3. Message Formats
Loss Measurement and Delay Measurement messages flow over the MPLS Generic Associated Channel (G-ACh) [RFC5586]. Thus, a packet containing an LM or DM message contains an MPLS label stack, with the G-ACh Label (GAL) at the bottom of the stack. The GAL is followed by an Associated Channel Header (ACH), which identifies the message type, and the message body follows the ACH. This document defines the following ACH Channel Types: MPLS Direct Loss Measurement (DLM) MPLS Inferred Loss Measurement (ILM) MPLS Delay Measurement (DM) MPLS Direct Loss and Delay Measurement (DLM+DM) MPLS Inferred Loss and Delay Measurement (ILM+DM) The message formats for direct and inferred LM are identical. The formats of the DLM+DM and ILM+DM messages are also identical. For these channel types, the ACH SHALL NOT be followed by the ACH TLV Header defined in [RFC5586]. The fixed-format portion of a message MAY be followed by a block of Type-Length-Value (TLV) fields. The TLV block provides an extensible way of attaching subsidiary information to LM and DM messages. Several such TLV fields are defined below. All integer values for fields defined in this document SHALL be encoded in network byte order.3.1. Loss Measurement Message Format
The format of a Loss Measurement message, which follows the Associated Channel Header (ACH), is as follows:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| Flags | Control Code | Message Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DFlags| OTF | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Session Identifier | DS | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Origin Timestamp | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Counter 1 | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ . . . . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Counter 4 | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ TLV Block ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Loss Measurement Message Format Reserved fields MUST be set to 0 and ignored upon receipt. The possible values for the remaining fields are as follows.
Field Meaning --------------------- ----------------------------------------------- Version Protocol version Flags Message control flags Control Code Code identifying the query or response type Message Length Total length of this message in bytes Data Format Flags Flags specifying the format of message data (DFlags) Origin Timestamp Format of the Origin Timestamp field Format (OTF) Reserved Reserved for future specification Session Identifier Set arbitrarily by the querier Differentiated Differentiated Services Code Point (DSCP) being Services (DS) Field measured Origin Timestamp 64-bit field for query message transmission timestamp Counter 1-4 64-bit fields for LM counter values TLV Block Optional block of Type-Length-Value fields The possible values for these fields are as follows. Version: Currently set to 0. Flags: The format of the Flags field is shown below. +-+-+-+-+ |R|T|0|0| +-+-+-+-+ Loss Measurement Message Flags The meanings of the flag bits are: R: Query/Response indicator. Set to 0 for a Query and 1 for a Response. T: Traffic-class-specific measurement indicator. Set to 1 when the measurement operation is scoped to packets of a particular traffic class (DSCP value), and 0 otherwise. When set to 1, the DS field of the message indicates the measured traffic class. 0: Set to 0. Control Code: Set as follows according to whether the message is a Query or a Response as identified by the R flag.
For a Query: 0x0: In-band Response Requested. Indicates that this query has been sent over a bidirectional channel and the response is expected over the same channel. 0x1: Out-of-band Response Requested. Indicates that the response should be sent via an out-of-band channel. 0x2: No Response Requested. Indicates that no response to the query should be sent. This mode can be used, for example, if all nodes involved are being controlled by a Network Management System. For a Response: Codes 0x0-0xF are reserved for non-error responses. Error response codes imply that the response does not contain valid measurement data. 0x1: Success. Indicates that the operation was successful. 0x2: Notification - Data Format Invalid. Indicates that the query was processed, but the format of the data fields in this response may be inconsistent. Consequently, these data fields MUST NOT be used for measurement. 0x3: Notification - Initialization in Progress. Indicates that the query was processed but this response does not contain valid measurement data because the responder's initialization process has not completed. 0x4: Notification - Data Reset Occurred. Indicates that the query was processed, but a reset has recently occurred that may render the data in this response inconsistent relative to earlier responses. 0x5: Notification - Resource Temporarily Unavailable. Indicates that the query was processed, but resources were unavailable to complete the requested measurement and that, consequently, this response does not contain valid measurement data. 0x10: Error - Unspecified Error. Indicates that the operation failed for an unspecified reason.
