5. Summary
This section summarizes the OAM tools and functions presented in this document. This summary is an index to some of the main OAM tools defined in the IETF. This compact index can be useful to all readers from network operators to standards development organizations. The summary includes a short subsection that presents some guidance to network equipment vendors.5.1. Summary of OAM Tools
This subsection provides a short summary of each of the OAM toolsets described in this document. A detailed list of the RFCs related to each toolset is given in Appendix A.1.
+-----------+------------------------------------------+------------+
| Toolset | Description | Transport |
| | | Technology |
+-----------+------------------------------------------+------------+
|IP Ping | Ping ([IntHost], [NetTerms]) is a simple | IPv4/IPv6 |
| | application for testing reachability that| |
| | uses ICMP Echo messages ([ICMPv4], | |
| | [ICMPv6]). | |
+-----------+------------------------------------------+------------+
|IP | Traceroute ([TCPIP-Tools], [NetTools]) is| IPv4/IPv6 |
|Traceroute | an application that allows users to trace| |
| | the path between an IP source and an IP | |
| | destination, i.e., to identify the nodes | |
| | along the path. If more than one path | |
| | exists between the source and | |
| | destination, Traceroute traces *a* path. | |
| | The most common implementation of | |
| | Traceroute uses UDP probe messages, | |
| | although there are other implementations | |
| | that use different probes, such as ICMP | |
| | or TCP. Paris Traceroute [PARIS] is an | |
| | extension that attempts to discover all | |
| | the available paths from A to B by | |
| | scanning different values of header | |
| | fields. | |
+-----------+------------------------------------------+------------+
|BFD | Bidirectional Forwarding Detection (BFD) | generic |
| | is defined in [BFD] as a framework for a | |
| | lightweight generic OAM tool. The | |
| | intention is to define a base tool | |
| | that can be used with various | |
| | encapsulation types, network | |
| | environments, and various medium | |
| | types. | |
+-----------+------------------------------------------+------------+
|MPLS OAM | MPLS LSP Ping, as defined in [MPLS-OAM], | MPLS |
| | [MPLS-OAM-FW], and [LSP-Ping], is an OAM | |
| | tool for point-to-point and | |
| | point-to-multipoint MPLS LSPs. | |
| | It includes two main functions: Ping and | |
| | Traceroute. | |
| | BFD [BFD-LSP] is an alternative means for| |
| | detecting MPLS LSP data-plane failures. | |
+-----------+------------------------------------------+------------+ |MPLS-TP OAM| MPLS-TP OAM is defined in a set of RFCs. | MPLS-TP | | | The OAM requirements for MPLS Transport | | | | Profile (MPLS-TP) are defined in | | | | [MPLS-TP-OAM]. Each of the tools in the | | | | OAM toolset is defined in its own RFC, as| | | | specified in Appendix A.1. | | +-----------+------------------------------------------+------------+ |Pseudowire | The PWE3 OAM architecture defines Control| Pseudowire | |OAM | Channels that support the use of existing| | | | IETF OAM tools to be used for a pseudo- | | | | wire (PW). The Control Channels that are| | | | defined in [VCCV] and [PW-G-ACh] may be | | | | used in conjunction with ICMP Ping, LSP | | | | Ping, and BFD to perform CC and CV | | | | functionality. In addition, the channels| | | | support use of any of the MPLS-TP-based | | | | OAM tools for completing their respective| | | | OAM functionality for a PW. | | +-----------+------------------------------------------+------------+ |OWAMP and | The One-Way Active Measurement Protocol | IPv4/IPv6 | |TWAMP | [OWAMP] and the Two-Way Active Measure- | | | | ment Protocol [TWAMP] are two protocols | | | | defined in the IP Performance Metrics | | | | (IPPM) working group in the IETF. These | | | | protocols allow various performance | | | | metrics to be measured, such as packet | | | | loss, delay, delay variation, | | | | duplication, and reordering. | | +-----------+------------------------------------------+------------+ |TRILL OAM | The requirements of OAM in TRILL are | TRILL | | | defined in [TRILL-OAM]. These | | | | requirements include Continuity Checking,| | | | Connectivity Verification, path tracing, | | | | and performance monitoring. During the | | | | writing of this document, the detailed | | | | definition of the TRILL OAM tools | | | | is work in progress. | | +-----------+------------------------------------------+------------+ Table 3: Summary of OAM-Related IETF Tools
