7. Protocol Operations
The NETCONF protocol provides a small set of low-level operations to manage device configurations and retrieve device state information. The base protocol provides operations to retrieve, configure, copy, and delete configuration datastores. Additional operations are provided, based on the capabilities advertised by the device. The base protocol includes the following protocol operations: o get o get-config o edit-config o copy-config o delete-config o lock o unlock o close-session o kill-session A protocol operation can fail for various reasons, including "operation not supported". An initiator SHOULD NOT assume that any operation will always succeed. The return values in any RPC reply SHOULD be checked for error responses. The syntax and XML encoding of the protocol operations are formally defined in the YANG module in Appendix C. The following sections describe the semantics of each protocol operation.7.1. <get-config>
Description: Retrieve all or part of a specified configuration datastore. Parameters: source: Name of the configuration datastore being queried, such as <running/>.
filter: This parameter identifies the portions of the device configuration datastore to retrieve. If this parameter is not present, the entire configuration is returned. The <filter> element MAY optionally contain a "type" attribute. This attribute indicates the type of filtering syntax used within the <filter> element. The default filtering mechanism in NETCONF is referred to as subtree filtering and is described in Section 6. The value "subtree" explicitly identifies this type of filtering. If the NETCONF peer supports the :xpath capability (Section 8.9), the value "xpath" MAY be used to indicate that the "select" attribute on the <filter> element contains an XPath expression. Positive Response: If the device can satisfy the request, the server sends an <rpc-reply> element containing a <data> element with the results of the query. Negative Response: An <rpc-error> element is included in the <rpc-reply> if the request cannot be completed for any reason. Example: To retrieve the entire <users> subtree: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <get-config> <source> <running/> </source> <filter type="subtree"> <top xmlns="http://example.com/schema/1.2/config"> <users/> </top> </filter> </get-config> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <data> <top xmlns="http://example.com/schema/1.2/config"> <users> <user> <name>root</name> <type>superuser</type> <full-name>Charlie Root</full-name>
<company-info> <dept>1</dept> <id>1</id> </company-info> </user> <!-- additional <user> elements appear here... --> </users> </top> </data> </rpc-reply> Section 6 contains additional examples of subtree filtering.7.2. <edit-config>
Description: The <edit-config> operation loads all or part of a specified configuration to the specified target configuration datastore. This operation allows the new configuration to be expressed in several ways, such as using a local file, a remote file, or inline. If the target configuration datastore does not exist, it will be created. If a NETCONF peer supports the :url capability (Section 8.8), the <url> element can appear instead of the <config> parameter. The device analyzes the source and target configurations and performs the requested changes. The target configuration is not necessarily replaced, as with the <copy-config> message. Instead, the target configuration is changed in accordance with the source's data and requested operations. If the <edit-config> operation contains multiple sub-operations that apply to the same conceptual node in the underlying data model, then the result of the operation is undefined (i.e., outside the scope of the NETCONF protocol). Attributes: operation: Elements in the <config> subtree MAY contain an "operation" attribute, which belongs to the NETCONF namespace defined in Section 3.1. The attribute identifies the point in the configuration to perform the operation and MAY appear on multiple elements throughout the <config> subtree. If the "operation" attribute is not specified, the configuration is merged into the configuration datastore.
The "operation" attribute has one of the following values: merge: The configuration data identified by the element containing this attribute is merged with the configuration at the corresponding level in the configuration datastore identified by the <target> parameter. This is the default behavior. replace: The configuration data identified by the element containing this attribute replaces any related configuration in the configuration datastore identified by the <target> parameter. If no such configuration data exists in the configuration datastore, it is created. Unlike a <copy-config> operation, which replaces the entire target configuration, only the configuration actually present in the <config> parameter is affected. create: The configuration data identified by the element containing this attribute is added to the configuration if and only if the configuration data does not already exist in the configuration datastore. If the configuration data exists, an <rpc-error> element is returned with an <error-tag> value of "data-exists". delete: The configuration data identified by the element containing this attribute is deleted from the configuration if and only if the configuration data currently exists in the configuration datastore. If the configuration data does not exist, an <rpc-error> element is returned with an <error-tag> value of "data-missing". remove: The configuration data identified by the element containing this attribute is deleted from the configuration if the configuration data currently exists in the configuration datastore. If the configuration data does not exist, the "remove" operation is silently ignored by the server. Parameters: target: Name of the configuration datastore being edited, such as <running/> or <candidate/>. default-operation: Selects the default operation (as described in the "operation" attribute) for this <edit-config> request. The default value for the <default-operation> parameter is "merge".
