Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 5601

Pseudowire (PW) Management Information Base (MIB)

Pages: 67
Proposed Standard
Errata
Part 3 of 3 – Pages 42 to 67
First   Prev   None

Top   ToC   RFC5601 - Page 42   prevText
  pwPeerMappingTable  OBJECT-TYPE
     SYNTAX        SEQUENCE OF PwPeerMappingEntry
     MAX-ACCESS    not-accessible
     STATUS        current
     DESCRIPTION
          "This table provides reverse mapping of the existing PW
           based on PW type and PW ID ordering.  This table is
           typically useful for the element management system (EMS)
           ordered query of existing PWs."
     ::= { pwObjects 8 }

  pwPeerMappingEntry OBJECT-TYPE
     SYNTAX        PwPeerMappingEntry
     MAX-ACCESS    not-accessible
     STATUS        current
     DESCRIPTION
          "An entry in this table is created by the agent for every
           PW entry in the pwTable.

          Implementers need to be aware that if the value of the
          pwPeerMappingPeerAddr (an OID) has more than 113
          sub-identifiers, then OIDs of column instances in this
          table will have more than 128 sub-identifiers and cannot
          be accessed using SNMPv1, SNMPv2c, or SNMPv3."
     INDEX  { pwPeerMappingPeerAddrType, pwPeerMappingPeerAddr,
              pwPeerMappingPwType,  pwPeerMappingPwID }

     ::= { pwPeerMappingTable 1 }

  PwPeerMappingEntry ::= SEQUENCE {
        pwPeerMappingPeerAddrType         InetAddressType,
        pwPeerMappingPeerAddr             InetAddress,
        pwPeerMappingPwType               IANAPwTypeTC,
        pwPeerMappingPwID                 PwIDType,
        pwPeerMappingPwIndex              PwIndexType
                         }

  pwPeerMappingPeerAddrType OBJECT-TYPE
     SYNTAX        InetAddressType
     MAX-ACCESS    not-accessible
     STATUS        current
     DESCRIPTION
          "IP address type of the peer node."
     ::= { pwPeerMappingEntry 1 }

  pwPeerMappingPeerAddr OBJECT-TYPE
     SYNTAX        InetAddress
     MAX-ACCESS    not-accessible
Top   ToC   RFC5601 - Page 43
     STATUS        current
     DESCRIPTION
          "IP address of the peer node."
     ::= { pwPeerMappingEntry 2 }

  pwPeerMappingPwType OBJECT-TYPE
     SYNTAX        IANAPwTypeTC
     MAX-ACCESS    not-accessible
     STATUS        current
     DESCRIPTION
          "The PW type (indicates the emulated service) of this PW."
     ::= { pwPeerMappingEntry 3 }

  pwPeerMappingPwID OBJECT-TYPE
     SYNTAX        PwIDType
     MAX-ACCESS    not-accessible
     STATUS        current
     DESCRIPTION
          "The PW ID of this PW.  Zero if the PW is configured
           manually."
     ::= { pwPeerMappingEntry 4 }

  pwPeerMappingPwIndex  OBJECT-TYPE
     SYNTAX        PwIndexType
     MAX-ACCESS    read-only
     STATUS        current
     DESCRIPTION
         "The value that represents the PW in the pwTable."
     ::= { pwPeerMappingEntry 5 }

  -- End of the peer mapping table

  -- End of the reverse mapping tables

  pwUpDownNotifEnable  OBJECT-TYPE
     SYNTAX      TruthValue
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "If this object is set to true(1), then it enables
         the emission of pwUp and pwDown
         notifications; otherwise, these notifications are not
         emitted."
     REFERENCE
        "See also [RFC3413] for explanation that
         notifications are under the ultimate control of the
         MIB module in this document."
     DEFVAL { false }
Top   ToC   RFC5601 - Page 44
     ::= { pwObjects 9 }

  pwDeletedNotifEnable  OBJECT-TYPE
     SYNTAX      TruthValue
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "If this object is set to true(1), then it enables the
         emission of pwDeleted notification; otherwise, this
         notification is not emitted."
     REFERENCE
        "See also [RFC3413] for explanation that
         notifications are under the ultimate control of the
         MIB module in this document."
     DEFVAL { false }
     ::= { pwObjects 10 }

  pwNotifRate  OBJECT-TYPE
     SYNTAX      Unsigned32
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
        "This object defines the maximum number of PW notifications
         that can be emitted from the device per second."
     ::= { pwObjects 11 }