5.2. Summary of OAM Functions
Table 4 summarizes the OAM functions that are supported in each of the toolsets that were analyzed in this section. The columns of this table are the typical OAM functions described in Section 1.3. +-----------+----------+-------------+----------+----------+-----------+ | |Continuity|Connectivity |Path |Perf. |Other | | Toolset |Check |Verification |Discovery |Monitoring|Functions | | | | | | | | +-----------+----------+-------------+----------+----------+-----------+ |IP Ping |Echo | | | | | +-----------+----------+-------------+----------+----------+-----------+ |IP | | |Traceroute| | | |Traceroute | | | | | | +-----------+----------+-------------+----------+----------+-----------+ |BFD |BFD |BFD Control | | |RDI using | | |Control/ | | | |BFD Control| | |Echo | | | | | +-----------+----------+-------------+----------+----------+-----------+ |MPLS OAM | |"Ping" mode |"Trace- | | | |(LSP Ping) | | |route" | | | | | | |mode | | | +-----------+----------+-------------+----------+----------+-----------+ |MPLS-TP |CC |CV/proactive |Route |-LM |-Diagnostic| |OAM | |or on demand |Tracing |-DM | Test | | | | | | |-Lock | | | | | | |-Alarm | | | | | | | Reporting | | | | | | |-Client | | | | | | | Failure | | | | | | | Indication| | | | | | |-RDI | +-----------+----------+-------------+----------+----------+-----------+ |Pseudowire |BFD |-BFD |LSP Ping | | | |OAM | |-ICMP Ping | | | | | | |-LSP Ping | | | | +-----------+----------+-------------+----------+----------+-----------+ |OWAMP and | - control | |-DM | | |TWAMP | protocol | |-LM | | +-----------+----------+-------------+----------+----------+-----------+ |TRILL OAM |CC |CV |Path |-DM | | | | | |tracing |-LM | | +-----------+----------+-------------+----------+----------+-----------+ Table 4: Summary of the OAM Functionality in IETF OAM Tools
5.3. Guidance to Network Equipment Vendors
As mentioned in Section 1.4, it is imperative for OAM tools to be capable of testing the actual data plane with as much accuracy as possible. While this guideline may appear obvious, it is worthwhile to emphasize the key importance of enforcing fate-sharing between OAM traffic that monitors the data plane and the data-plane traffic it monitors.6. Security Considerations
OAM is tightly coupled with the stability of the network. A successful attack on an OAM protocol can create a false illusion of nonexistent failures or prevent the detection of actual ones. In both cases, the attack may result in denial of service. Some of the OAM tools presented in this document include security mechanisms that provide integrity protection, thereby preventing attackers from forging or tampering with OAM packets. For example, [BFD] includes an optional authentication mechanism for BFD Control packets, using either SHA1, MD5, or a simple password. [OWAMP] and [TWAMP] have three modes of security: unauthenticated, authenticated, and encrypted. The authentication uses SHA1 as the HMAC algorithm, and the encrypted mode uses AES encryption. Confidentiality is typically not considered a requirement for OAM protocols. However, the use of encryption (e.g., [OWAMP] and [TWAMP]) can make it difficult for attackers to identify OAM packets, thus making it more difficult to attack the OAM protocol. OAM can also be used as a means for network reconnaissance; information about addresses, port numbers, and the network topology and performance can be gathered by either passively eavesdropping on OAM packets or actively sending OAM packets and gathering information from the respective responses. This information can then be used maliciously to attack the network. Note that some of this information, e.g., addresses and port numbers, can be gathered even when encryption is used ([OWAMP], [TWAMP]). For further details about the security considerations of each OAM protocol, the reader is encouraged to review the Security Considerations section of each document referenced by this memo.