The <default-operation> parameter is optional, but if provided, it has one of the following values: merge: The configuration data in the <config> parameter is merged with the configuration at the corresponding level in the target datastore. This is the default behavior. replace: The configuration data in the <config> parameter completely replaces the configuration in the target datastore. This is useful for loading previously saved configuration data. none: The target datastore is unaffected by the configuration in the <config> parameter, unless and until the incoming configuration data uses the "operation" attribute to request a different operation. If the configuration in the <config> parameter contains data for which there is not a corresponding level in the target datastore, an <rpc-error> is returned with an <error-tag> value of data-missing. Using "none" allows operations like "delete" to avoid unintentionally creating the parent hierarchy of the element to be deleted. test-option: The <test-option> element MAY be specified only if the device advertises the :validate:1.1 capability (Section 8.6). The <test-option> element has one of the following values: test-then-set: Perform a validation test before attempting to set. If validation errors occur, do not perform the <edit-config> operation. This is the default test-option. set: Perform a set without a validation test first. test-only: Perform only the validation test, without attempting to set. error-option: The <error-option> element has one of the following values: stop-on-error: Abort the <edit-config> operation on first error. This is the default error-option. continue-on-error: Continue to process configuration data on error; error is recorded, and negative response is generated if any errors occur.
rollback-on-error: If an error condition occurs such that an error severity <rpc-error> element is generated, the server will stop processing the <edit-config> operation and restore the specified configuration to its complete state at the start of this <edit-config> operation. This option requires the server to support the :rollback-on-error capability described in Section 8.5. config: A hierarchy of configuration data as defined by one of the device's data models. The contents MUST be placed in an appropriate namespace, to allow the device to detect the appropriate data model, and the contents MUST follow the constraints of that data model, as defined by its capability definition. Capabilities are discussed in Section 8. Positive Response: If the device was able to satisfy the request, an <rpc-reply> is sent containing an <ok> element. Negative Response: An <rpc-error> response is sent if the request cannot be completed for any reason. Example: The <edit-config> examples in this section utilize a simple data model, in which multiple instances of the <interface> element can be present, and an instance is distinguished by the <name> element within each <interface> element. Set the MTU to 1500 on an interface named "Ethernet0/0" in the running configuration: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <edit-config> <target> <running/> </target> <config> <top xmlns="http://example.com/schema/1.2/config"> <interface> <name>Ethernet0/0</name> <mtu>1500</mtu> </interface> </top> </config> </edit-config> </rpc>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply> Add an interface named "Ethernet0/0" to the running configuration, replacing any previous interface with that name: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <edit-config> <target> <running/> </target> <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0"> <top xmlns="http://example.com/schema/1.2/config"> <interface xc:operation="replace"> <name>Ethernet0/0</name> <mtu>1500</mtu> <address> <name>192.0.2.4</name> <prefix-length>24</prefix-length> </address> </interface> </top> </config> </edit-config> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply> Delete the configuration for an interface named "Ethernet0/0" from the running configuration: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <edit-config> <target> <running/> </target> <default-operation>none</default-operation> <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0"> <top xmlns="http://example.com/schema/1.2/config"> <interface xc:operation="delete"> <name>Ethernet0/0</name>
</interface> </top> </config> </edit-config> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply> Delete interface 192.0.2.4 from an OSPF area (other interfaces configured in the same area are unaffected): <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <edit-config> <target> <running/> </target> <default-operation>none</default-operation> <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0"> <top xmlns="http://example.com/schema/1.2/config"> <protocols> <ospf> <area> <name>0.0.0.0</name> <interfaces> <interface xc:operation="delete"> <name>192.0.2.4</name> </interface> </interfaces> </area> </ospf> </protocols> </top> </config> </edit-config> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply>