0x11: Error - Unsupported Version. Indicates that the operation failed because the protocol version supplied in the query message is not supported. 0x12: Error - Unsupported Control Code. Indicates that the operation failed because the Control Code requested an operation that is not available for this channel. 0x13: Error - Unsupported Data Format. Indicates that the operation failed because the data format specified in the query is not supported. 0x14: Error - Authentication Failure. Indicates that the operation failed because the authentication data supplied in the query was missing or incorrect. 0x15: Error - Invalid Destination Node Identifier. Indicates that the operation failed because the Destination Node Identifier supplied in the query is not an identifier of this node. 0x16: Error - Connection Mismatch. Indicates that the operation failed because the channel identifier supplied in the query did not match the channel over which the query was received. 0x17: Error - Unsupported Mandatory TLV Object. Indicates that the operation failed because a TLV Object received in the query and marked as mandatory is not supported. 0x18: Error - Unsupported Query Interval. Indicates that the operation failed because the query message rate exceeded the configured threshold. 0x19: Error - Administrative Block. Indicates that the operation failed because it has been administratively disallowed. 0x1A: Error - Resource Unavailable. Indicates that the operation failed because node resources were not available. 0x1B: Error - Resource Released. Indicates that the operation failed because node resources for this measurement session were administratively released. 0x1C: Error - Invalid Message. Indicates that the operation failed because the received query message was malformed.
0x1D: Error - Protocol Error. Indicates that the operation failed because a protocol error was found in the received query message. Message Length: Set to the total length of this message in bytes, including the Version, Flags, Control Code, and Message Length fields as well as the TLV Block, if any. DFlags: The format of the DFlags field is shown below. +-+-+-+-+ |X|B|0|0| +-+-+-+-+ Data Format Flags The meanings of the DFlags bits are: X: Extended counter format indicator. Indicates the use of extended (64-bit) counter values. Initialized to 1 upon creation (and prior to transmission) of an LM Query and copied from an LM Query to an LM response. Set to 0 when the LM message is transmitted or received over an interface that writes 32-bit counter values. B: Octet (byte) count. When set to 1, indicates that the Counter 1-4 fields represent octet counts. The octet count applies to all packets within the LM scope (Section 2.9.9), and the octet count of a packet sent or received over a channel includes the total length of that packet (but excludes headers, labels, or framing of the channel itself). When set to 0, indicates that the Counter 1-4 fields represent packet counts. 0: Set to 0. Origin Timestamp Format: The format of the Origin Timestamp field, as specified in Section 3.4. Session Identifier: Set arbitrarily in a query and copied in the response, if any. This field uniquely identifies a measurement operation (also called a session) that consists of a sequence of messages. All messages in the sequence have the same Session Identifier. DS: When the T flag is set to 1, this field is set to the DSCP value [RFC3260] that corresponds to the traffic class being measured. For MPLS, where the traffic class of a channel is identified by the three-bit Traffic Class in the channel's LSE [RFC5462], this field
SHOULD be set to the Class Selector Codepoint [RFC2474] that corresponds to that Traffic Class. When the T flag is set to 0, the value of this field is arbitrary, and the field can be considered part of the Session Identifier. Origin Timestamp: Timestamp recording the transmit time of the query message. Counter 1-4: Referring to Section 2.2, when a query is sent from A, Counter 1 is set to A_TxP and the other counter fields are set to 0. When the query is received at B, Counter 2 is set to B_RxP. At this point, B copies Counter 1 to Counter 3 and Counter 2 to Counter 4, and re-initializes Counter 1 and Counter 2 to 0. When B transmits the response, Counter 1 is set to B_TxP. When the response is received at A, Counter 2 is set to A_RxP. The mapping of counter types such as A_TxP to the Counter 1-4 fields is designed to ensure that transmit counter values are always written at the same fixed offset in the packet, and likewise for receive counters. This property may be important for hardware processing. When a 32-bit counter value is written to one of the counter fields, that value SHALL be written to the low-order 32 bits of the field; the high-order 32 bits of the field MUST, in this case, be set to 0. TLV Block: Zero or more TLV fields.3.2. Delay Measurement Message Format
The format of a Delay Measurement message, which follows the Associated Channel Header (ACH), is as follows:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| Flags | Control Code | Message Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | QTF | RTF | RPTF | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Session Identifier | DS | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Timestamp 1 | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ . . . . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Timestamp 4 | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ TLV Block ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Delay Measurement Message Format The meanings of the fields are summarized in the following table. Field Meaning --------------------- ----------------------------------------------- Version Protocol version Flags Message control flags Control Code Code identifying the query or response type Message Length Total length of this message in bytes QTF Querier timestamp format RTF Responder timestamp format RPTF Responder's preferred timestamp format Reserved Reserved for future specification Session Identifier Set arbitrarily by the querier Differentiated Differentiated Services Code Point (DSCP) being Services (DS) Field measured Timestamp 1-4 64-bit timestamp values TLV Block Optional block of Type-Length-Value fields Reserved fields MUST be set to 0 and ignored upon receipt. The possible values for the remaining fields are as follows. Version: Currently set to 0.
