Internet Engineering Task Force (IETF) R. Fielding, Ed. Request for Comments: 7231 Adobe Obsoletes: 2616 J. Reschke, Ed. Updates: 2817 greenbytes Category: Standards Track June 2014 ISSN: 2070-1721 Hypertext Transfer Protocol (HTTP/1.1): Semantics and ContentAbstract
The Hypertext Transfer Protocol (HTTP) is a stateless application- level protocol for distributed, collaborative, hypertext information systems. This document defines the semantics of HTTP/1.1 messages, as expressed by request methods, request header fields, response status codes, and response header fields, along with the payload of messages (metadata and body content) and mechanisms for content negotiation. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7231.
Copyright Notice Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.
Table of Contents
1. Introduction ....................................................6 1.1. Conformance and Error Handling .............................6 1.2. Syntax Notation ............................................6 2. Resources .......................................................7 3. Representations .................................................7 3.1. Representation Metadata ....................................8 3.1.1. Processing Representation Data ......................8 3.1.2. Encoding for Compression or Integrity ..............11 3.1.3. Audience Language ..................................13 3.1.4. Identification .....................................14 3.2. Representation Data .......................................17 3.3. Payload Semantics .........................................17 3.4. Content Negotiation .......................................18 3.4.1. Proactive Negotiation ..............................19 3.4.2. Reactive Negotiation ...............................20 4. Request Methods ................................................21 4.1. Overview ..................................................21 4.2. Common Method Properties ..................................22 4.2.1. Safe Methods .......................................22 4.2.2. Idempotent Methods .................................23 4.2.3. Cacheable Methods ..................................24 4.3. Method Definitions ........................................24 4.3.1. GET ................................................24 4.3.2. HEAD ...............................................25 4.3.3. POST ...............................................25 4.3.4. PUT ................................................26 4.3.5. DELETE .............................................29 4.3.6. CONNECT ............................................30 4.3.7. OPTIONS ............................................31 4.3.8. TRACE ..............................................32 5. Request Header Fields ..........................................33 5.1. Controls ..................................................33 5.1.1. Expect .............................................34 5.1.2. Max-Forwards .......................................36 5.2. Conditionals ..............................................36 5.3. Content Negotiation .......................................37 5.3.1. Quality Values .....................................37 5.3.2. Accept .............................................38 5.3.3. Accept-Charset .....................................40 5.3.4. Accept-Encoding ....................................41 5.3.5. Accept-Language ....................................42 5.4. Authentication Credentials ................................44 5.5. Request Context ...........................................44 5.5.1. From ...............................................44 5.5.2. Referer ............................................45 5.5.3. User-Agent .........................................46
6. Response Status Codes ..........................................47 6.1. Overview of Status Codes ..................................48 6.2. Informational 1xx .........................................50 6.2.1. 100 Continue .......................................50 6.2.2. 101 Switching Protocols ............................50 6.3. Successful 2xx ............................................51 6.3.1. 200 OK .............................................51 6.3.2. 201 Created ........................................52 6.3.3. 202 Accepted .......................................52 6.3.4. 203 Non-Authoritative Information ..................52 6.3.5. 204 No Content .....................................53 6.3.6. 205 Reset Content ..................................53 6.4. Redirection 3xx ...........................................54 6.4.1. 300 Multiple Choices ...............................55 6.4.2. 301 Moved Permanently ..............................56 6.4.3. 302 Found ..........................................56 6.4.4. 303 See Other ......................................57 6.4.5. 305 Use Proxy ......................................58 6.4.6. 306 (Unused) .......................................58 6.4.7. 307 Temporary Redirect .............................58 6.5. Client Error 4xx ..........................................58 6.5.1. 400 Bad Request ....................................58 6.5.2. 402 Payment Required ...............................59 6.5.3. 403 Forbidden ......................................59 6.5.4. 404 Not Found ......................................59 6.5.5. 405 Method Not Allowed .............................59 6.5.6. 406 Not Acceptable .................................60 6.5.7. 408 Request Timeout ................................60 6.5.8. 409 Conflict .......................................60 6.5.9. 410 Gone ...........................................60 6.5.10. 411 Length Required ...............................61 6.5.11. 413 Payload Too Large .............................61 6.5.12. 414 URI Too Long ..................................61 6.5.13. 415 Unsupported Media Type ........................62 6.5.14. 417 Expectation Failed ............................62 6.5.15. 426 Upgrade Required ..............................62 6.6. Server Error 5xx ..........................................62 6.6.1. 500 Internal Server Error ..........................63 6.6.2. 501 Not Implemented ................................63 6.6.3. 502 Bad Gateway ....................................63 6.6.4. 503 Service Unavailable ............................63 6.6.5. 504 Gateway Timeout ................................63 6.6.6. 505 HTTP Version Not Supported .....................64 7. Response Header Fields .........................................64 7.1. Control Data ..............................................64 7.1.1. Origination Date ...................................65 7.1.2. Location ...........................................68 7.1.3. Retry-After ........................................69