7.3. <copy-config>
Description: Create or replace an entire configuration datastore with the contents of another complete configuration datastore. If the target datastore exists, it is overwritten. Otherwise, a new one is created, if allowed. If a NETCONF peer supports the :url capability (Section 8.8), the <url> element can appear as the <source> or <target> parameter. Even if it advertises the :writable-running capability, a device MAY choose not to support the <running/> configuration datastore as the <target> parameter of a <copy-config> operation. A device MAY choose not to support remote-to-remote copy operations, where both the <source> and <target> parameters use the <url> element. If the <source> and <target> parameters identify the same URL or configuration datastore, an error MUST be returned with an error- tag containing "invalid-value". Parameters: target: Name of the configuration datastore to use as the destination of the <copy-config> operation. source: Name of the configuration datastore to use as the source of the <copy-config> operation, or the <config> element containing the complete configuration to copy. Positive Response: If the device was able to satisfy the request, an <rpc-reply> is sent that includes an <ok> element. Negative Response: An <rpc-error> element is included within the <rpc-reply> if the request cannot be completed for any reason. Example: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <copy-config> <target> <running/> </target> <source> <url>https://user:password@example.com/cfg/new.txt</url> </source> </copy-config> </rpc>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply>7.4. <delete-config>
Description: Delete a configuration datastore. The <running> configuration datastore cannot be deleted. If a NETCONF peer supports the :url capability (Section 8.8), the <url> element can appear as the <target> parameter. Parameters: target: Name of the configuration datastore to delete. Positive Response: If the device was able to satisfy the request, an <rpc-reply> is sent that includes an <ok> element. Negative Response: An <rpc-error> element is included within the <rpc-reply> if the request cannot be completed for any reason. Example: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <delete-config> <target> <startup/> </target> </delete-config> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply>7.5. <lock>
Description: The <lock> operation allows the client to lock the entire configuration datastore system of a device. Such locks are intended to be short-lived and allow a client to make a change without fear of interaction with other NETCONF clients, non- NETCONF clients (e.g., SNMP and command line interface (CLI) scripts), and human users.
An attempt to lock the configuration datastore MUST fail if an existing session or other entity holds a lock on any portion of the lock target. When the lock is acquired, the server MUST prevent any changes to the locked resource other than those requested by this session. SNMP and CLI requests to modify the resource MUST fail with an appropriate error. The duration of the lock is defined as beginning when the lock is acquired and lasting until either the lock is released or the NETCONF session closes. The session closure can be explicitly performed by the client, or implicitly performed by the server based on criteria such as failure of the underlying transport, simple inactivity timeout, or detection of abusive behavior on the part of the client. These criteria are dependent on the implementation and the underlying transport. The <lock> operation takes a mandatory parameter, <target>. The <target> parameter names the configuration datastore that will be locked. When a lock is active, using the <edit-config> operation on the locked configuration datastore and using the locked configuration as a target of the <copy-config> operation will be disallowed by any other NETCONF session. Additionally, the system will ensure that these locked configuration resources will not be modified by other non-NETCONF management operations such as SNMP and CLI. The <kill-session> operation can be used to force the release of a lock owned by another NETCONF session. It is beyond the scope of this document to define how to break locks held by other entities. A lock MUST NOT be granted if any of the following conditions is true: * A lock is already held by any NETCONF session or another entity. * The target configuration is <candidate>, it has already been modified, and these changes have not been committed or rolled back. * The target configuration is <running>, and another NETCONF session has an ongoing confirmed commit (Section 8.4). The server MUST respond with either an <ok> element or an <rpc-error>.