Flags: As specified in Section 3.1. The T flag in a DM message is set to 1. Control Code: As specified in Section 3.1. Message Length: Set to the total length of this message in bytes, including the Version, Flags, Control Code, and Message Length fields as well as the TLV Block, if any. Querier Timestamp Format: The format of the timestamp values written by the querier, as specified in Section 3.4. Responder Timestamp Format: The format of the timestamp values written by the responder, as specified in Section 3.4. Responder's Preferred Timestamp Format: The timestamp format preferred by the responder, as specified in Section 3.4. Session Identifier: As specified in Section 3.1. DS: As specified in Section 3.1. Timestamp 1-4: Referring to Section 2.4, when a query is sent from A, Timestamp 1 is set to T1 and the other timestamp fields are set to 0. When the query is received at B, Timestamp 2 is set to T2. At this point, B copies Timestamp 1 to Timestamp 3 and Timestamp 2 to Timestamp 4, and re-initializes Timestamp 1 and Timestamp 2 to 0. When B transmits the response, Timestamp 1 is set to T3. When the response is received at A, Timestamp 2 is set to T4. The actual formats of the timestamp fields written by A and B are indicated by the Querier Timestamp Format and Responder Timestamp Format fields respectively. The mapping of timestamps to the Timestamp 1-4 fields is designed to ensure that transmit timestamps are always written at the same fixed offset in the packet, and likewise for receive timestamps. This property is important for hardware processing. TLV Block: Zero or more TLV fields.3.3. Combined Loss/Delay Measurement Message Format
The format of a combined Loss and Delay Measurement message, which follows the Associated Channel Header (ACH), is as follows:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| Flags | Control Code | Message Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DFlags| QTF | RTF | RPTF | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Session Identifier | DS | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Timestamp 1 | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ . . . . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Timestamp 4 | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Counter 1 | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ . . . . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Counter 4 | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ TLV Block ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Loss/Delay Measurement Message Format The fields of this message have the same meanings as the corresponding fields in the LM and DM message formats, except that the roles of the OTF and Origin Timestamp fields for LM are here played by the QTF and Timestamp 1 fields, respectively.3.4. Timestamp Field Formats
The following timestamp format field values are specified in this document: 0: Null timestamp format. This value is a placeholder indicating that the timestamp field does not contain a meaningful timestamp.
1: Sequence number. This value indicates that the timestamp field is to be viewed as a simple 64-bit sequence number. This provides a simple solution for applications that do not require a real absolute timestamp, but only an indication of message ordering; an example is LM exception detection. 2: Network Time Protocol version 4 64-bit timestamp format [RFC5905]. This format consists of a 32-bit seconds field followed by a 32-bit fractional seconds field, so that it can be regarded as a fixed-point 64-bit quantity. 3: Low-order 64 bits of the IEEE 1588-2008 (1588v2) Precision Time Protocol timestamp format [IEEE1588]. This truncated format consists of a 32-bit seconds field followed by a 32-bit nanoseconds field, and is the same as the IEEE 1588v1 timestamp format. Timestamp formats of n < 64 bits in size SHALL be encoded in the 64-bit timestamp fields specified in this document using the n high- order bits of the field. The remaining 64 - n low-order bits in the field SHOULD be set to 0 and MUST be ignored when reading the field. To ensure that it is possible to find an interoperable mode between implementations, it is necessary to select one timestamp format as the default. The timestamp format chosen as the default is the truncated IEEE 1588 PTP format (format code 3 in the list above); this format MUST be supported. The rationale for this choice is discussed in Appendix A. Implementations SHOULD also be capable of reading timestamps written in NTPv4 64-bit format and reconciling them internally with PTP timestamps for measurement purposes. Support for other timestamp formats is OPTIONAL. The implementation MUST make clear which timestamp formats it supports and the extent of its support for computation with and reconciliation of different formats for measurement purposes.3.5. TLV Objects
The TLV Block in LM and DM messages consists of zero or more objects with the following format: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | Value ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ TLV Format
The Type and Length fields are each 8 bits long, and the Length field indicates the size in bytes of the Value field, which can therefore be up to 255 bytes long. The Type space is divided into Mandatory and Optional subspaces: Type Range Semantics -------------- --------- 0-127 Mandatory 128-255 Optional Upon receipt of a query message including an unrecognized mandatory TLV object, the recipient MUST respond with an Unsupported Mandatory TLV Object error code. The types defined are as follows: Type Definition -------------- --------------------------------- Mandatory 0 Padding - copy in response 1 Return Address 2 Session Query Interval 3 Loopback Request 4-126 Unallocated 127 Experimental use Optional 128 Padding - do not copy in response 129 Destination Address 130 Source Address 131-254 Unallocated 255 Experimental use3.5.1. Padding
The two padding objects permit the augmentation of packet size; this is mainly useful for delay measurement. The type of padding indicates whether the padding supplied by the querier is to be copied to, or omitted from, the response. Asymmetrical padding may be useful when responses are delivered out-of-band or when different maximum transmission unit sizes apply to the two components of a bidirectional channel. More than one padding object MAY be present, in which case they MUST be contiguous. The Value field of a padding object is arbitrary.