7.1.4. Vary ...............................................70 7.2. Validator Header Fields ...................................71 7.3. Authentication Challenges .................................72 7.4. Response Context ..........................................72 7.4.1. Allow ..............................................72 7.4.2. Server .............................................73 8. IANA Considerations ............................................73 8.1. Method Registry ...........................................73 8.1.1. Procedure ..........................................74 8.1.2. Considerations for New Methods .....................74 8.1.3. Registrations ......................................75 8.2. Status Code Registry ......................................75 8.2.1. Procedure ..........................................75 8.2.2. Considerations for New Status Codes ................76 8.2.3. Registrations ......................................76 8.3. Header Field Registry .....................................77 8.3.1. Considerations for New Header Fields ...............78 8.3.2. Registrations ......................................80 8.4. Content Coding Registry ...................................81 8.4.1. Procedure ..........................................81 8.4.2. Registrations ......................................81 9. Security Considerations ........................................81 9.1. Attacks Based on File and Path Names ......................82 9.2. Attacks Based on Command, Code, or Query Injection ........82 9.3. Disclosure of Personal Information ........................83 9.4. Disclosure of Sensitive Information in URIs ...............83 9.5. Disclosure of Fragment after Redirects ....................84 9.6. Disclosure of Product Information .........................84 9.7. Browser Fingerprinting ....................................84 10. Acknowledgments ...............................................85 11. References ....................................................85 11.1. Normative References .....................................85 11.2. Informative References ...................................86 Appendix A. Differences between HTTP and MIME .....................89 A.1. MIME-Version ..............................................89 A.2. Conversion to Canonical Form ..............................89 A.3. Conversion of Date Formats ................................90 A.4. Conversion of Content-Encoding ............................90 A.5. Conversion of Content-Transfer-Encoding ...................90 A.6. MHTML and Line Length Limitations .........................90 Appendix B. Changes from RFC 2616 .................................91 Appendix C. Imported ABNF .........................................93 Appendix D. Collected ABNF ........................................94 Index .............................................................97
1. Introduction
Each Hypertext Transfer Protocol (HTTP) message is either a request or a response. A server listens on a connection for a request, parses each message received, interprets the message semantics in relation to the identified request target, and responds to that request with one or more response messages. A client constructs request messages to communicate specific intentions, examines received responses to see if the intentions were carried out, and determines how to interpret the results. This document defines HTTP/1.1 request and response semantics in terms of the architecture defined in [RFC7230]. HTTP provides a uniform interface for interacting with a resource (Section 2), regardless of its type, nature, or implementation, via the manipulation and transfer of representations (Section 3). HTTP semantics include the intentions defined by each request method (Section 4), extensions to those semantics that might be described in request header fields (Section 5), the meaning of status codes to indicate a machine-readable response (Section 6), and the meaning of other control data and resource metadata that might be given in response header fields (Section 7). This document also defines representation metadata that describe how a payload is intended to be interpreted by a recipient, the request header fields that might influence content selection, and the various selection algorithms that are collectively referred to as "content negotiation" (Section 3.4).1.1. Conformance and Error Handling
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. Conformance criteria and considerations regarding error handling are defined in Section 2.5 of [RFC7230].1.2. Syntax Notation
This specification uses the Augmented Backus-Naur Form (ABNF) notation of [RFC5234] with a list extension, defined in Section 7 of [RFC7230], that allows for compact definition of comma-separated lists using a '#' operator (similar to how the '*' operator indicates repetition). Appendix C describes rules imported from other documents. Appendix D shows the collected grammar with all list operators expanded to standard ABNF notation.