A lock will be released by the system if the session holding the lock is terminated for any reason. Parameters: target: Name of the configuration datastore to lock. Positive Response: If the device was able to satisfy the request, an <rpc-reply> is sent that contains an <ok> element. Negative Response: An <rpc-error> element is included in the <rpc-reply> if the request cannot be completed for any reason. If the lock is already held, the <error-tag> element will be "lock-denied" and the <error-info> element will include the <session-id> of the lock owner. If the lock is held by a non- NETCONF entity, a <session-id> of 0 (zero) is included. Note that any other entity performing a lock on even a partial piece of a target will prevent a NETCONF lock (which is global) from being obtained on that target. Example: The following example shows a successful acquisition of a lock. <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <lock> <target> <running/> </target> </lock> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> <!-- lock succeeded --> </rpc-reply> Example: The following example shows a failed attempt to acquire a lock when the lock is already in use.
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <lock> <target> <running/> </target> </lock> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <rpc-error> <!-- lock failed --> <error-type>protocol</error-type> <error-tag>lock-denied</error-tag> <error-severity>error</error-severity> <error-message> Lock failed, lock is already held </error-message> <error-info> <session-id>454</session-id> <!-- lock is held by NETCONF session 454 --> </error-info> </rpc-error> </rpc-reply>7.6. <unlock>
Description: The <unlock> operation is used to release a configuration lock, previously obtained with the <lock> operation. An <unlock> operation will not succeed if either of the following conditions is true: * The specified lock is not currently active. * The session issuing the <unlock> operation is not the same session that obtained the lock. The server MUST respond with either an <ok> element or an <rpc-error>. Parameters: target: Name of the configuration datastore to unlock. A NETCONF client is not permitted to unlock a configuration datastore that it did not lock.
Positive Response: If the device was able to satisfy the request, an <rpc-reply> is sent that contains an <ok> element. Negative Response: An <rpc-error> element is included in the <rpc-reply> if the request cannot be completed for any reason. Example: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <unlock> <target> <running/> </target> </unlock> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply>7.7. <get>
Description: Retrieve running configuration and device state information. Parameters: filter: This parameter specifies the portion of the system configuration and state data to retrieve. If this parameter is not present, all the device configuration and state information is returned. The <filter> element MAY optionally contain a "type" attribute. This attribute indicates the type of filtering syntax used within the <filter> element. The default filtering mechanism in NETCONF is referred to as subtree filtering and is described in Section 6. The value "subtree" explicitly identifies this type of filtering. If the NETCONF peer supports the :xpath capability (Section 8.9), the value "xpath" MAY be used to indicate that the "select" attribute of the <filter> element contains an XPath expression.
Positive Response: If the device was able to satisfy the request, an <rpc-reply> is sent. The <data> section contains the appropriate subset. Negative Response: An <rpc-error> element is included in the <rpc-reply> if the request cannot be completed for any reason. Example: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <get> <filter type="subtree"> <top xmlns="http://example.com/schema/1.2/stats"> <interfaces> <interface> <ifName>eth0</ifName> </interface> </interfaces> </top> </filter> </get> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <data> <top xmlns="http://example.com/schema/1.2/stats"> <interfaces> <interface> <ifName>eth0</ifName> <ifInOctets>45621</ifInOctets> <ifOutOctets>774344</ifOutOctets> </interface> </interfaces> </top> </data> </rpc-reply>7.8. <close-session>
Description: Request graceful termination of a NETCONF session. When a NETCONF server receives a <close-session> request, it will gracefully close the session. The server will release any locks and resources associated with the session and gracefully close any associated connections. Any NETCONF requests received after a <close-session> request will be ignored.
Positive Response: If the device was able to satisfy the request, an <rpc-reply> is sent that includes an <ok> element. Negative Response: An <rpc-error> element is included in the <rpc-reply> if the request cannot be completed for any reason. Example: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <close-session/> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply>7.9. <kill-session>
Description: Force the termination of a NETCONF session. When a NETCONF entity receives a <kill-session> request for an open session, it will abort any operations currently in process, release any locks and resources associated with the session, and close any associated connections. If a NETCONF server receives a <kill-session> request while processing a confirmed commit (Section 8.4), it MUST restore the configuration to its state before the confirmed commit was issued. Otherwise, the <kill-session> operation does not roll back configuration or other device state modifications made by the entity holding the lock. Parameters: session-id: Session identifier of the NETCONF session to be terminated. If this value is equal to the current session ID, an "invalid-value" error is returned. Positive Response: If the device was able to satisfy the request, an <rpc-reply> is sent that includes an <ok> element. Negative Response: An <rpc-error> element is included in the <rpc-reply> if the request cannot be completed for any reason.