3.5.2. Addressing
The addressing objects have the following format: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | Address Family | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Address ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Addressing Object Format The Address Family field indicates the type of the address, and it SHALL be set to one of the assigned values in the "IANA Address Family Numbers" registry. The Source and Destination Address objects indicate the addresses of the sender and the intended recipient of the message, respectively. The Source Address of a query message SHOULD be used as the destination for an out-of-band response unless some other out-of-band response mechanism has been configured, and unless a Return Address object is present, in which case the Return Address specifies the target of the response. The Return Address object MUST NOT appear in a response.3.5.3. Loopback Request
The Loopback Request object, when included in a query, indicates a request that the query message be returned to the sender unmodified. This object has a Length of 0. Upon receiving the reflected query message back from the responder, the querier MUST NOT retransmit the message. Information that uniquely identifies the original query source, such as a Source Address object, can be included to enable the querier to differentiate one of its own loopback queries from a loopback query initiated by the far end. This object may be useful, for example, when the querier is interested only in the round-trip delay metric. In this case, no support for delay measurement is required at the responder at all, other than the ability to recognize a DM query that includes this object and return it unmodified.
3.5.4. Session Query Interval
The Value field of the Session Query Interval object is a 32-bit unsigned integer that specifies a time interval in milliseconds. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | Session Query > +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ < Interval (ms) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Session Query Interval Object Format This time interval indicates the interval between successive query messages in a specific measurement session. The purpose of the Session Query Interval (SQI) object is to enable the querier and responder of a measurement session to agree on a query rate. The procedures for handling this object SHALL be as follows: 1. The querier notifies the responder that it wishes to be informed of the responder's minimum query interval for this session by including the SQI object in its query messages, with a Value of 0. 2. When the responder receives a query that includes an SQI object with a Value of 0, the responder includes an SQI object in the response with the Value set to the minimum query interval it supports for this session. 3. When the querier receives a response that includes an SQI object, it selects a query interval for the session that is greater than or equal to the Value specified in the SQI object and adjusts its query transmission rate accordingly, including in each subsequent query an SQI object with a Value equal to the selected query interval. Once a response to one of these subsequent queries has been received, the querier infers that the responder has been apprised of the selected query interval and MAY then stop including the SQI object in queries associated with this session. Similar procedures allow the query rate to be changed during the course of the session by either the querier or the responder. For example, to inform the querier of a change in the minimum supported query interval, the responder begins including a corresponding SQI object in its responses, and the querier adjusts its query rate if necessary and includes a corresponding SQI object in its queries until a response is received.