  -- The Gen Fec PW ID mapping table

  pwGenFecIndexMappingTable  OBJECT-TYPE
     SYNTAX        SEQUENCE OF PwGenFecIndexMappingEntry
     MAX-ACCESS    not-accessible
     STATUS        current
     DESCRIPTION
          "This table enables the reverse mapping of the unique
           PWid parameters [GroupAttachmentID, LocalAttachmentID,
           and PeerAttachmentID] and the pwIndex.  The table is
           only applicable for PW using the generalized FEC."
     ::= { pwObjects 12 }

  pwGenFecIndexMappingEntry OBJECT-TYPE
     SYNTAX        PwGenFecIndexMappingEntry
     MAX-ACCESS    not-accessible
     STATUS        current
     DESCRIPTION
          "An entry in this table MUST be created by the agent for
           every PW created by the pwTable for which pwOwner
           equals genFecSignaling.
Top   ToC   RFC5601 - Page 45
           Implementers need to be aware that if the combined value
           of pwGenFecIndexMappingAGI, pwGenFecIndexMappingLocalAII,
           and pwGenFecIndexMappingRemoteAII (OIDs) has more than
           113 sub-identifiers, then OIDs of column instances
           in this table will have more than 128 sub-identifiers
           and cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3."
     INDEX  { pwGenFecIndexMappingAGIType,
              pwGenFecIndexMappingAGI,
              pwGenFecIndexMappingLocalAIIType,
              pwGenFecIndexMappingLocalAII,
              pwGenFecIndexMappingRemoteAIIType,
              pwGenFecIndexMappingRemoteAII
              }
     ::= { pwGenFecIndexMappingTable 1 }

  PwGenFecIndexMappingEntry ::= SEQUENCE {
     pwGenFecIndexMappingAGIType        PwGenIdType,
     pwGenFecIndexMappingAGI            PwAttachmentIdentifierType,
     pwGenFecIndexMappingLocalAIIType   PwGenIdType,
     pwGenFecIndexMappingLocalAII       PwAttachmentIdentifierType,
     pwGenFecIndexMappingRemoteAIIType  PwGenIdType,
     pwGenFecIndexMappingRemoteAII      PwAttachmentIdentifierType,
     pwGenFecIndexMappingPwIndex        PwIndexType
  }

  pwGenFecIndexMappingAGIType OBJECT-TYPE
     SYNTAX        PwGenIdType
     MAX-ACCESS    not-accessible
     STATUS        current
     DESCRIPTION
          "This object is the type of the attachment
           group identifier (AGI) that this PW belongs to."
     ::= { pwGenFecIndexMappingEntry 1 }

  pwGenFecIndexMappingAGI OBJECT-TYPE
     SYNTAX        PwAttachmentIdentifierType
     MAX-ACCESS    not-accessible
     STATUS        current
     DESCRIPTION
          "This object is an octet string representing the attachment
           group identifier (AGI) that this PW belongs to,
           which typically identifies the VPN ID."
     ::= { pwGenFecIndexMappingEntry 2 }

  pwGenFecIndexMappingLocalAIIType OBJECT-TYPE
     SYNTAX        PwGenIdType
     MAX-ACCESS    not-accessible
     STATUS        current
Top   ToC   RFC5601 - Page 46
     DESCRIPTION
          "This object is the type of the local forwarder
           attachment individual identifier (AII) to be used
           by this PW."
     ::= { pwGenFecIndexMappingEntry 3 }

  pwGenFecIndexMappingLocalAII OBJECT-TYPE
     SYNTAX        PwAttachmentIdentifierType
     MAX-ACCESS    not-accessible
     STATUS        current
     DESCRIPTION
          "This object is an octet string representing the local
           forwarder attachment individual identifier (AII) to be used
           by this PW.  It is used as the SAII for outgoing signaling
           messages and the TAII in the incoming messages from the
           peer."
     ::= { pwGenFecIndexMappingEntry 4 }

  pwGenFecIndexMappingRemoteAIIType OBJECT-TYPE
     SYNTAX        PwGenIdType
     MAX-ACCESS    not-accessible
     STATUS        current
     DESCRIPTION
          "This object is the type of the remote forwarder
           attachment individual identifier (AII) to be used
           by this PW."
     ::= { pwGenFecIndexMappingEntry 5 }

  pwGenFecIndexMappingRemoteAII OBJECT-TYPE
     SYNTAX        PwAttachmentIdentifierType
     MAX-ACCESS    not-accessible
     STATUS        current
     DESCRIPTION
          "This object is an octet string representing the peer
           forwarder attachment individual identifier (AII) to be used
           by this PW.  It is used as the TAII for outgoing signaling
           messages and the SAII in the incoming messages from the
           peer."
     ::= { pwGenFecIndexMappingEntry 6 }

  pwGenFecIndexMappingPwIndex  OBJECT-TYPE
     SYNTAX        PwIndexType
     MAX-ACCESS    read-only
     STATUS        current
     DESCRIPTION
          "The value that represents the PW in the pwTable."
     ::= { pwGenFecIndexMappingEntry 7 }
Top   ToC   RFC5601 - Page 47
  -- End of the Gen Fec PW ID mapping table