7. Acknowledgments
The authors gratefully acknowledge Sasha Vainshtein, Carlos Pignataro, David Harrington, Dan Romascanu, Ron Bonica, Benoit Claise, Stewart Bryant, Tom Nadeau, Elwyn Davies, Al Morton, Sam Aldrin, Thomas Narten, and other members of the OPSA WG for their helpful comments on the mailing list. This document was originally prepared using 2-Word-v2.0.template.dot.8. References
8.1. Normative References
[OAM-Def] Andersson, L., van Helvoort, H., Bonica, R., Romascanu, D., and S. Mansfield, "Guidelines for the Use of the "OAM" Acronym in the IETF", BCP 161, RFC 6291, June 2011.8.2. Informative References
[ATM-L2] Singh, S., Townsley, M., and C. Pignataro, "Asynchronous Transfer Mode (ATM) over Layer 2 Tunneling Protocol Version 3 (L2TPv3)", RFC 4454, May 2006. [BFD] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, June 2010. [BFD-Gen] Katz, D. and D. Ward, "Generic Application of Bidirectional Forwarding Detection (BFD)", RFC 5882, June 2010. [BFD-IP] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD) for IPv4 and IPv6 (Single Hop)", RFC 5881, June 2010. [BFD-LSP] Aggarwal, R., Kompella, K., Nadeau, T., and G. Swallow, "Bidirectional Forwarding Detection (BFD) for MPLS Label Switched Paths (LSPs)", RFC 5884, June 2010. [BFD-Multi] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD) for Multihop Paths", RFC 5883, June 2010.
[BFD-VCCV] Nadeau, T., Ed., and C. Pignataro, Ed., "Bidirectional Forwarding Detection (BFD) for the Pseudowire Virtual Circuit Connectivity Verification (VCCV)", RFC 5885, June 2010. [Comp] Bonaventure, O., "Computer Networking: Principles, Protocols and Practice", 2008. [Dup] Uijterwaal, H., "A One-Way Packet Duplication Metric", RFC 5560, May 2009. [Eth-Int] Mohan, D., Ed., Bitar, N., Ed., Sajassi, A., Ed., DeLord, S., Niger, P., and R. Qiu, "MPLS and Ethernet Operations, Administration, and Maintenance (OAM) Interworking", RFC 7023, October 2013. [G-ACh] Bocci, M., Ed., Vigoureux, M., Ed., and S. Bryant, Ed., "MPLS Generic Associated Channel", RFC 5586, June 2009. [ICMP-Ext] Bonica, R., Gan, D., Tappan, D., and C. Pignataro, "ICMP Extensions for Multiprotocol Label Switching", RFC 4950, August 2007. [ICMP-Int] Atlas, A., Ed., Bonica, R., Ed., Pignataro, C., Ed., Shen, N., and JR. Rivers, "Extending ICMP for Interface and Next-Hop Identification", RFC 5837, April 2010. [ICMP-MP] Bonica, R., Gan, D., Tappan, D., and C. Pignataro, "Extended ICMP to Support Multi-Part Messages", RFC 4884, April 2007. [ICMPv4] Postel, J., "Internet Control Message Protocol", STD 5, RFC 792, September 1981. [ICMPv6] Conta, A., Deering, S., and M. Gupta, Ed., "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", RFC 4443, March 2006. [IEEE802.1Q] IEEE, "IEEE Standard for Local and metropolitan area networks - Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks", IEEE 802.1Q, October 2012.
[IEEE802.3ah] IEEE, "IEEE Standard for Information technology - Local and metropolitan area networks - Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications", IEEE 802.3ah, clause 57, December 2008. [IntHost] Braden, R., Ed., "Requirements for Internet Hosts - Communication Layers", STD 3, RFC 1122, October 1989. [IPPM-1DM] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way Delay Metric for IPPM", RFC 2679, September 1999. [IPPM-1LM] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way Packet Loss Metric for IPPM", RFC 2680, September 1999. [IPPM-2DM] Almes, G., Kalidindi, S., and M. Zekauskas, "A Round- trip Delay Metric for IPPM", RFC 2681, September 1999. [IPPM-Con] Mahdavi, J. and V. Paxson, "IPPM Metrics for Measuring Connectivity", RFC 2678, September 1999. [IPPM-FW] Paxson, V., Almes, G., Mahdavi, J., and M. Mathis, "Framework for IP Performance Metrics", RFC 2330, May 1998. [ITU-G8113.1] ITU-T, "Operations, Administration and Maintenance mechanism for MPLS-TP in Packet Transport Network (PTN)", ITU-T Recommendation G.8113.1/Y.1372.1, November 2012. [ITU-G8113.2] ITU-T, "Operations, administration and maintenance mechanisms for MPLS-TP networks using the tools defined for MPLS", ITU-T Recommendation G.8113.2/Y.1372.2, November 2012. [ITU-T-CT] Betts, M., "Allocation of a Generic Associated Channel Type for ITU-T MPLS Transport Profile Operation, Maintenance, and Administration (MPLS-TP OAM)", RFC 6671, November 2012. [ITU-T-G.806] ITU-T, "Characteristics of transport equipment - Description methodology and generic functionality", ITU-T Recommendation G.806, January 2009. [ITU-T-Y1711] ITU-T, "Operation & Maintenance mechanism for MPLS networks", ITU-T Recommendation Y.1711, February 2004.