This specification uses the terms "character", "character encoding scheme", "charset", and "protocol element" as they are defined in [RFC6365].2. Resources
The target of an HTTP request is called a "resource". HTTP does not limit the nature of a resource; it merely defines an interface that might be used to interact with resources. Each resource is identified by a Uniform Resource Identifier (URI), as described in Section 2.7 of [RFC7230]. When a client constructs an HTTP/1.1 request message, it sends the target URI in one of various forms, as defined in (Section 5.3 of [RFC7230]). When a request is received, the server reconstructs an effective request URI for the target resource (Section 5.5 of [RFC7230]). One design goal of HTTP is to separate resource identification from request semantics, which is made possible by vesting the request semantics in the request method (Section 4) and a few request-modifying header fields (Section 5). If there is a conflict between the method semantics and any semantic implied by the URI itself, as described in Section 4.2.1, the method semantics take precedence.3. Representations
Considering that a resource could be anything, and that the uniform interface provided by HTTP is similar to a window through which one can observe and act upon such a thing only through the communication of messages to some independent actor on the other side, an abstraction is needed to represent ("take the place of") the current or desired state of that thing in our communications. That abstraction is called a representation [REST]. For the purposes of HTTP, a "representation" is information that is intended to reflect a past, current, or desired state of a given resource, in a format that can be readily communicated via the protocol, and that consists of a set of representation metadata and a potentially unbounded stream of representation data. An origin server might be provided with, or be capable of generating, multiple representations that are each intended to reflect the current state of a target resource. In such cases, some algorithm is used by the origin server to select one of those representations as most applicable to a given request, usually based on content negotiation. This "selected representation" is used to provide the
data and metadata for evaluating conditional requests [RFC7232] and constructing the payload for 200 (OK) and 304 (Not Modified) responses to GET (Section 4.3.1).3.1. Representation Metadata
Representation header fields provide metadata about the representation. When a message includes a payload body, the representation header fields describe how to interpret the representation data enclosed in the payload body. In a response to a HEAD request, the representation header fields describe the representation data that would have been enclosed in the payload body if the same request had been a GET. The following header fields convey representation metadata: +-------------------+-----------------+ | Header Field Name | Defined in... | +-------------------+-----------------+ | Content-Type | Section 3.1.1.5 | | Content-Encoding | Section 3.1.2.2 | | Content-Language | Section 3.1.3.2 | | Content-Location | Section 3.1.4.2 | +-------------------+-----------------+3.1.1. Processing Representation Data
3.1.1.1. Media Type
HTTP uses Internet media types [RFC2046] in the Content-Type (Section 3.1.1.5) and Accept (Section 5.3.2) header fields in order to provide open and extensible data typing and type negotiation. Media types define both a data format and various processing models: how to process that data in accordance with each context in which it is received. media-type = type "/" subtype *( OWS ";" OWS parameter ) type = token subtype = token The type/subtype MAY be followed by parameters in the form of name=value pairs. parameter = token "=" ( token / quoted-string )
The type, subtype, and parameter name tokens are case-insensitive. Parameter values might or might not be case-sensitive, depending on the semantics of the parameter name. The presence or absence of a parameter might be significant to the processing of a media-type, depending on its definition within the media type registry. A parameter value that matches the token production can be transmitted either as a token or within a quoted-string. The quoted and unquoted values are equivalent. For example, the following examples are all equivalent, but the first is preferred for consistency: text/html;charset=utf-8 text/html;charset=UTF-8 Text/HTML;Charset="utf-8" text/html; charset="utf-8" Internet media types ought to be registered with IANA according to the procedures defined in [BCP13]. Note: Unlike some similar constructs in other header fields, media type parameters do not allow whitespace (even "bad" whitespace) around the "=" character.3.1.1.2. Charset
HTTP uses charset names to indicate or negotiate the character encoding scheme of a textual representation [RFC6365]. A charset is identified by a case-insensitive token. charset = token Charset names ought to be registered in the IANA "Character Sets" registry (<http://www.iana.org/assignments/character-sets>) according to the procedures defined in [RFC2978].3.1.1.3. Canonicalization and Text Defaults