Shorter query intervals (i.e., higher query rates) provide finer measurement granularity at the expense of additional load on measurement endpoints and the network; see Section 6 for further discussion.4. Operation
4.1. Operational Overview
A loss or delay measurement operation, also called a session, is controlled by the querier and consists of a sequence of query messages associated with a particular channel and a common set of measurement parameters. If the session parameters include a response request, then the receiving node or nodes will (under normal conditions) generate a response message for each query message received, and these responses are also considered part of the session. All query and response messages in a session carry a common session identifier. Measurement sessions are initiated at the discretion of the network operator and are terminated either at the operator's request or as the result of an error condition. A session may be as brief as a single message exchange, for example when a DM query is used by the operator to "ping" a remote node, or it may extend throughout the lifetime of the channel. When a session is initiated for which responses are requested, the querier SHOULD initialize a timer, called the SessionResponseTimeout, that indicates how long the querier will wait for a response before abandoning the session and notifying the user that a timeout has occurred. This timer persists for the lifetime of the session and is reset each time a response message for the session is received. When a query message is received that requests a response, a variety of exceptional conditions may arise that prevent the responder from generating a response that contains valid measurement data. Such conditions fall broadly into two classes: transient exceptions from which recovery is possible and fatal exceptions that require termination of the session. When an exception arises, the responder SHOULD generate a response with an appropriate Notification or Error control code according to whether the exception is, respectively, transient or fatal. When the querier receives an Error response, the session MUST be terminated and the user informed. A common example of a transient exception occurs when a new session is initiated and the responder requires a period of time to become ready before it can begin providing useful responses. The response control code corresponding to this situation is Notification -
Initialization in Progress. Typical examples of fatal exceptions are cases where the querier has requested a type of measurement that the responder does not support or where a query message is malformed. When initiating a session, the querier SHOULD employ the Session Query Interval mechanism (Section 3.5.4) to establish a mutually agreeable query rate with the responder. Responders SHOULD employ rate-limiting mechanisms to guard against the possibility of receiving an excessive quantity of query messages.4.2. Loss Measurement Procedures
4.2.1. Initiating a Loss Measurement Operation
An LM operation for a particular channel consists of sending a sequence (LM[1], LM[2], ...) of LM query messages over the channel at a specific rate and processing the responses received, if any. As described in Section 2.2, the packet loss associated with the channel during the operation is computed as a delta between successive messages; these deltas can be accumulated to obtain a running total of the packet loss for the channel or be used to derive related metrics such as the average loss rate. The query message transmission rate MUST be sufficiently high, given the LM message counter size (which can be either 32 or 64 bits) and the speed and minimum packet size of the underlying channel, that the ambiguity condition noted in Section 2.2 cannot arise. In evaluating this rate, the implementation SHOULD assume that the counter size is 32 bits unless explicitly configured otherwise or unless (in the case of a bidirectional channel) all local and remote interfaces involved in the LM operation are known to be 64-bit-capable, which can be inferred from the value of the X flag in an LM response.4.2.2. Transmitting a Loss Measurement Query
When transmitting an LM Query, the Version field MUST be set to 0. The R flag MUST be set to 0. The T flag SHALL be set to 1 if, and only if, the measurement is specific to a particular traffic class, in which case the DS field SHALL identify that traffic class. The X flag MUST be set to 1 if the transmitting interface writes 64-bit LM counters and otherwise MUST be set to 0 to indicate that 32-bit counters are written. The B flag SHALL be set to 1 to indicate that the counter fields contain octet counts or to 0 to indicate packet counts.
The Control Code field MUST be set to one of the values for Query messages listed in Section 3.1; if the channel is unidirectional, this field MUST NOT be set to 0x0 (Query: In-band Response Requested). The Session Identifier field can be set arbitrarily. The Origin Timestamp field SHALL be set to the time at which this message is transmitted, and the Origin Timestamp Format field MUST be set to indicate its format, according to Section 3.4. The Counter 1 field SHOULD be set to the total count of units (packets or octets, according to the B flag) transmitted over the channel prior to this LM Query, or to 0 if this is the beginning of a measurement session for which counter data is not yet available. The Counter 2 field MUST be set to 0. If a response was previously received in this measurement session, the Counter 1 and Counter 2 fields of the most recent such response MAY be copied to the Counter 3 and Counter 4 fields, respectively, of this query; otherwise, the Counter 3 and Counter 4 fields MUST be set to 0.4.2.3. Receiving a Loss Measurement Query
Upon receipt of an LM Query message, the Counter 2 field SHOULD be set to the total count of units (packets or octets, according to the B flag) received over the channel prior to this LM Query. If the receiving interface writes 32-bit LM counters, the X flag MUST be set to 0. At this point, the LM Query message must be inspected. If the Control Code field is set to 0x2 (No Response Requested), an LM Response message MUST NOT be transmitted. If the Control Code field is set to 0x0 (In-band Response Requested) or 0x1 (Out-of-band Response Requested), then an in-band or out-of-band response, respectively, SHOULD be transmitted unless this has been prevented by an administrative, security, or congestion control mechanism. In the case of a fatal exception that prevents the requested measurement from being made, the error SHOULD be reported, via either a response, if one was requested, or else as a notification to the user.4.2.4. Transmitting a Loss Measurement Response
When constructing a Response to an LM Query, the Version field MUST be set to 0. The R flag MUST be set to 1. The value of the T flag MUST be copied from the LM Query.