[ITU-T-Y1731] ITU-T, "OAM Functions and Mechanisms for Ethernet-based Networks", ITU-T Recommendation G.8013/Y.1731, July 2011. [ITU-Terms] ITU-R/ITU-T, "ITU-R/ITU-T Terms and Definitions", 2013, <http://www.itu.int/pub/R-TER-DB>. [L2TP-EC] McGill, N. and C. Pignataro, "Layer 2 Tunneling Protocol Version 3 (L2TPv3) Extended Circuit Status Values", RFC 5641, August 2009. [L2VPN-OAM] Sajassi, A., Ed., and D. Mohan, Ed., "Layer 2 Virtual Private Network (L2VPN) Operations, Administration, and Maintenance (OAM) Requirements and Framework", RFC 6136, March 2011. [L3VPN-OAM] El Mghazli, Y., Ed., Nadeau, T., Boucadair, M., Chan, K., and A. Gonguet, "Framework for Layer 3 Virtual Private Networks (L3VPN) Operations and Management", RFC 4176, October 2005. [Lock-Loop] Boutros, S., Ed., Sivabalan, S., Ed., Aggarwal, R., Ed., Vigoureux, M., Ed., and X. Dai, Ed., "MPLS Transport Profile Lock Instruct and Loopback Functions", RFC 6435, November 2011. [LSP-Ping] Kompella, K. and G. Swallow, "Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures", RFC 4379, February 2006. [Mng] Farrel, A., "Inclusion of Manageability Sections in Path Computation Element (PCE) Working Group Drafts", RFC 6123, February 2011. [MPLS-ENCAPS] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack Encoding", RFC 3032, January 2001. [MPLS-LM-DM] Frost, D. and S. Bryant, "Packet Loss and Delay Measurement for MPLS Networks", RFC 6374, September 2011. [MPLS-OAM] Nadeau, T., Morrow, M., Swallow, G., Allan, D., and S. Matsushima, "Operations and Management (OAM) Requirements for Multi-Protocol Label Switched (MPLS) Networks", RFC 4377, February 2006.
[MPLS-OAM-FW] Allan, D., Ed., and T. Nadeau, Ed., "A Framework for Multi-Protocol Label Switching (MPLS) Operations and Management (OAM)", RFC 4378, February 2006. [MPLS-P2MP] Yasukawa, S., Farrel, A., King, D., and T. Nadeau, "Operations and Management (OAM) Requirements for Point-to-Multipoint MPLS Networks", RFC 4687, September 2006. [MPLS-TP-OAM] Vigoureux, M., Ed., Ward, D., Ed., and M. Betts, Ed., "Requirements for Operations, Administration, and Maintenance (OAM) in MPLS Transport Networks", RFC 5860, May 2010. [mtrace] Fenner, W. and S. Casner, "A "traceroute" facility for IP Multicast", Work in Progress, July 2000. [NetTerms] Jacobsen, O. and D. Lynch, "A Glossary of Networking Terms", RFC 1208, March 1991. [NetTools] Enger, R. and J. Reynolds, "FYI on a Network Management Tool Catalog: Tools for Monitoring and Debugging TCP/IP Internets and Interconnected Devices", FYI 2, RFC 1470, June 1993. [OAM-Analys] Sprecher, N. and L. Fang, "An Overview of the Operations, Administration, and Maintenance (OAM) Toolset for MPLS-Based Transport Networks", RFC 6669, July 2012. [OAM-Label] Ohta, H., "Assignment of the 'OAM Alert Label' for Multiprotocol Label Switching Architecture (MPLS) Operation and Maintenance (OAM) Functions", RFC 3429, November 2002. [OAM-Mng] Ersue, M., Ed., and B. Claise, "An Overview of the IETF Network Management Standards", RFC 6632, June 2012. [OnDemand-CV] Gray, E., Bahadur, N., Boutros, S., and R. Aggarwal, "MPLS On-Demand Connectivity Verification and Route Tracing", RFC 6426, November 2011. [OWAMP] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M. Zekauskas, "A One-way Active Measurement Protocol (OWAMP)", RFC 4656, September 2006.