Example: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <kill-session> <session-id>4</session-id> </kill-session> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply>8. Capabilities
This section defines a set of capabilities that a client or a server MAY implement. Each peer advertises its capabilities by sending them during an initial capabilities exchange. Each peer needs to understand only those capabilities that it might use and MUST ignore any capability received from the other peer that it does not require or does not understand. Additional capabilities can be defined using the template in Appendix D. Future capability definitions can be published as standards by standards bodies or published as proprietary extensions. A NETCONF capability is identified with a URI. The base capabilities are defined using URNs following the method described in RFC 3553 [RFC3553]. Capabilities defined in this document have the following format: urn:ietf:params:netconf:capability:{name}:1.x where {name} is the name of the capability. Capabilities are often referenced in discussions and email using the shorthand :{name}, or :{name}:{version} if the capability exists in multiple versions. For example, the foo capability would have the formal name "urn:ietf:params:netconf:capability:foo:1.0" and be called ":foo". The shorthand form MUST NOT be used inside the protocol.8.1. Capabilities Exchange
Capabilities are advertised in messages sent by each peer during session establishment. When the NETCONF session is opened, each peer (both client and server) MUST send a <hello> element containing a list of that peer's capabilities. Each peer MUST send at least the
base NETCONF capability, "urn:ietf:params:netconf:base:1.1". A peer MAY include capabilities for previous NETCONF versions, to indicate that it supports multiple protocol versions. Both NETCONF peers MUST verify that the other peer has advertised a common protocol version. When comparing protocol version capability URIs, only the base part is used, in the event any parameters are encoded at the end of the URI string. If no protocol version capability in common is found, the NETCONF peer MUST NOT continue the session. If more than one protocol version URI in common is present, then the highest numbered (most recent) protocol version MUST be used by both peers. A server sending the <hello> element MUST include a <session-id> element containing the session ID for this NETCONF session. A client sending the <hello> element MUST NOT include a <session-id> element. A server receiving a <hello> message with a <session-id> element MUST terminate the NETCONF session. Similarly, a client that does not receive a <session-id> element in the server's <hello> message MUST terminate the NETCONF session (without first sending a <close-session>). In the following example, a server advertises the base NETCONF capability, one NETCONF capability defined in the base NETCONF document, and one implementation-specific capability. <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <capabilities> <capability> urn:ietf:params:netconf:base:1.1 </capability> <capability> urn:ietf:params:netconf:capability:startup:1.0 </capability> <capability> http://example.net/router/2.3/myfeature </capability> </capabilities> <session-id>4</session-id> </hello> Each peer sends its <hello> element simultaneously as soon as the connection is open. A peer MUST NOT wait to receive the capability set from the other side before sending its own set.