The X flag MUST be set to 0 if the transmitting interface writes 32-bit LM counters; otherwise, its value MUST be copied from the LM Query. The B flag MUST be copied from the LM Query. The Session Identifier, Origin Timestamp, and Origin Timestamp Format fields MUST be copied from the LM Query. The Counter 1 and Counter 2 fields from the LM Query MUST be copied to the Counter 3 and Counter 4 fields, respectively, of the LM Response. The Control Code field MUST be set to one of the values for Response messages listed in Section 3.1. The value 0x10 (Unspecified Error) SHOULD NOT be used if one of the other more specific error codes is applicable. If the response is transmitted in-band, the Counter 1 field SHOULD be set to the total count of units transmitted over the channel prior to this LM Response. If the response is transmitted out-of-band, the Counter 1 field MUST be set to 0. In either case, the Counter 2 field MUST be set to 0.4.2.5. Receiving a Loss Measurement Response
Upon in-band receipt of an LM Response message, the Counter 2 field is set to the total count of units received over the channel prior to this LM Response. If the receiving interface writes 32-bit LM counters, the X flag is set to 0. (Since the life of the LM message in the network has ended at this point, it is up to the receiver whether these final modifications are made to the packet. If the message is to be forwarded on for external post-processing (Section 2.9.7), then these modifications MUST be made.) Upon out-of-band receipt of an LM Response message, the Counter 1 and Counter 2 fields MUST NOT be used for purposes of loss measurement. If the Control Code in an LM Response is anything other than 0x1 (Success), the counter values in the response MUST NOT be used for purposes of loss measurement. If the Control Code indicates an error condition, or if the response message is invalid, the LM operation MUST be terminated and an appropriate notification to the user generated.4.2.6. Loss Calculation
Calculation of packet loss is carried out according to the procedures in Section 2.2. The X flag in an LM message informs the device performing the calculation whether to perform 32-bit or 64-bit arithmetic. If the flag value is equal to 1, all interfaces involved in the LM operation have written 64-bit counter values, and 64-bit
arithmetic can be used. If the flag value is equal to 0, at least one interface involved in the operation has written a 32-bit counter value, and 32-bit arithmetic is carried out using the low-order 32 bits of each counter value. Note that the semantics of the X flag allow all devices to interoperate regardless of their counter size support. Thus, an implementation MUST NOT generate an error response based on the value of this flag.4.2.7. Quality of Service
The TC field of the LSE corresponding to the channel (e.g., LSP) being measured SHOULD be set to a traffic class equal to or better than the best TC within the measurement scope to minimize the chance of out-of-order conditions.4.2.8. G-ACh Packets
By default, direct LM MUST exclude packets transmitted and received over the Generic Associated Channel (G-ACh). An implementation MAY provide the means to alter the direct LM scope to include some or all G-ACh messages. Care must be taken when altering the LM scope to ensure that both endpoints are in agreement.4.2.9. Test Messages
In the case of inferred LM, the packets counted for LM consist of test messages generated for this purpose, or of some other class of packets deemed to provide a good proxy for data packets flowing over the channel. The specification of test protocols and proxy packets is outside the scope of this document, but some guidelines are discussed below. An identifier common to both the test or proxy messages and the LM messages may be required to make correlation possible. The combined value of the Session Identifier and DS fields SHOULD be used for this purpose when possible. That is, test messages in this case will include a 32-bit field that can carry the value of the combined Session Identifier + DS field present in LM messages. When TC- specific LM is conducted, the DS field of the LSE in the label stack of a test message corresponding to the channel (e.g., LSP) over which the message is sent MUST correspond to the DS value in the associated LM messages. A separate test message protocol SHOULD include a timeout value in its messages that informs the responder when to discard any state associated with a specific test.