[PARIS] Augustin, B., Friedman, T., and R. Teixeira, "Measuring Load-balanced Paths in the Internet", IMC '07 Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, 2007. [PM-CONS] Clark, A. and B. Claise, "Guidelines for Considering New Performance Metric Development", BCP 170, RFC 6390, October 2011. [PW-ACH] Bryant, S., Swallow, G., Martini, L., and D. McPherson, "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN", RFC 4385, February 2006. [PW-G-ACh] Li, H., Martini, L., He, J., and F. Huang, "Using the Generic Associated Channel Label for Pseudowire in the MPLS Transport Profile (MPLS-TP)", RFC 6423, November 2011. [PW-MAP] Aissaoui, M., Busschbach, P., Martini, L., Morrow, M., Nadeau, T., and Y(J). Stein, "Pseudowire (PW) Operations, Administration, and Maintenance (OAM) Message Mapping", RFC 6310, July 2011. [Reorder] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov, S., and J. Perser, "Packet Reordering Metrics", RFC 4737, November 2006. [Signal] Yasukawa, S., Ed., "Signaling Requirements for Point- to-Multipoint Traffic-Engineered MPLS Label Switched Paths (LSPs)", RFC 4461, April 2006. [TCPIP-Tools] Kessler, G. and S. Shepard, "A Primer On Internet and TCP/IP Tools and Utilities", FYI 30, RFC 2151, June 1997. [TP-CC-CV] Allan, D., Ed., Swallow Ed., G., and J. Drake Ed., "Proactive Connectivity Verification, Continuity Check, and Remote Defect Indication for the MPLS Transport Profile", RFC 6428, November 2011. [TP-Fault] Swallow, G., Ed., Fulignoli, A., Ed., Vigoureux, M., Ed., Boutros, S., and D. Ward, "MPLS Fault Management Operations, Administration, and Maintenance (OAM)", RFC 6427, November 2011. [TP-LM-DM] Frost, D., Ed., and S. Bryant, Ed., "A Packet Loss and Delay Measurement Profile for MPLS-Based Transport Networks", RFC 6375, September 2011.
[TP-OAM-FW] Busi, I., Ed., and D. Allan, Ed., "Operations, Administration, and Maintenance Framework for MPLS- Based Transport Networks", RFC 6371, September 2011. [TP-Term] van Helvoort, H., Ed., Andersson, L., Ed., and N. Sprecher, Ed., "A Thesaurus for the Interpretation of Terminology Used in MPLS Transport Profile (MPLS-TP) Internet-Drafts and RFCs in the Context of the ITU-T's Transport Network Recommendations", RFC 7087, December 2013. [TRILL-OAM] Senevirathne, T., Bond, D., Aldrin, S., Li, Y., and R. Watve, "Requirements for Operations, Administration, and Maintenance (OAM) in Transparent Interconnection of Lots of Links (TRILL)", RFC 6905, March 2013. [TWAMP] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J. Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)", RFC 5357, October 2008. [VCCV] Nadeau, T., Ed., and C. Pignataro, Ed., "Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires", RFC 5085, December 2007. [VCCV-SURVEY] Del Regno, N., Ed., and A. Malis, Ed., "The Pseudowire (PW) and Virtual Circuit Connectivity Verification (VCCV) Implementation Survey Results", RFC 7079, November 2013.