  -- Notifications - PW

  pwDown NOTIFICATION-TYPE
     OBJECTS { pwOperStatus, --start of range
               pwOperStatus  --end of range
     }
     STATUS  current
     DESCRIPTION
         "This notification is generated when the pwOperStatus
          object for one or more contiguous entries in the pwTable are
          about to enter the down(2) or lowerLayerDown(6) state from
          any other state, except for transition from the
          notPresent(5) state.  For the purpose of deciding when
          these notifications occur, the lowerLayerDown(6) state
          and the down(2) state are considered to be equivalent;
          i.e., there is no notification on transition from
          lowerLayerDown(6) into down(2), and there is a trap on
          transition from any other state except down(2) (and
          notPresent) into lowerLayerDown(6).

          The included values of pwOperStatus MUST each be equal to
          down(2) or lowerLayerDown(6).  The two instances of
          pwOperStatus in this notification indicate the range of
          indexes that are affected.  Note that all the indexes of
          the two ends of the range can be derived from the
          instance identifiers of these two objects.  For cases
          where a contiguous range of cross-connects have
          transitioned into the down(2) and lowerLayerDown(6) states
          at roughly the same time, the device SHOULD issue a single
          notification for each range of contiguous indexes in an
          effort to minimize the emission of a large number of
          notifications.  If a notification has to be issued for
          just a single cross-connect entry, then the instance
          identifier (and values) of the two pwOperStatus objects
          MUST be identical."
     ::= { pwNotifications  1 }

  pwUp NOTIFICATION-TYPE
     OBJECTS { pwOperStatus, --start of range
               pwOperStatus  --end of range
     }
     STATUS  current
     DESCRIPTION
         "This notification is generated when the pwOperStatus
          object for one or more contiguous entries in the pwTable are
          about to enter the up(1) state from some other state
Top   ToC   RFC5601 - Page 48
          except the notPresent(5) state and given that the pwDown
          notification been issued for these entries.  The included
          values of pwOperStatus MUST both be set equal to this
          new state (i.e., up(1)).  The two instances of pwOperStatus
          in this notification indicate the range of indexes that
          are affected.  Note that all the indexes of the two ends
          of the range can be derived from the instance identifiers
          of these two objects.  For cases where a contiguous range
          of cross-connects have transitioned into the up(1) state
          at roughly the same time, the device SHOULD issue a single
          notification for each range of contiguous indexes in an
          effort to minimize the emission of a large number of
          notifications.  If a notification has to be issued for
          just a single cross-connect entry, then the instance
          identifier (and values) of the two pwOperStatus objects
          MUST be identical."
     ::= { pwNotifications 2 }

  pwDeleted NOTIFICATION-TYPE
     OBJECTS { pwType,
               pwID,
               pwPeerAddrType,
               pwPeerAddr
     }
     STATUS  current
     DESCRIPTION
         "This notification is generated when the PW has been
          deleted, i.e., when the pwRowStatus has been set to
          destroy(6) or the PW has been deleted by a non-MIB
          application or due to an auto-discovery process.
         "
     ::= { pwNotifications  3 }

  -- End of notifications.

  -- Conformance information

  pwGroups      OBJECT IDENTIFIER ::= { pwConformance   1 }
  pwCompliances OBJECT IDENTIFIER ::= { pwConformance   2 }

  -- Compliance requirement for fully compliant implementations

  pwModuleFullCompliance MODULE-COMPLIANCE
      STATUS  current
      DESCRIPTION
              "The compliance statement for agents that provide full
               support for the PW MIB module.  Such devices can
               then be monitored and configured using
Top   ToC   RFC5601 - Page 49
               this MIB module."

      MODULE  -- this module
          MANDATORY-GROUPS { pwBasicGroup,
                             pwPerformanceGeneralGroup
                           }

     GROUP pwNotificationGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that can efficiently implement the notifications
                  contained in this group.
                 "

     GROUP        pwPwIdGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support the PW ID FEC.
                 "

     GROUP        pwGeneralizedFecGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support the generalized PW FEC.
                 "

     GROUP        pwFcsGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support FCS retention."