8.2. Writable-Running Capability
8.2.1. Description
The :writable-running capability indicates that the device supports direct writes to the <running> configuration datastore. In other words, the device supports <edit-config> and <copy-config> operations where the <running> configuration is the target.8.2.2. Dependencies
None.8.2.3. Capability Identifier
The :writable-running capability is identified by the following capability string: urn:ietf:params:netconf:capability:writable-running:1.08.2.4. New Operations
None.8.2.5. Modifications to Existing Operations
8.2.5.1. <edit-config>
The :writable-running capability modifies the <edit-config> operation to accept the <running> element as a <target>.8.2.5.2. <copy-config>
The :writable-running capability modifies the <copy-config> operation to accept the <running> element as a <target>.8.3. Candidate Configuration Capability
8.3.1. Description
The candidate configuration capability, :candidate, indicates that the device supports a candidate configuration datastore, which is used to hold configuration data that can be manipulated without impacting the device's current configuration. The candidate configuration is a full configuration data set that serves as a work place for creating and manipulating configuration data. Additions, deletions, and changes can be made to this data to construct the
desired configuration data. A <commit> operation MAY be performed at any time that causes the device's running configuration to be set to the value of the candidate configuration. The <commit> operation effectively sets the running configuration to the current contents of the candidate configuration. While it could be modeled as a simple copy, it is done as a distinct operation for a number of reasons. In keeping high-level concepts as first-class operations, we allow developers to see more clearly both what the client is requesting and what the server must perform. This keeps the intentions more obvious, the special cases less complex, and the interactions between operations more straightforward. For example, the :confirmed-commit:1.1 capability (Section 8.4) would make no sense as a "copy confirmed" operation. The candidate configuration can be shared among multiple sessions. Unless a client has specific information that the candidate configuration is not shared, it MUST assume that other sessions are able to modify the candidate configuration at the same time. It is therefore prudent for a client to lock the candidate configuration before modifying it. The client can discard any uncommitted changes to the candidate configuration by executing the <discard-changes> operation. This operation reverts the contents of the candidate configuration to the contents of the running configuration.8.3.2. Dependencies
None.8.3.3. Capability Identifier
The :candidate capability is identified by the following capability string: urn:ietf:params:netconf:capability:candidate:1.08.3.4. New Operations
8.3.4.1. <commit>
Description: When the candidate configuration's content is complete, the configuration data can be committed, publishing the data set to the rest of the device and requesting the device to conform to the behavior described in the new configuration.
To commit the candidate configuration as the device's new current configuration, use the <commit> operation. The <commit> operation instructs the device to implement the configuration data contained in the candidate configuration. If the device is unable to commit all of the changes in the candidate configuration datastore, then the running configuration MUST remain unchanged. If the device does succeed in committing, the running configuration MUST be updated with the contents of the candidate configuration. If the running or candidate configuration is currently locked by a different session, the <commit> operation MUST fail with an <error-tag> value of "in-use". If the system does not have the :candidate capability, the <commit> operation is not available. Positive Response: If the device was able to satisfy the request, an <rpc-reply> is sent that contains an <ok> element. Negative Response: An <rpc-error> element is included in the <rpc-reply> if the request cannot be completed for any reason. Example: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <commit/> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply>8.3.4.2. <discard-changes>
If the client decides that the candidate configuration is not to be committed, the <discard-changes> operation can be used to revert the candidate configuration to the current running configuration.
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <discard-changes/> </rpc> This operation discards any uncommitted changes by resetting the candidate configuration with the content of the running configuration.8.3.5. Modifications to Existing Operations
8.3.5.1. <get-config>, <edit-config>, <copy-config>, and <validate>
The candidate configuration can be used as a source or target of any <get-config>, <edit-config>, <copy-config>, or <validate> operation as a <source> or <target> parameter. The <candidate> element is used to indicate the candidate configuration: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <get-config> <source> <candidate/> </source> </get-config> </rpc>8.3.5.2. <lock> and <unlock>
The candidate configuration can be locked using the <lock> operation with the <candidate> element as the <target> parameter: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <lock> <target> <candidate/> </target> </lock> </rpc> Similarly, the candidate configuration is unlocked using the <candidate> element as the <target> parameter:
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <unlock> <target> <candidate/> </target> </unlock> </rpc> When a client fails with outstanding changes to the candidate configuration, recovery can be difficult. To facilitate easy recovery, any outstanding changes are discarded when the lock is released, whether explicitly with the <unlock> operation or implicitly from session failure.8.4. Confirmed Commit Capability
8.4.1. Description
The :confirmed-commit:1.1 capability indicates that the server will support the <cancel-commit> operation and the <confirmed>, <confirm-timeout>, <persist>, and <persist-id> parameters for the <commit> operation. See Section 8.3 for further details on the <commit> operation. A confirmed <commit> operation MUST be reverted if a confirming commit is not issued within the timeout period (by default 600 seconds = 10 minutes). The confirming commit is a <commit> operation without the <confirmed> parameter. The timeout period can be adjusted with the <confirm-timeout> parameter. If a follow-up confirmed <commit> operation is issued before the timer expires, the timer is reset to the new value (600 seconds by default). Both the confirming commit and a follow-up confirmed <commit> operation MAY introduce additional changes to the configuration. If the <persist> element is not given in the confirmed commit operation, any follow-up commit and the confirming commit MUST be issued on the same session that issued the confirmed commit. If the <persist> element is given in the confirmed <commit> operation, a follow-up commit and the confirming commit can be given on any session, and they MUST include a <persist-id> element with a value equal to the given value of the <persist> element. If the server also advertises the :startup capability, a <copy-config> from running to startup is also necessary to save the changes to startup.