Appendix A. List of OAM Documents
A.1. List of IETF OAM Documents
Table 5 summarizes the OAM-related RFCs produced by the IETF. It is important to note that the table lists various RFCs that are different by nature. For example, some of these documents define OAM tools or OAM protocols (or both), while others define protocols that are not strictly OAM related, but are used by OAM tools. The table also includes RFCs that define the requirements or the framework of OAM in a specific context (e.g., MPLS-TP). The RFCs in the table are categorized in a few sets as defined in Section 1.3. +-----------+--------------------------------------+----------+ | Toolset | Title | RFC | +-----------+--------------------------------------+----------+ |IP Ping | Requirements for Internet Hosts -- | RFC 1122 | | | Communication Layers [IntHost] | | | +--------------------------------------+----------+ | | A Glossary of Networking Terms | RFC 1208 | | | [NetTerms] | | | +--------------------------------------+----------+ | | Internet Control Message Protocol | RFC 792 | | | [ICMPv4] | | | +--------------------------------------+----------+ | | Internet Control Message Protocol | RFC 4443 | | | (ICMPv6) for the Internet Protocol | | | | Version 6 (IPv6) Specification | | | | [ICMPv6] | | +-----------+--------------------------------------+----------+ |IP | A Primer On Internet and TCP/IP | RFC 2151 | |Traceroute | Tools and Utilities [TCPIP-Tools] | | | +--------------------------------------+----------+ | | FYI on a Network Management Tool | RFC 1470 | | | Catalog: Tools for Monitoring and | | | | Debugging TCP/IP Internets and | | | | Interconnected Devices [NetTools] | | | +--------------------------------------+----------+ | | Internet Control Message Protocol | RFC 792 | | | [ICMPv4] | | | +--------------------------------------+----------+ | | Internet Control Message Protocol | RFC 4443 | | | (ICMPv6) for the Internet Protocol | | | | Version 6 (IPv6) Specification | | | | [ICMPv6] | |
| +--------------------------------------+----------+
| | Extended ICMP to Support Multi-Part | RFC 4884 |
| | Messages [ICMP-MP] | |
| +--------------------------------------+----------+
| | Extending ICMP for Interface and | RFC 5837 |
| | Next-Hop Identification [ICMP-Int] | |
+-----------+--------------------------------------+----------+
|BFD | Bidirectional Forwarding Detection | RFC 5880 |
| | (BFD) [BFD] | |
| +--------------------------------------+----------+
| | Bidirectional Forwarding Detection | RFC 5881 |
| | (BFD) for IPv4 and IPv6 (Single Hop) | |
| | [BFD-IP] | |
| +--------------------------------------+----------+
| | Generic Application of Bidirectional | RFC 5882 |
| | Forwarding Detection (BFD)[BFD-Gen] | |
| +--------------------------------------+----------+
| | Bidirectional Forwarding Detection | RFC 5883 |
| | (BFD) for Multihop Paths [BFD-Multi] | |
| +--------------------------------------+----------+
| | Bidirectional Forwarding Detection | RFC 5884 |
| | (BFD) for MPLS Label Switched Paths | |
| | (LSPs) [BFD-LSP] | |
| +--------------------------------------+----------+
| | Bidirectional Forwarding Detection | RFC 5885 |
| | for the Pseudowire Virtual Circuit | |
| | Connectivity Verification (VCCV) | |
| | [BFD-VCCV] | |
+-----------+--------------------------------------+----------+
|MPLS OAM | Operations and Management (OAM) | RFC 4377 |
| | Requirements for Multi-Protocol Label| |
| | Switched (MPLS) Networks [MPLS-OAM] | |
| +--------------------------------------+----------+
| | A Framework for Multi-Protocol | RFC 4378 |
| | Label Switching (MPLS) Operations | |
| | and Management (OAM) [MPLS-OAM-FW] | |
| +--------------------------------------+----------+
| | Detecting Multi-Protocol Label | RFC 4379 |
| | Switched (MPLS) Data Plane Failures | |
| | [LSP-Ping] | |
| +--------------------------------------+----------+
| | Operations and Management (OAM) | RFC 4687 |
| | Requirements for Point-to-Multipoint | |
| | MPLS Networks [MPLS-P2MP] | |
| +--------------------------------------+----------+
| | ICMP Extensions for Multiprotocol | RFC 4950 |
| | Label Switching [ICMP-Ext] | |
| +--------------------------------------+----------+
| | Bidirectional Forwarding Detection | RFC 5884 |
| | for MPLS Label Switched Paths (LSPs) | |
| | [BFD-LSP] | |
+-----------+--------------------------------------+----------+
|MPLS-TP | Requirements for Operations, | RFC 5860 |
|OAM | Administration, and Maintenance (OAM)| |
| | in MPLS Transport Networks | |
| | [MPLS-TP-OAM] | |
| +--------------------------------------+----------+
| | MPLS Generic Associated Channel | RFC 5586 |
| | [G-ACh] | |
| +--------------------------------------+----------+
| | Operations, Administration, and | RFC 6371 |