     GROUP        pwFragGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support PW fragmentation.
                 "

     GROUP        pwPwStatusGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support PW status notification.
                 "

     GROUP        pwGetNextGroup
     DESCRIPTION "This group is only mandatory for implementations
                  where the pwIndex may be any arbitrary value
                  and the EMS would require retrieval of the next
                  free index."

     GROUP        pwPriorityGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support the controlling the PW setup and
                  holding priority."
Top   ToC   RFC5601 - Page 50
     GROUP        pwAttachmentGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support attachment of two PWs (PW stitching)."

     GROUP        pwPeformance1DayIntervalGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support PW performance gathering in 1-day
                  intervals."

     GROUP        pwPerformanceIntervalGeneralGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support PW performance gathering in 15-
                  minute intervals."

     GROUP        pwPeformanceIntervalGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support PW performance gathering in 15-
                  minute intervals."

     GROUP        pwHCPeformanceIntervalGroup
     DESCRIPTION "This group is only mandatory for implementations
                  where at least one of the interval performance
                  counters wraps around too quickly based on the
                  criteria specified in RFC 2863 for high-capacity
                  counters."

     GROUP        pwMappingTablesGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support reverse mapping of PW indexes to
                  the pwIndex and the peer mapping table."

     GROUP        pwSignalingGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support the PW signaling."

     GROUP        pwNotificationControlGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support the PW notifications."

     OBJECT       pwAdminStatus
     SYNTAX       INTEGER { up(1), down(2) }
     DESCRIPTION "Support of the value testing(3) is not
                  required."

     OBJECT       pwOperStatus
     SYNTAX       INTEGER { up(1), down(2), notPresent(5),
                  lowerLayerDown(6) }
     DESCRIPTION "Support of the values testing(3) and dormant(4)
Top   ToC   RFC5601 - Page 51
                  is not required."

     OBJECT       pwRowStatus
     SYNTAX       RowStatus { active(1), notInService(2),
                              notReady(3) }
     WRITE-SYNTAX RowStatus { active(1), notInService(2),
                              createAndGo(4), destroy(6)
                            }
     DESCRIPTION "Support for createAndWait is not required.  Support
                  of notReady is not required for implementations
                  that do not support signaling, or if it is
                  guaranteed that the conceptual row has all the
                  required information to create the PW when the
                  row has been created by the agent or written by
                  the operator."

     OBJECT       pwPeerAddrType
     SYNTAX       InetAddressType { unknown(0), ipv4(1) }
     MIN-ACCESS   read-only
     DESCRIPTION "Only unknown(0) and ipv4(1) are required.
                  Implementations that support only IPv4 MAY support
                  read-only access."

     OBJECT       pwPeerAddr
     SYNTAX       InetAddress (SIZE(0|4))
     DESCRIPTION "An implementation is only required to support
                  0, 4 address sizes."

     OBJECT       pwStorageType
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwNotifRate
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

       ::= { pwCompliances 1 }

  -- Compliance requirement for read-only compliant implementations

  pwModuleReadOnlyCompliance MODULE-COMPLIANCE
      STATUS  current
      DESCRIPTION
              "The compliance statement for agents that provide read-
               only support for the PW MIB module.  Such devices can
               then be monitored but cannot be configured using this
               MIB module."
Top   ToC   RFC5601 - Page 52
      MODULE  -- this module
          MANDATORY-GROUPS { pwBasicGroup
                           }

     GROUP        pwNotificationGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that can efficiently implement the notifications
                  contained in this group."

     GROUP        pwPwIdGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support the PW ID FEC.
                 "

     GROUP        pwGeneralizedFecGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support the generalized PW FEC.
                 "

     GROUP        pwFcsGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support FCS retention."

     GROUP        pwFragGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support PW fragmentation.
                 "

     GROUP        pwPwStatusGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support PW status notification.
                 "

     GROUP        pwGetNextGroup
     DESCRIPTION "This group is only mandatory for implementations
                  where the pwIndex may be any arbitrary value
                  and the EMS would require retrieval of the next
                  free index."

     GROUP        pwPriorityGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support the controlling the PW setup and
                  holding priority."

     GROUP        pwAttachmentGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support attachment of two PWs (PW stitching)."
Top   ToC   RFC5601 - Page 53
     GROUP        pwPeformance1DayIntervalGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support PW performance gathering in 1-day
                  intervals."

