That is, when the input sequence of CSAs and the direction both remain the same but CT changes, the result will remain the same as long as CT's order on the time axis (relative to all critical points of the sequence of CSAs) remains unchanged. Here, the critical points are KeyStartAccept and KeyStopAccept (for the receiving direction), and KeyStartGenerate and KeyStopGenerate (for the sending direction), of all keys of all CSAs of the input sequence. In other words, in this case the result will remain the same as long as (1) none of the active keys expire and (2) none of the inactive keys enter into operation. An implementation optimized in this way would perform the full deriving procedure for a given (interface, direction) pair only after an operator's change to the interface's sequence of CSAs or after reaching one of the critical points mentioned above. b. Considering that the sending procedure iterates over at most MaxDigestsOut elements of the derived sequence of ESAs (Section 5.3 item 5), there would be little sense, in the case of the sending direction, in returning more than MaxDigestsOut ESAs in the derived sequence. Note that a similar optimization would be relatively difficult in the case of the receiving direction, since the number of ESAs actually used in examining a particular received packet (not to be confused with the number of HMAC computations) depends on additional factors besides just MaxDigestsIn.6.4. Duplication of Security Associations
This specification defines three data structures as finite sequences: a KeyChain sequence, an interface's sequence of CSAs, and a sequence of ESAs. There are associated semantics to take into account during implementation, in that the same element can appear multiple times at different positions of the sequence. In particular, none of the CSA structure fields (including HashAlgo, LocalKeyID, and AuthKeyOctets), alone or in a combination, have to be unique within a given CSA, or within a given sequence of CSAs, or within all sequences of CSAs of a Babel speaker. In the CSA space defined in this way, for any two authentication keys, their one field (in)equality would not imply another field (in)equality. In other words, it is acceptable to have more than one authentication key with the same LocalKeyID or the same AuthKeyOctets, or both at a time. It is a conscious design decision
that CSA semantics allow for duplication of security associations. Consequently, ESA semantics allow for duplication of intermediate ESAs in the sequence until the explicit deduplication (Section 5.2 item 4). One of the intentions of this is to define the security association management in a way that allows the addressing of some specifics of Babel as a mesh routing protocol. For example, a system operator configuring a Babel speaker to participate in more than one administrative domain could find each domain using its own authentication key (AuthKeyOctets) under the same LocalKeyID value, e.g., a "well-known" or "default" value like 0 or 1. Since reconfiguring the domains to use distinct LocalKeyID values isn't always feasible, the multi-domain Babel speaker, using several distinct authentication keys under the same LocalKeyID, would make a valid use case for such duplication. Furthermore, if the operator decided in this situation to migrate one of the domains to a different LocalKeyID value in a seamless way, the respective Babel speakers would use the same authentication key (AuthKeyOctets) under two different LocalKeyID values for the time of the transition (see also item (f) of Section 8). This would make a similar use case. Another intention of this design decision is to decouple security association management from authentication key management as much as possible, so that the latter, be it manual keying or a key-management protocol, could be designed and implemented independently (as the respective reasoning made in Section 3.1 of [RIP2-AUTH] still applies). This way, the additional key-management constraints, if any, would remain out of the scope of this authentication mechanism. A similar thinking justifies the LocalKeyID field having a bit length in an ESA structure definition, but not in that of the CSA.