If the session issuing the confirmed commit is terminated for any reason before the confirm timeout expires, the server MUST restore the configuration to its state before the confirmed commit was issued, unless the confirmed commit also included a <persist> element. If the device reboots for any reason before the confirm timeout expires, the server MUST restore the configuration to its state before the confirmed commit was issued. If a confirming commit is not issued, the device will revert its configuration to the state prior to the issuance of the confirmed commit. To cancel a confirmed commit and revert changes without waiting for the confirm timeout to expire, the client can explicitly restore the configuration to its state before the confirmed commit was issued, by using the <cancel-commit> operation. For shared configurations, this feature can cause other configuration changes (for example, via other NETCONF sessions) to be inadvertently altered or removed, unless the configuration locking feature is used (in other words, the lock is obtained before the <edit-config> operation is started). Therefore, it is strongly suggested that in order to use this feature with shared configuration datastores, configuration locking SHOULD also be used. Version 1.0 of this capability was defined in [RFC4741]. Version 1.1 is defined in this document, and extends version 1.0 by adding a new operation, <cancel-commit>, and two new optional parameters, <persist> and <persist-id>. For backwards compatibility with old clients, servers conforming to this specification MAY advertise version 1.0 in addition to version 1.1.8.4.2. Dependencies
The :confirmed-commit:1.1 capability is only relevant if the :candidate capability is also supported.8.4.3. Capability Identifier
The :confirmed-commit:1.1 capability is identified by the following capability string: urn:ietf:params:netconf:capability:confirmed-commit:1.1
8.4.4. New Operations
8.4.4.1. <cancel-commit>
Description: Cancels an ongoing confirmed commit. If the <persist-id> parameter is not given, the <cancel-commit> operation MUST be issued on the same session that issued the confirmed commit. Parameters: persist-id: Cancels a persistent confirmed commit. The value MUST be equal to the value given in the <persist> parameter to the <commit> operation. If the value does not match, the operation fails with an "invalid-value" error. Positive Response: If the device was able to satisfy the request, an <rpc-reply> is sent that contains an <ok> element. Negative Response: An <rpc-error> element is included in the <rpc-reply> if the request cannot be completed for any reason. Example: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <commit> <confirmed/> </commit> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply> <rpc message-id="102" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <cancel-commit/> </rpc>
<rpc-reply message-id="102" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply>8.4.5. Modifications to Existing Operations
8.4.5.1. <commit>
The :confirmed-commit:1.1 capability allows 4 additional parameters to the <commit> operation. Parameters: confirmed: Perform a confirmed <commit> operation. confirm-timeout: Timeout period for confirmed commit, in seconds. If unspecified, the confirm timeout defaults to 600 seconds. persist: Make the confirmed commit survive a session termination, and set a token on the ongoing confirmed commit. persist-id: Used to issue a follow-up confirmed commit or a confirming commit from any session, with the token from the previous <commit> operation. Example: <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <commit> <confirmed/> <confirm-timeout>120</confirm-timeout> </commit> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply>
Example: <!-- start a persistent confirmed-commit --> <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <commit> <confirmed/> <persist>IQ,d4668</persist> </commit> </rpc> <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply> <!-- confirm the persistent confirmed-commit, possibly from another session --> <rpc message-id="102" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <commit> <persist-id>IQ,d4668</persist-id> </commit> </rpc> <rpc-reply message-id="102" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <ok/> </rpc-reply>