     GROUP        pwPerformanceIntervalGeneralGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support PW performance gathering in 15-
                  minute intervals."

     GROUP        pwPeformanceIntervalGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support PW performance gathering in 15-
                  minute intervals."

     GROUP        pwHCPeformanceIntervalGroup
     DESCRIPTION "This group is only mandatory for implementations
                  where at least one of the interval performance
                  counters wraps around too quickly based on the
                  criteria specified in RFC 2863 for high-capacity
                  counters."

     GROUP        pwMappingTablesGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support reverse mapping of PW indexes to
                  the pwIndex and the peer mapping table."

     GROUP        pwSignalingGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support the PW signaling."

     GROUP        pwNotificationControlGroup
     DESCRIPTION "This group is only mandatory for implementations
                  that support the PW notifications."

     OBJECT       pwType
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwOwner
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwPsnType
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwSetUpPriority
Top   ToC   RFC5601 - Page 54
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwHoldingPriority
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwPeerAddrType
     SYNTAX       InetAddressType { unknown(0), ipv4(1) }
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required.  Only unknown(0) and
                  ipv4(1) are required."

     OBJECT       pwPeerAddr
     SYNTAX       InetAddress (SIZE(0|4))
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required.  An implementation
                  is only required to support 0, 4 address sizes."

     OBJECT       pwAttachedPwIndex
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwIfIndex
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwID
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwLocalGroupID
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwGroupAttachmentID
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwLocalAttachmentID
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwRemoteAttachmentID
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwCwPreference
Top   ToC   RFC5601 - Page 55
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwLocalIfMtu
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwLocalIfString
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwLocalCapabAdvert
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwFragmentCfgSize
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwFcsRetentionCfg
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwOutboundLabel
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwInboundLabel
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwName
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwDescr
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwAdminStatus
     SYNTAX       INTEGER { up(1), down(2) }
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required.  The support of value
                  testing(3) is not required."

     OBJECT       pwOperStatus
     SYNTAX       INTEGER { up(1), down(2), notPresent(5),
                  lowerLayerDown(6) }
Top   ToC   RFC5601 - Page 56
     DESCRIPTION "The support of the values testing(3) and dormant(4)
                  is not required."

     OBJECT       pwRowStatus
     SYNTAX       RowStatus { active(1) }
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwStorageType
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwOamEnable
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwGenAGIType
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwGenLocalAIIType
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwGenRemoteAIIType
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwUpDownNotifEnable
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwDeletedNotifEnable
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

     OBJECT       pwNotifRate
     MIN-ACCESS   read-only
     DESCRIPTION "Write access is not required."

       ::= { pwCompliances 2 }

  -- Units of conformance.

  pwBasicGroup   OBJECT-GROUP
     OBJECTS {
              pwType,
              pwOwner,
Top   ToC   RFC5601 - Page 57
              pwPsnType,
              pwIfIndex,
              pwCwPreference,
              pwLocalIfMtu,
              pwOutboundLabel,
              pwInboundLabel,
              pwName,
              pwDescr,
              pwCreateTime,
              pwUpTime,
              pwLastChange,
              pwAdminStatus,
              pwOperStatus,
              pwLocalStatus,
              pwRowStatus,
              pwStorageType,
              pwOamEnable
            }

     STATUS  current
     DESCRIPTION
         "Collection of objects that are required in all
          implementations that support the PW MIB module."
     ::= { pwGroups 1 }

  pwPwIdGroup   OBJECT-GROUP
     OBJECTS {
              pwID
             }

     STATUS  current
     DESCRIPTION
         "Collection of objects required for PW ID configuration
          and signaling."
     ::= { pwGroups 2 }

  pwGeneralizedFecGroup   OBJECT-GROUP
     OBJECTS {
              pwGroupAttachmentID,
              pwLocalAttachmentID,
              pwRemoteAttachmentID,
              pwGenAGIType,
              pwGenLocalAIIType,
              pwGenRemoteAIIType
            }
     STATUS  current
     DESCRIPTION
         "Collection of objects required for generalized FEC
Top   ToC   RFC5601 - Page 58
          configuration and signaling."
     ::= { pwGroups 3 }

  pwFcsGroup   OBJECT-GROUP
     OBJECTS {
              pwFcsRetentionCfg,
              pwFcsRetentionStatus
            }

     STATUS  current
     DESCRIPTION
         "Collection of objects required for FCS retention
          configuration and signaling."
     ::= { pwGroups 4 }

  pwFragGroup   OBJECT-GROUP
     OBJECTS {
              pwFragmentCfgSize,
              pwRmtFragCapability
            }