| | Maintenance Framework for MPLS-Based | |
| | Transport Networks [TP-OAM-FW] | |
| +--------------------------------------+----------+
| | Proactive Connectivity Verification, | RFC 6428 |
| | Continuity Check, and Remote Defect | |
| | Indication for the MPLS Transport | |
| | Profile [TP-CC-CV] | |
| +--------------------------------------+----------+
| | MPLS On-Demand Connectivity | RFC 6426 |
| | Verification and Route Tracing | |
| | [OnDemand-CV] | |
| +--------------------------------------+----------+
| | MPLS Fault Management Operations, | RFC 6427 |
| | Administration, and Maintenance (OAM)| |
| | [TP-Fault] | |
| +--------------------------------------+----------+
| | MPLS Transport Profile Lock Instruct | RFC 6435 |
| | and Loopback Functions [Lock-Loop] | |
| +--------------------------------------+----------+
| | Packet Loss and Delay Measurement for| RFC 6374 |
| | MPLS Networks [MPLS-LM-DM] | |
| +--------------------------------------+----------+
| | A Packet Loss and Delay Measurement | RFC 6375 |
| | Profile for MPLS-Based Transport | |
| | Networks [TP-LM-DM] | |
+-----------+--------------------------------------+----------+
|Pseudowire | Pseudowire Virtual Circuit | RFC 5085 |
|OAM | Connectivity Verification (VCCV): | |
| | A Control Channel for Pseudowires | |
| | [VCCV] | |
| +--------------------------------------+----------+
| | Bidirectional Forwarding Detection | RFC 5885 |
| | for the Pseudowire Virtual Circuit | |
| | Connectivity Verification (VCCV) | |
| | [BFD-VCCV] | |
| +--------------------------------------+----------+
| | Using the Generic Associated Channel | RFC 6423 |
| | Label for Pseudowire in the MPLS | |
| | Transport Profile (MPLS-TP) | |
| | [PW-G-ACh] | |
| +--------------------------------------+----------+
| | Pseudowire (PW) Operations, | RFC 6310 |
| | Administration, and Maintenance (OAM)| |
| | Message Mapping [PW-MAP] | |
| +--------------------------------------+----------+
| | MPLS and Ethernet Operations, | RFC 7023 |
| | Administration, and Maintenance (OAM)| |
| | Interworking [Eth-Int] | |
+-----------+--------------------------------------+----------+
|OWAMP and | A One-way Active Measurement Protocol| RFC 4656 |
|TWAMP | (OWAMP) [OWAMP] | |
| +--------------------------------------+----------+
| | A Two-Way Active Measurement Protocol| RFC 5357 |
| | (TWAMP) [TWAMP] | |
| +--------------------------------------+----------+
| | Framework for IP Performance Metrics | RFC 2330 |
| | [IPPM-FW] | |
| +--------------------------------------+----------+
| | IPPM Metrics for Measuring | RFC 2678 |
| | Connectivity [IPPM-Con] | |
| +--------------------------------------+----------+
| | A One-way Delay Metric for IPPM | RFC 2679 |
| | [IPPM-1DM] | |
| +--------------------------------------+----------+
| | A One-way Packet Loss Metric for IPPM| RFC 2680 |
| | [IPPM-1LM] | |
| +--------------------------------------+----------+
| | A Round-trip Delay Metric for IPPM | RFC 2681 |
| | [IPPM-2DM] | |
| +--------------------------------------+----------+
| | Packet Reordering Metrics | RFC 4737 |
| | [Reorder] | |
| +--------------------------------------+----------+
| | A One-Way Packet Duplication Metric | RFC 5560 |
| | [Dup] | |
+-----------+--------------------------------------+----------+ |TRILL OAM | Requirements for Operations, | RFC 6905 | | | Administration, and Maintenance (OAM)| | | | in Transparent Interconnection of | | | | Lots of Links (TRILL) | | +-----------+--------------------------------------+----------+ Table 5: Summary of IETF OAM-Related RFCsA.2. List of Selected Non-IETF OAM Documents
In addition to the OAM tools defined by the IETF, the IEEE and ITU-T have also defined various OAM tools that focus on Ethernet and various other transport-network environments. These various tools, defined by the three standard organizations, are often tightly coupled and have had a mutual effect on each other. The ITU-T and IETF have both defined OAM tools for MPLS LSPs, [ITU-T-Y1711], and [LSP-Ping]. The following OAM standards by the IEEE and ITU-T are to some extent linked to the IETF OAM tools listed above and are mentioned here only as reference material. o OAM tools for Layer 2 have been defined by the ITU-T in [ITU-T-Y1731] and by the IEEE in 802.1ag [IEEE802.1Q]. The IEEE 802.3 standard defines OAM for one-hop Ethernet links [IEEE802.3ah]. o The ITU-T has defined OAM for MPLS LSPs in [ITU-T-Y1711] and for MPLS-TP OAM in [ITU-G8113.1] and [ITU-G8113.2]. It should be noted that these non-IETF documents deal in many cases with OAM functions below the IP layer (Layer 2, Layer 2.5) and that in some cases operators use a multi-layered OAM approach, which is a function of the way their networks are designed.