Internet media types are registered with a canonical form in order to be interoperable among systems with varying native encoding formats. Representations selected or transferred via HTTP ought to be in canonical form, for many of the same reasons described by the Multipurpose Internet Mail Extensions (MIME) [RFC2045]. However, the performance characteristics of email deployments (i.e., store and forward messages to peers) are significantly different from those common to HTTP and the Web (server-based information services). Furthermore, MIME's constraints for the sake of compatibility with older mail transfer protocols do not apply to HTTP (see Appendix A).
MIME's canonical form requires that media subtypes of the "text" type use CRLF as the text line break. HTTP allows the transfer of text media with plain CR or LF alone representing a line break, when such line breaks are consistent for an entire representation. An HTTP sender MAY generate, and a recipient MUST be able to parse, line breaks in text media that consist of CRLF, bare CR, or bare LF. In addition, text media in HTTP is not limited to charsets that use octets 13 and 10 for CR and LF, respectively. This flexibility regarding line breaks applies only to text within a representation that has been assigned a "text" media type; it does not apply to "multipart" types or HTTP elements outside the payload body (e.g., header fields). If a representation is encoded with a content-coding, the underlying data ought to be in a form defined above prior to being encoded.3.1.1.4. Multipart Types
MIME provides for a number of "multipart" types -- encapsulations of one or more representations within a single message body. All multipart types share a common syntax, as defined in Section 5.1.1 of [RFC2046], and include a boundary parameter as part of the media type value. The message body is itself a protocol element; a sender MUST generate only CRLF to represent line breaks between body parts. HTTP message framing does not use the multipart boundary as an indicator of message body length, though it might be used by implementations that generate or process the payload. For example, the "multipart/form-data" type is often used for carrying form data in a request, as described in [RFC2388], and the "multipart/ byteranges" type is defined by this specification for use in some 206 (Partial Content) responses [RFC7233].3.1.1.5. Content-Type
The "Content-Type" header field indicates the media type of the associated representation: either the representation enclosed in the message payload or the selected representation, as determined by the message semantics. The indicated media type defines both the data format and how that data is intended to be processed by a recipient, within the scope of the received message semantics, after any content codings indicated by Content-Encoding are decoded. Content-Type = media-type
Media types are defined in Section 3.1.1.1. An example of the field is Content-Type: text/html; charset=ISO-8859-4 A sender that generates a message containing a payload body SHOULD generate a Content-Type header field in that message unless the intended media type of the enclosed representation is unknown to the sender. If a Content-Type header field is not present, the recipient MAY either assume a media type of "application/octet-stream" ([RFC2046], Section 4.5.1) or examine the data to determine its type. In practice, resource owners do not always properly configure their origin server to provide the correct Content-Type for a given representation, with the result that some clients will examine a payload's content and override the specified type. Clients that do so risk drawing incorrect conclusions, which might expose additional security risks (e.g., "privilege escalation"). Furthermore, it is impossible to determine the sender's intent by examining the data format: many data formats match multiple media types that differ only in processing semantics. Implementers are encouraged to provide a means of disabling such "content sniffing" when it is used.3.1.2. Encoding for Compression or Integrity
3.1.2.1. Content Codings
Content coding values indicate an encoding transformation that has been or can be applied to a representation. Content codings are primarily used to allow a representation to be compressed or otherwise usefully transformed without losing the identity of its underlying media type and without loss of information. Frequently, the representation is stored in coded form, transmitted directly, and only decoded by the final recipient. content-coding = token All content-coding values are case-insensitive and ought to be registered within the "HTTP Content Coding Registry", as defined in Section 8.4. They are used in the Accept-Encoding (Section 5.3.4) and Content-Encoding (Section 3.1.2.2) header fields.