     STATUS  current
     DESCRIPTION
         "Collection of objects required for fragmentation
          configuration and signaling."
     ::= { pwGroups 5 }

  pwPwStatusGroup   OBJECT-GROUP
     OBJECTS {
              pwRemoteCapabilities,
              pwRemoteStatusCapable,
              pwRemoteStatus
            }

     STATUS  current
     DESCRIPTION
         "Collection of objects required for PW status configuration
          and signaling."
     ::= { pwGroups 6 }


  pwGetNextGroup   OBJECT-GROUP
     OBJECTS {
              pwIndexNext
              }
     STATUS  current
     DESCRIPTION
         "Collection of objects for getting the next available
Top   ToC   RFC5601 - Page 59
          index."
     ::= { pwGroups 7 }

  pwPriorityGroup   OBJECT-GROUP
     OBJECTS {
              pwSetUpPriority,
              pwHoldingPriority
              }

     STATUS  current
     DESCRIPTION
         "Collection of objects for controlling the PW setup and
          holding priority."
     ::= { pwGroups 8 }

  pwAttachmentGroup   OBJECT-GROUP
     OBJECTS {
              pwAttachedPwIndex
              }

     STATUS  current
     DESCRIPTION
         "Collection of objects for PW configuration as ifIndex."
     ::= { pwGroups 9 }

  pwPerformanceGeneralGroup OBJECT-GROUP
     OBJECTS {
              pwPerfTotalErrorPackets
            }

     STATUS  current
     DESCRIPTION
         "Collection of general objects needed for managing the
          total running performance parameters."
     ::= { pwGroups 10 }

  pwPeformance1DayIntervalGroup OBJECT-GROUP
     OBJECTS {
              pwPerf1DayIntervalValidData,
              pwPerf1DayIntervalTimeElapsed,
              pwPerf1DayIntervalInHCPackets,
              pwPerf1DayIntervalInHCBytes,
              pwPerf1DayIntervalOutHCPackets,
              pwPerf1DayIntervalOutHCBytes
            }
     STATUS  current
     DESCRIPTION
         "Collection of objects needed for a PW running 1-day
Top   ToC   RFC5601 - Page 60
          interval performance collection."
     ::= { pwGroups 11 }

  pwPerformanceIntervalGeneralGroup OBJECT-GROUP
     OBJECTS {
              pwTimeElapsed,
              pwValidIntervals,
              pwPerfIntervalValidData,
              pwPerfIntervalTimeElapsed
            }

     STATUS  current
     DESCRIPTION
         "Collection of general objects needed for managing the
          interval performance parameters."
     ::= { pwGroups 12 }

  pwPeformanceIntervalGroup OBJECT-GROUP
     OBJECTS {
              pwPerfCurrentInPackets,
              pwPerfCurrentInBytes,
              pwPerfCurrentOutPackets,
              pwPerfCurrentOutBytes,

              pwPerfIntervalInPackets,
              pwPerfIntervalInBytes,
              pwPerfIntervalOutPackets,
              pwPerfIntervalOutBytes
            }

     STATUS  current
     DESCRIPTION
         "Collection of 32-bit objects needed for PW performance
          collection in 15-minute intervals."
     ::= { pwGroups 13 }

  pwHCPeformanceIntervalGroup OBJECT-GROUP
     OBJECTS {
              pwPerfCurrentInHCPackets,
              pwPerfCurrentInHCBytes,
              pwPerfCurrentOutHCPackets,
              pwPerfCurrentOutHCBytes,

              pwPerfIntervalInHCPackets,
              pwPerfIntervalInHCBytes,
              pwPerfIntervalOutHCPackets,
              pwPerfIntervalOutHCBytes
            }
Top   ToC   RFC5601 - Page 61
     STATUS  current
     DESCRIPTION
         "Collection of HC objects needed for PW performance
          collection in 15-minute intervals."
     ::= { pwGroups 14 }

  pwMappingTablesGroup OBJECT-GROUP
     OBJECTS {
              pwIndexMappingPwIndex,
              pwPeerMappingPwIndex,
              pwGenFecIndexMappingPwIndex
            }

     STATUS  current
     DESCRIPTION
         "Collection of objects contained in the reverse
          mapping tables."
     ::= { pwGroups 15 }

  pwNotificationControlGroup OBJECT-GROUP
     OBJECTS {
              pwUpDownNotifEnable,
              pwDeletedNotifEnable,
              pwNotifRate
            }