Table 6 summarizes some of the main OAM standards published by non-IETF standard organizations. This document focuses on IETF OAM standards, but these non-IETF standards are referenced in this document where relevant. +-----------+--------------------------------------+---------------+ | | Title | Document | +-----------+--------------------------------------+---------------+ |ITU-T | Operation & Maintenance mechanism | ITU-T Y.1711 | |MPLS OAM | for MPLS networks [ITU-T-Y1711] | | | +--------------------------------------+---------------+ | | Assignment of the 'OAM Alert Label' | RFC 3429 | | | for Multiprotocol Label Switching | | | | Architecture (MPLS) Operation and | | | | Maintenance (OAM) Functions | | | | [OAM-Label] | | | | | | | | Note: although this is an IETF | | | | document, it is listed as one of the| | | | non-IETF OAM standards, since it | | | | was defined as a complementary part | | | | of ITU-T Y.1711. | | +-----------+--------------------------------------+---------------+ |ITU-T | Operations, administration and |ITU-T G.8113.2 | |MPLS-TP OAM| Maintenance mechanisms for MPLS-TP | | | | networks using the tools defined for | | | | MPLS [ITU-G8113.2] | | | | | | | | Note: this document describes the | | | | OAM toolset defined by the IETF for | | | | MPLS-TP, whereas ITU-T G.8113.1 | | | | describes the OAM toolset defined | | | | by the ITU-T. | | | +--------------------------------------+---------------+ | | Operations, Administration and |ITU-T G.8113.1 | | | Maintenance mechanism for MPLS-TP in | | | | Packet Transport Network (PTN) | |
| +--------------------------------------+---------------+ | | Allocation of a Generic Associated | RFC 6671 | | | Channel Type for ITU-T MPLS Transport| | | | Profile Operation, Maintenance, and | | | | Administration (MPLS-TP OAM) | | | | [ITU-T-CT] | | | | | | | | Note: although this is an IETF | | | | document, it is listed as one of the| | | | non-IETF OAM standards, since it | | | | was defined as a complementary part | | | | of ITU-T G.8113.1. | | +-----------+--------------------------------------+---------------+ |ITU-T | OAM Functions and Mechanisms for | ITU-T Y.1731 | |Ethernet | Ethernet-based Networks | | |OAM | [ITU-T-Y1731] | | +-----------+--------------------------------------+---------------+ |IEEE | Connectivity Fault Management | IEEE 802.1ag | |CFM | [IEEE802.1Q] | | | | | | | | Note: CFM was originally published | | | | as IEEE 802.1ag but is now | | | | incorporated in the 802.1Q standard.| | +-----------+--------------------------------------+---------------+ |IEEE | Management of Data Driven and Data | IEEE 802.1ag | |DDCFM | Dependent Connectivity Faults | | | | [IEEE802.1Q] | | | | | | | | Note: DDCFM was originally published| | | | as IEEE 802.1Qaw but is now | | | | incorporated in the 802.1Q standard.| | +-----------+--------------------------------------+---------------+ |IEEE | Media Access Control Parameters, | IEEE 802.3ah | |802.3 | Physical Layers, and Management | | |link level | Parameters for Subscriber Access | | |OAM | Networks [IEEE802.3ah] | | | | | | | | Note: link level OAM was originally | | | | defined in IEEE 802.3ah and is now | | | | incorporated in the 802.3 standard. | | +-----------+--------------------------------------+---------------+ Table 6: Non-IETF OAM Standards Mentioned in This Document
Authors' Addresses
Tal Mizrahi Marvell 6 Hamada St. Yokneam 20692 Israel EMail: talmi@marvell.com Nurit Sprecher Nokia Solutions and Networks 3 Hanagar St. Neve Ne'eman B Hod Hasharon 45241 Israel EMail: nurit.sprecher@nsn.com Elisa Bellagamba Ericsson 6 Farogatan St. Stockholm 164 40 Sweden Phone: +46 761440785 EMail: elisa.bellagamba@ericsson.com Yaacov Weingarten 34 Hagefen St. Karnei Shomron 4485500 Israel EMail: wyaacov@gmail.com