4.2.10. Message Loss and Packet Misorder Conditions
Because an LM operation consists of a message sequence with state maintained from one message to the next, LM is subject to the effects of lost messages and misordered packets in a way that DM is not. Because this state exists only on the querier, the handling of these conditions is, strictly speaking, a local matter. This section, however, presents recommended procedures for handling such conditions. Note that in the absence of ECMP, packet misordering within a traffic class is a relatively rare event. The first kind of anomaly that may occur is that one or more LM messages may be lost in transit. The effect of such loss is that when an LM Response is next received at the querier, an unambiguous interpretation of the counter values it contains may be impossible, for the reasons described at the end of Section 2.2. Whether this is so depends on the number of messages lost and the other variables mentioned in that section, such as the LM message rate and the channel parameters. Another possibility is that LM messages are misordered in transit, so that, for instance, the response to LM[n] is received prior to the response to LM[n-1]. A typical implementation will discard the late response to LM[n-1], so that the effect is the same as the case of a lost message. Finally, LM is subject to the possibility that data packets are misordered relative to LM messages. This condition can result, for example, in a transmit count of 100 and a corresponding receive count of 101. The effect here is that the A_TxLoss[n-1,n] value (for example) for a given measurement interval will appear to be extremely (if not impossibly) large. The other case, where an LM message arrives earlier than some of the packets, simply results in those packets being counted as lost. An implementation SHOULD identify a threshold value that indicates the upper bound of lost packets measured in a single computation beyond which the interval is considered unmeasurable. This is called the "MaxLMIntervalLoss threshold". It is clear that this threshold should be no higher than the maximum number of packets (or bytes) the channel is capable of transmitting over the interval, but it may be lower. Upon encountering an unmeasurable interval, the LM state (i.e., data values from the last LM message received) SHOULD be discarded. With regard to lost LM messages, the MaxLMInterval (see Section 2.2) indicates the maximum amount of time that can elapse before the LM state is discarded. If some messages are lost, but a message is
subsequently received within MaxLMInterval, its timestamp or sequence number will quantify the loss, and it MAY still be used for measurement, although the measurement interval will in this case be longer than usual. If an LM message is received that has a timestamp less than or equal to the timestamp of the last LM message received, this indicates that an exception has occurred, and the current interval SHOULD be considered unmeasurable unless the implementation has some other way of handling this condition.4.3. Delay Measurement Procedures
4.3.1. Transmitting a Delay Measurement Query
When transmitting a DM Query, the Version and Reserved fields MUST be set to 0. The R flag MUST be set to 0, the T flag MUST be set to 1, and the remaining flag bits MUST be set to 0. The Control Code field MUST be set to one of the values for Query messages listed in Section 3.1; if the channel is unidirectional, this field MUST NOT be set to 0x0 (Query: In-band Response Requested). The Querier Timestamp Format field MUST be set to the timestamp format used by the querier when writing timestamp fields in this message; the possible values for this field are listed in Section 3.4. The Responder Timestamp Format and Responder's Preferred Timestamp Format fields MUST be set to 0. The Session Identifier field can be set arbitrarily. The DS field MUST be set to the traffic class being measured. The Timestamp 1 field SHOULD be set to the time at which this DM Query is transmitted, in the format indicated by the Querier Timestamp Format field. The Timestamp 2 field MUST be set to 0. If a response was previously received in this measurement session, the Timestamp 1 and Timestamp 2 fields of the most recent such response MAY be copied to the Timestamp 3 and Timestamp 4 fields, respectively, of this query; otherwise, the Timestamp 3 and Timestamp 4 fields MUST be set to 0.4.3.2. Receiving a Delay Measurement Query
Upon receipt of a DM Query message, the Timestamp 2 field SHOULD be set to the time at which this DM Query was received.