     STATUS  current
     DESCRIPTION
         "Collection of objects for controlling the PW
          notifications."
     ::= { pwGroups 16 }

  pwNotificationGroup NOTIFICATION-GROUP
     NOTIFICATIONS {
              pwUp,
              pwDown,
              pwDeleted
            }

     STATUS  current
     DESCRIPTION
         "Collection of PW notifications objects."
     ::= { pwGroups 17 }

  pwSignalingGroup OBJECT-GROUP
     OBJECTS {
              pwPeerAddrType,
              pwPeerAddr,
Top   ToC   RFC5601 - Page 62
              pwLocalGroupID,
              pwLocalIfString,
              pwLocalCapabAdvert,
              pwRemoteGroupID,
              pwCwStatus,
              pwRemoteIfMtu,
              pwRemoteIfString
            }

     STATUS  current
     DESCRIPTION
         "Collection of objects for use in implementations that
          support the PW signaling."
     ::= { pwGroups 18 }

  END

13. Security Considerations

It is clear that this MIB module is potentially useful for monitoring PW-capable PEs. This MIB module can also be used for configuration of certain objects, and anything that can be configured can be incorrectly configured, with potentially disastrous results. There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. These are the tables and objects and their sensitivity/vulnerability: o the pwTable contains objects to configure PW parameters on a Provider Edge (PE) device. Unauthorized access to objects in this table could result in disruption of traffic on the network. The objects pwUpDownNotifEnable and pwNotifRate control the reports from the network element to the EMS. Unauthorized access to these objects could result in disruption of configuration and status change reporting, resulting mis-view of the network conditions. The use of stronger mechanisms such as SNMPv3 security should be considered where possible. Specifically, SNMPv3 VACM and USM MUST be used with any v3 agent that implements this MIB module. Administrators should consider whether read access to these objects should be allowed, since read access may be undesirable under certain circumstances.
Top   ToC   RFC5601 - Page 63
   Some of the readable objects in this MIB module (i.e., objects with a
   MAX-ACCESS other than not-accessible) may be considered sensitive or
   vulnerable in some network environments.  It is thus important to
   control even GET and/or NOTIFY access to these objects and possibly
   to even encrypt the values of these objects when sending them over
   the network via SNMP.  These are the tables and objects and their
   sensitivity/vulnerability:

   o  the pwTable, pwPerfCurrentTable, pwPerfIntervalTable,
      pwPerf1DayIntervalTable, pwIndexMappingTable, pwPeerMappingTable,
      and pwGenFecIndexMappingTable collectively show the pseudowire
      connectivity topology and its performance characteristics.  If an
      administrator does not want to reveal this information, then these
      tables should be considered sensitive/vulnerable.

   SNMP versions prior to SNMPv3 did not include adequate security.
   Even if the network itself is secure (for example by using IPsec),
   even then, there is no control as to who on the secure network is
   allowed to access and GET/SET (read/change/create/delete) the objects
   in this MIB module.

   It is RECOMMENDED that implementers consider the security features as
   provided by the SNMPv3 framework (see [RFC3410], section 8),
   including full support for the SNMPv3 cryptographic mechanisms (for
   authentication and privacy).

   Further, deployment of SNMP versions prior to SNMPv3 is NOT
   RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
   enable cryptographic security.  It is then a customer/operator
   responsibility to ensure that the SNMP entity giving access to an
   instance of this MIB module is properly configured to give access to
   the objects only to those principals (users) that have legitimate
   rights to indeed GET or SET (change/create/delete) them.

14. IANA Considerations

14.1. ifType for PW

IANA has assigned a value (246) for PW in the IANAifType-MIB called ifPwType.

14.2. PW MIB Modules OBJECT IDENTIFIER Values

A PW may appear as ifIndex in the ifTable, and therefore the pwStdMIB OBJECT IDENTIFIER has been assigned under the 'transmission' subtree, as the common practice in assigning OBJECT IDENTIFIERs for MIB modules representing entities in the ifTable.
Top   ToC   RFC5601 - Page 64
   All other MIB modules related to PW management SHOULD be assigned
   under the 'mib-2' subtree; individual requests will appear in the MIB
   module memo's IANA Considerations section.