The following content-coding values are defined by this specification: compress (and x-compress): See Section 4.2.1 of [RFC7230]. deflate: See Section 4.2.2 of [RFC7230]. gzip (and x-gzip): See Section 4.2.3 of [RFC7230].3.1.2.2. Content-Encoding
The "Content-Encoding" header field indicates what content codings have been applied to the representation, beyond those inherent in the media type, and thus what decoding mechanisms have to be applied in order to obtain data in the media type referenced by the Content-Type header field. Content-Encoding is primarily used to allow a representation's data to be compressed without losing the identity of its underlying media type. Content-Encoding = 1#content-coding An example of its use is Content-Encoding: gzip If one or more encodings have been applied to a representation, the sender that applied the encodings MUST generate a Content-Encoding header field that lists the content codings in the order in which they were applied. Additional information about the encoding parameters can be provided by other header fields not defined by this specification. Unlike Transfer-Encoding (Section 3.3.1 of [RFC7230]), the codings listed in Content-Encoding are a characteristic of the representation; the representation is defined in terms of the coded form, and all other metadata about the representation is about the coded form unless otherwise noted in the metadata definition. Typically, the representation is only decoded just prior to rendering or analogous usage. If the media type includes an inherent encoding, such as a data format that is always compressed, then that encoding would not be restated in Content-Encoding even if it happens to be the same algorithm as one of the content codings. Such a content coding would only be listed if, for some bizarre reason, it is applied a second time to form the representation. Likewise, an origin server might choose to publish the same data as multiple representations that differ only in whether the coding is defined as part of Content-Type
or Content-Encoding, since some user agents will behave differently in their handling of each response (e.g., open a "Save as ..." dialog instead of automatic decompression and rendering of content). An origin server MAY respond with a status code of 415 (Unsupported Media Type) if a representation in the request message has a content coding that is not acceptable.3.1.3. Audience Language
3.1.3.1. Language Tags
A language tag, as defined in [RFC5646], identifies a natural language spoken, written, or otherwise conveyed by human beings for communication of information to other human beings. Computer languages are explicitly excluded. HTTP uses language tags within the Accept-Language and Content-Language header fields. Accept-Language uses the broader language-range production defined in Section 5.3.5, whereas Content-Language uses the language-tag production defined below. language-tag = <Language-Tag, see [RFC5646], Section 2.1> A language tag is a sequence of one or more case-insensitive subtags, each separated by a hyphen character ("-", %x2D). In most cases, a language tag consists of a primary language subtag that identifies a broad family of related languages (e.g., "en" = English), which is optionally followed by a series of subtags that refine or narrow that language's range (e.g., "en-CA" = the variety of English as communicated in Canada). Whitespace is not allowed within a language tag. Example tags include: fr, en-US, es-419, az-Arab, x-pig-latin, man-Nkoo-GN See [RFC5646] for further information.3.1.3.2. Content-Language
The "Content-Language" header field describes the natural language(s) of the intended audience for the representation. Note that this might not be equivalent to all the languages used within the representation. Content-Language = 1#language-tag
Language tags are defined in Section 3.1.3.1. The primary purpose of Content-Language is to allow a user to identify and differentiate representations according to the users' own preferred language. Thus, if the content is intended only for a Danish-literate audience, the appropriate field is Content-Language: da If no Content-Language is specified, the default is that the content is intended for all language audiences. This might mean that the sender does not consider it to be specific to any natural language, or that the sender does not know for which language it is intended. Multiple languages MAY be listed for content that is intended for multiple audiences. For example, a rendition of the "Treaty of Waitangi", presented simultaneously in the original Maori and English versions, would call for Content-Language: mi, en However, just because multiple languages are present within a representation does not mean that it is intended for multiple linguistic audiences. An example would be a beginner's language primer, such as "A First Lesson in Latin", which is clearly intended to be used by an English-literate audience. In this case, the Content-Language would properly only include "en". Content-Language MAY be applied to any media type -- it is not limited to textual documents.3.1.4. Identification
3.1.4.1. Identifying a Representation