At this point, the DM Query message must be inspected. If the Control Code field is set to 0x2 (No Response Requested), a DM Response message MUST NOT be transmitted. If the Control Code field is set to 0x0 (In-band Response Requested) or 0x1 (Out-of-band Response Requested), then an in-band or out-of-band response, respectively, SHOULD be transmitted unless this has been prevented by an administrative, security, or congestion control mechanism. In the case of a fatal exception that prevents the requested measurement from being made, the error SHOULD be reported, via either a response, if one was requested, or else as a notification to the user.4.3.3. Transmitting a Delay Measurement Response
When constructing a Response to a DM Query, the Version and Reserved fields MUST be set to 0. The R flag MUST be set to 1, the T flag MUST be set to 1, and the remaining flag bits MUST be set to 0. The Session Identifier and Querier Timestamp Format (QTF) fields MUST be copied from the DM Query. The Timestamp 1 and Timestamp 2 fields from the DM Query MUST be copied to the Timestamp 3 and Timestamp 4 fields, respectively, of the DM Response. The Responder Timestamp Format (RTF) field MUST be set to the timestamp format used by the responder when writing timestamp fields in this message, i.e., Timestamp 4 and (if applicable) Timestamp 1; the possible values for this field are listed in Section 3.4. Furthermore, the RTF field MUST be set equal to either the QTF or the RPTF field. See Section 4.3.5 for guidelines on the selection of the value for this field. The Responder's Preferred Timestamp Format (RPTF) field MUST be set to one of the values listed in Section 3.4 and SHOULD be set to indicate the timestamp format with which the responder can provide the best accuracy for purposes of delay measurement. The Control Code field MUST be set to one of the values for Response messages listed in Section 3.1. The value 0x10 (Unspecified Error) SHOULD NOT be used if one of the other more specific error codes is applicable. If the response is transmitted in-band, the Timestamp 1 field SHOULD be set to the time at which this DM Response is transmitted. If the response is transmitted out-of-band, the Timestamp 1 field MUST be set to 0. In either case, the Timestamp 2 field MUST be set to 0.
If the response is transmitted in-band and the Control Code in the message is 0x1 (Success), then the Timestamp 1 and Timestamp 4 fields MUST have the same format, which will be the format indicated in the Responder Timestamp Format field.4.3.4. Receiving a Delay Measurement Response
Upon in-band receipt of a DM Response message, the Timestamp 2 field is set to the time at which this DM Response was received. (Since the life of the DM message in the network has ended at this point, it is up to the receiver whether this final modification is made to the packet. If the message is to be forwarded on for external post- processing (Section 2.9.7), then these modifications MUST be made.) Upon out-of-band receipt of a DM Response message, the Timestamp 1 and Timestamp 2 fields MUST NOT be used for purposes of delay measurement. If the Control Code in a DM Response is anything other than 0x1 (Success), the timestamp values in the response MUST NOT be used for purposes of delay measurement. If the Control Code indicates an error condition, or if the response message is invalid, the DM operation MUST be terminated and an appropriate notification to the user generated.4.3.5. Timestamp Format Negotiation
In case either the querier or the responder in a DM transaction is capable of supporting multiple timestamp formats, it is desirable to determine the optimal format for purposes of delay measurement on a particular channel. The procedures for making this determination SHALL be as follows. Upon sending an initial DM Query over a channel, the querier sets the Querier Timestamp Format (QTF) field to its preferred timestamp format. Upon receiving any DM Query message, the responder determines whether it is capable of writing timestamps in the format specified by the QTF field. If so, the Responder Timestamp Format (RTF) field is set equal to the QTF field. If not, the RTF field is set equal to the Responder's Preferred Timestamp Format (RPTF) field. The process of changing from one timestamp format to another at the responder may result in the Timestamp 1 and Timestamp 4 fields in an in-band DM Response having different formats. If this is the case,
the Control Code in the response MUST NOT be set to 0x1 (Success). Unless an error condition has occurred, the Control Code MUST be set to 0x2 (Notification - Data Format Invalid). Upon receiving a DM Response, the querier knows from the RTF field in the message whether the responder is capable of supporting its preferred timestamp format: if it is, the RTF will be equal to the QTF. The querier also knows the responder's preferred timestamp format from the RPTF field. The querier can then decide whether to retain its current QTF or to change it and repeat the negotiation procedures.4.3.5.1. Single-Format Procedures
When an implementation supports only one timestamp format, the procedures above reduce to the following simple behavior: o All DM Queries are transmitted with the same QTF; o All DM Responses are transmitted with the same RTF, and the RPTF is always set equal to the RTF; o All DM Responses received with RTF not equal to QTF are discarded; o On a unidirectional channel, all DM Queries received with QTF not equal to the supported format are discarded.4.3.6. Quality of Service
The TC field of the LSE corresponding to the channel (e.g., LSP) being measured MUST be set to the value that corresponds to the DS field in the DM message.4.4. Combined Loss/Delay Measurement Procedures
The combined LM/DM message defined in Section 3.3 allows loss and delay measurement to be carried out simultaneously. This message SHOULD be treated as an LM message that happens to carry additional timestamp data, with the timestamp fields processed as per delay measurement procedures.