14.3. IANA Considerations for PW-STD-MIB

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry: Descriptor OBJECT IDENTIFIER value ---------- ----------------------- pwStdMIB { transmission 246 }

14.4. IANA Considerations for IANA-PWE3-MIB

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry: Descriptor OBJECT IDENTIFIER value ---------- ----------------------- ianaPwe3MIB { mib-2 174 }

15. Acknowledgments

We thank Orly Nicklass for her dedicated review and significant edit in various sections of the document, and Kiran Koushik for his contribution. The individuals listed below contributed significantly to this document: Dave Danenberg - Litchfield Communications Sharon Mantin - Corrigent Systems

16. References

16.1. Normative References

[BCP14] Bradner, S., "Key words for use in RFCs to Indicate requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed., "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.
Top   ToC   RFC5601 - Page 65
   [RFC2579]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
              Schoenwaelder, Ed., "Textual Conventions for SMIv2", STD
              58, RFC 2579, April 1999.

   [RFC2580]  McCloghrie, K., Perkins, D., and J. Schoenwaelder,
              "Conformance Statements for SMIv2", STD 58, RFC 2580,
              April 1999.

   [RFC2863]  McCloghrie, K. and F. Kastenholz, "The Interfaces Group
              MIB", RFC 2863, June 2000.

   [RFC3411]  Harrington, D., Presuhn, R., and B. Wijnen, "An
              Architecture for Describing Simple Network Management
              Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
              December 2002.

   [RFC3413]  Levi, D., Meyer, P., and B. Stewart, "Simple Network
              Management Protocol (SNMP) Applications", STD 62, RFC
              3413, December 2002.

   [RFC3593]  Tesink, K., Ed., "Textual Conventions for MIB Modules
              Using Performance History Based on 15 Minute Intervals",
              RFC 3593, September 2003.

   [RFC3705]  Ray, B. and R. Abbi, "High Capacity Textual Conventions
              for MIB Modules Using Performance History Based on 15
              Minute Intervals", RFC 3705, February 2004.

   [RFC3931]  Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling
              Protocol - Version 3 (L2TPv3)", RFC 3931, March 2005.

   [RFC4001]  Daniele, M., Haberman, B., Routhier, S., and J.
              Schoenwaelder, "Textual Conventions for Internet Network
              Addresses", RFC 4001, February 2005.

   [RFC4446]  Martini, L., "IANA Allocations for Pseudowire Edge to Edge
              Emulation (PWE3)", BCP 116, RFC 4446, April 2006.

   [RFC4447]  Martini, L., Rosen, E., El-Aawar, N., Smith, T., and G.
              Heron, "Pseudowire Setup and Maintenance Using the Label
              Distribution Protocol (LDP)", RFC 4447, April 2006.

   [RFC4623]  Malis, A. and M. Townsley, "Pseudowire Emulation Edge-to-
              Edge (PWE3) Fragmentation and Reassembly", RFC 4623,
              August 2006.
Top   ToC   RFC5601 - Page 66
   [RFC4720]  Malis, A., Allan, D., and N. Del Regno, "Pseudowire
              Emulation Edge-to-Edge (PWE3) Frame Check Sequence
              Retention", RFC 4720, November 2006.

   [RFC4863]  Martini, L. and G. Swallow, "Wildcard Pseudowire Type",
              RFC 4863, May 2007.

   [RFC5542]  Nadeau, T., Ed., Zelig, D., Ed., and O. Nicklass, Ed.,
              "Definitions of Textual Conventions for Pseudowires (PW)
              Management", RFC 5542, May 2009.

16.2. Informative References

[CEPMIB] Zelig, D., Ed., Cohen, R., Ed., and T. Nadeau, Ed., "SONET/SDH Circuit Emulation Service Over Packet (CEP) Management Information Base (MIB) Using SMIv2", Work in Progress, January 2008. [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet- Standard Management Framework", RFC 3410, December 2002. [RFC3916] Xiao, X., Ed., McPherson, D., Ed., and P. Pate, Ed., "Requirements for Pseudo-Wire Emulation Edge-to-Edge (PWE3)", RFC 3916, September 2004. [RFC3985] Bryant, S. and P. Pate, "Pseudo Wire Emulation Edge-to- Edge (PWE3) Architecture", RFC 3985, March 2005. [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008. [RFC5602] Zelig, D., Ed., and T. Nadeau, Ed., "Pseudowire (PW) over MPLS PSN Management Information Base (MIB)", RFC 5602, July 2009.
Top   ToC   RFC5601 - Page 67

Authors' Addresses

Thomas D. Nadeau (editor) BT BT Centre 81 Newgate Street London EC1A 7AJ United Kingdom EMail: tom.nadeau@bt.com David Zelig (editor) Oversi Networks 1 Rishon Letzion St. Petah Tikva Israel Phone: +972 77 3337 750 EMail: davidz@oversi.com