When a complete or partial representation is transferred in a message payload, it is often desirable for the sender to supply, or the recipient to determine, an identifier for a resource corresponding to that representation. For a request message: o If the request has a Content-Location header field, then the sender asserts that the payload is a representation of the resource identified by the Content-Location field-value. However, such an assertion cannot be trusted unless it can be verified by other means (not defined by this specification). The information might still be useful for revision history links.
o Otherwise, the payload is unidentified. For a response message, the following rules are applied in order until a match is found: 1. If the request method is GET or HEAD and the response status code is 200 (OK), 204 (No Content), 206 (Partial Content), or 304 (Not Modified), the payload is a representation of the resource identified by the effective request URI (Section 5.5 of [RFC7230]). 2. If the request method is GET or HEAD and the response status code is 203 (Non-Authoritative Information), the payload is a potentially modified or enhanced representation of the target resource as provided by an intermediary. 3. If the response has a Content-Location header field and its field-value is a reference to the same URI as the effective request URI, the payload is a representation of the resource identified by the effective request URI. 4. If the response has a Content-Location header field and its field-value is a reference to a URI different from the effective request URI, then the sender asserts that the payload is a representation of the resource identified by the Content-Location field-value. However, such an assertion cannot be trusted unless it can be verified by other means (not defined by this specification). 5. Otherwise, the payload is unidentified.3.1.4.2. Content-Location
The "Content-Location" header field references a URI that can be used as an identifier for a specific resource corresponding to the representation in this message's payload. In other words, if one were to perform a GET request on this URI at the time of this message's generation, then a 200 (OK) response would contain the same representation that is enclosed as payload in this message. Content-Location = absolute-URI / partial-URI The Content-Location value is not a replacement for the effective Request URI (Section 5.5 of [RFC7230]). It is representation metadata. It has the same syntax and semantics as the header field of the same name defined for MIME body parts in Section 4 of [RFC2557]. However, its appearance in an HTTP message has some special implications for HTTP recipients.
If Content-Location is included in a 2xx (Successful) response message and its value refers (after conversion to absolute form) to a URI that is the same as the effective request URI, then the recipient MAY consider the payload to be a current representation of that resource at the time indicated by the message origination date. For a GET (Section 4.3.1) or HEAD (Section 4.3.2) request, this is the same as the default semantics when no Content-Location is provided by the server. For a state-changing request like PUT (Section 4.3.4) or POST (Section 4.3.3), it implies that the server's response contains the new representation of that resource, thereby distinguishing it from representations that might only report about the action (e.g., "It worked!"). This allows authoring applications to update their local copies without the need for a subsequent GET request. If Content-Location is included in a 2xx (Successful) response message and its field-value refers to a URI that differs from the effective request URI, then the origin server claims that the URI is an identifier for a different resource corresponding to the enclosed representation. Such a claim can only be trusted if both identifiers share the same resource owner, which cannot be programmatically determined via HTTP. o For a response to a GET or HEAD request, this is an indication that the effective request URI refers to a resource that is subject to content negotiation and the Content-Location field-value is a more specific identifier for the selected representation. o For a 201 (Created) response to a state-changing method, a Content-Location field-value that is identical to the Location field-value indicates that this payload is a current representation of the newly created resource. o Otherwise, such a Content-Location indicates that this payload is a representation reporting on the requested action's status and that the same report is available (for future access with GET) at the given URI. For example, a purchase transaction made via a POST request might include a receipt document as the payload of the 200 (OK) response; the Content-Location field-value provides an identifier for retrieving a copy of that same receipt in the future. A user agent that sends Content-Location in a request message is stating that its value refers to where the user agent originally obtained the content of the enclosed representation (prior to any modifications made by that user agent). In other words, the user agent is providing a back link to the source of the original representation.
An origin server that receives a Content-Location field in a request message MUST treat the information as transitory request context rather than as metadata to be saved verbatim as part of the representation. An origin server MAY use that context to guide in processing the request or to save it for other uses, such as within source links or versioning metadata. However, an origin server MUST NOT use such context information to alter the request semantics. For example, if a client makes a PUT request on a negotiated resource and the origin server accepts that PUT (without redirection), then the new state of that resource is expected to be consistent with the one representation supplied in that PUT; the Content-Location cannot be used as a form of reverse content selection identifier to update only one of the negotiated representations. If the user agent had wanted the latter semantics, it would have applied the PUT directly to the Content-Location URI.3.2. Representation Data
The representation data associated with an HTTP message is either provided as the payload body of the message or referred to by the message semantics and the effective request URI. The representation data is in a format and encoding defined by the representation metadata header fields. The data type of the representation data is determined via the header fields Content-Type and Content-Encoding. These define a two-layer, ordered encoding model: representation-data := Content-Encoding( Content-Type( bits ) )3.3. Payload Semantics
Some HTTP messages transfer a complete or partial representation as the message "payload". In some cases, a payload might contain only the associated representation's header fields (e.g., responses to HEAD) or only some part(s) of the representation data (e.g., the 206 (Partial Content) status code). The purpose of a payload in a request is defined by the method semantics. For example, a representation in the payload of a PUT request (Section 4.3.4) represents the desired state of the target resource if the request is successfully applied, whereas a representation in the payload of a POST request (Section 4.3.3) represents information to be processed by the target resource.
In a response, the payload's purpose is defined by both the request method and the response status code. For example, the payload of a 200 (OK) response to GET (Section 4.3.1) represents the current state of the target resource, as observed at the time of the message origination date (Section 7.1.1.2), whereas the payload of the same status code in a response to POST might represent either the processing result or the new state of the target resource after applying the processing. Response messages with an error status code usually contain a payload that represents the error condition, such that it describes the error state and what next steps are suggested for resolving it. Header fields that specifically describe the payload, rather than the associated representation, are referred to as "payload header fields". Payload header fields are defined in other parts of this specification, due to their impact on message parsing. +-------------------+----------------------------+ | Header Field Name | Defined in... | +-------------------+----------------------------+ | Content-Length | Section 3.3.2 of [RFC7230] | | Content-Range | Section 4.2 of [RFC7233] | | Trailer | Section 4.4 of [RFC7230] | | Transfer-Encoding | Section 3.3.1 of [RFC7230] | +-------------------+----------------------------+3.4. Content Negotiation
When responses convey payload information, whether indicating a success or an error, the origin server often has different ways of representing that information; for example, in different formats, languages, or encodings. Likewise, different users or user agents might have differing capabilities, characteristics, or preferences that could influence which representation, among those available, would be best to deliver. For this reason, HTTP provides mechanisms for content negotiation. This specification defines two patterns of content negotiation that can be made visible within the protocol: "proactive", where the server selects the representation based upon the user agent's stated preferences, and "reactive" negotiation, where the server provides a list of representations for the user agent to choose from. Other patterns of content negotiation include "conditional content", where the representation consists of multiple parts that are selectively rendered based on user agent parameters, "active content", where the representation contains a script that makes additional (more specific) requests based on the user agent characteristics, and "Transparent Content Negotiation" ([RFC2295]), where content
selection is performed by an intermediary. These patterns are not mutually exclusive, and each has trade-offs in applicability and practicality. Note that, in all cases, HTTP is not aware of the resource semantics. The consistency with which an origin server responds to requests, over time and over the varying dimensions of content negotiation, and thus the "sameness" of a resource's observed representations over time, is determined entirely by whatever entity or algorithm selects or generates those responses. HTTP pays no attention to the man behind the curtain.3.4.1. Proactive Negotiation
When content negotiation preferences are sent by the user agent in a request to encourage an algorithm located at the server to select the preferred representation, it is called proactive negotiation (a.k.a., server-driven negotiation). Selection is based on the available representations for a response (the dimensions over which it might vary, such as language, content-coding, etc.) compared to various information supplied in the request, including both the explicit negotiation fields of Section 5.3 and implicit characteristics, such as the client's network address or parts of the User-Agent field. Proactive negotiation is advantageous when the algorithm for selecting from among the available representations is difficult to describe to a user agent, or when the server desires to send its "best guess" to the user agent along with the first response (hoping to avoid the round trip delay of a subsequent request if the "best guess" is good enough for the user). In order to improve the server's guess, a user agent MAY send request header fields that describe its preferences. Proactive negotiation has serious disadvantages: o It is impossible for the server to accurately determine what might be "best" for any given user, since that would require complete knowledge of both the capabilities of the user agent and the intended use for the response (e.g., does the user want to view it on screen or print it on paper?); o Having the user agent describe its capabilities in every request can be both very inefficient (given that only a small percentage of responses have multiple representations) and a potential risk to the user's privacy; o It complicates the implementation of an origin server and the algorithms for generating responses to a request; and,
o It limits the reusability of responses for shared caching. A user agent cannot rely on proactive negotiation preferences being consistently honored, since the origin server might not implement proactive negotiation for the requested resource or might decide that sending a response that doesn't conform to the user agent's preferences is better than sending a 406 (Not Acceptable) response. A Vary header field (Section 7.1.4) is often sent in a response subject to proactive negotiation to indicate what parts of the request information were used in the selection algorithm.3.4.2. Reactive Negotiation
With reactive negotiation (a.k.a., agent-driven negotiation), selection of the best response representation (regardless of the status code) is performed by the user agent after receiving an initial response from the origin server that contains a list of resources for alternative representations. If the user agent is not satisfied by the initial response representation, it can perform a GET request on one or more of the alternative resources, selected based on metadata included in the list, to obtain a different form of representation for that response. Selection of alternatives might be performed automatically by the user agent or manually by the user selecting from a generated (possibly hypertext) menu. Note that the above refers to representations of the response, in general, not representations of the resource. The alternative representations are only considered representations of the target resource if the response in which those alternatives are provided has the semantics of being a representation of the target resource (e.g., a 200 (OK) response to a GET request) or has the semantics of providing links to alternative representations for the target resource (e.g., a 300 (Multiple Choices) response to a GET request). A server might choose not to send an initial representation, other than the list of alternatives, and thereby indicate that reactive negotiation by the user agent is preferred. For example, the alternatives listed in responses with the 300 (Multiple Choices) and 406 (Not Acceptable) status codes include information about the available representations so that the user or user agent can react by making a selection. Reactive negotiation is advantageous when the response would vary over commonly used dimensions (such as type, language, or encoding), when the origin server is unable to determine a user agent's capabilities from examining the request, and generally when public caches are used to distribute server load and reduce network usage.
Reactive negotiation suffers from the disadvantages of transmitting a list of alternatives to the user agent, which degrades user-perceived latency if transmitted in the header section, and needing a second request to obtain an alternate representation. Furthermore, this specification does not define a mechanism for supporting automatic selection, though it does not prevent such a mechanism from being developed as an extension.