7. Security Considerations
Security considerations essentially come from the Trust Assumption Section 6.3.1, ie, that all PCN-nodes are PCN-enabled and are trusted for truthful PCN-metering and PCN-marking. PCN splits functionality between PCN-interior-nodes and PCN-boundary-nodes, and the security considerations are somewhat different for each, mainly because PCN- boundary-nodes are flow-aware and PCN-interior-nodes are not. o Because PCN-boundary-nodes are flow-aware, they are trusted to use that awareness correctly. The degree of trust required depends on the kinds of decisions they have to make and the kinds of information they need to make them. There is nothing specific to PCN. o The PCN-ingress-nodes police packets to ensure a PCN-flow sticks within its agreed limit, and to ensure that only PCN-flows that have been admitted contribute PCN-traffic into the PCN-domain. The policer must drop (or perhaps downgrade to a different DSCP) any PCN-packets received that are outside this remit. This is similar to the existing IntServ behaviour. Between them, the PCN- boundary-nodes must encircle the PCN-domain; otherwise, PCN- packets could enter the PCN-domain without being subject to admission control, which would potentially destroy the QoS of existing flows. o PCN-interior-nodes are not flow-aware. This prevents some security attacks where an attacker targets specific flows in the data plane -- for instance, for DoS or eavesdropping.
o The PCN-boundary-nodes rely on correct PCN-marking by the PCN- interior-nodes. For instance, a rogue PCN-interior-node could PCN-mark all packets so that no flows were admitted. Another possibility is that it doesn't PCN-mark any packets, even when it is pre-congested. More subtly, the rogue PCN-interior-node could perform these attacks selectively on particular flows, or it could PCN-mark the correct fraction overall but carefully choose which flows it marked. o The PCN-boundary-nodes should be able to deal with DoS attacks and state exhaustion attacks based on fast changes in per-flow signalling. o The signalling between the PCN-boundary-nodes must be protected from attacks. For example, the recipient needs to validate that the message is indeed from the node that claims to have sent it. Possible measures include digest authentication and protection against replay and man-in-the-middle attacks. For the RSVP protocol specifically, hop-by-hop authentication is in [RFC2747], and [Behringer09] may also be useful. Operational security advice is given in Section 5.5.8. Conclusions
This document describes a general architecture for flow admission and termination based on pre-congestion information, in order to protect the quality of service of established, inelastic flows within a single Diffserv domain. The main topic is the functional architecture. This document also mentions other topics like the assumptions and open issues associated with the PCN architecture.9. Acknowledgements
This document is a revised version of an earlier individual working draft authored by: P. Eardley, J. Babiarz, K. Chan, A. Charny, R. Geib, G. Karagiannis, M. Menth, and T. Tsou. They are therefore contributors to this document. Thanks to those who have made comments on this document: Lachlan Andrew, Joe Babiarz, Fred Baker, David Black, Steven Blake, Ron Bonica, Scott Bradner, Bob Briscoe, Ross Callon, Jason Canon, Ken Carlberg, Anna Charny, Joachim Charzinski, Andras Csaszar, Francis Dupont, Lars Eggert, Pasi Eronen, Adrian Farrel, Ruediger Geib, Wei Gengyu, Robert Hancock, Fortune Huang, Christian Hublet, Cullen Jennings, Ingemar Johansson, Georgios Karagiannis, Hein Mekkes, Michael Menth, Toby Moncaster, Dimitri Papadimitriou, Dan Romascanu, Daisuke Satoh, Ben Strulo, Tom Taylor, Hannes Tschofenig, Tina Tsou,
David Ward, Lars Westberg, Magnus Westerlund, and Delei Yu. Thanks to Bob Briscoe who extensively revised the Operations and Management section. This document is the result of discussions in the PCN WG and forerunner activity in the TSVWG. A number of previous drafts were presented to TSVWG; their authors were: B. Briscoe, P. Eardley, D. Songhurst, F. Le Faucheur, A. Charny, J. Babiarz, K. Chan, S. Dudley, G. Karagiannis, A. Bader, L. Westberg, J. Zhang, V. Liatsos, X-G. Liu, and A. Bhargava. The admission control mechanism evolved from the work led by Martin Karsten on the Guaranteed Stream Provider developed in the M3I project [Karsten02] [M3I], which in turn was based on the theoretical work of Gibbens and Kelly [Gibbens99].10. References
10.1. Normative References
[RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers", RFC 2474, December 1998. [RFC3246] Davie, B., Charny, A., Bennet, J., Benson, K., Le Boudec, J., Courtney, W., Davari, S., Firoiu, V., and D. Stiliadis, "An Expedited Forwarding PHB (Per- Hop Behavior)", RFC 3246, March 2002.10.2. Informative References
[RFC1633] Braden, B., Clark, D., and S. Shenker, "Integrated Services in the Internet Architecture: an Overview", RFC 1633, June 1994. [RFC2205] Braden, B., Zhang, L., Berson, S., Herzog, S., and S. Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification", RFC 2205, September 1997. [RFC2211] Wroclawski, J., "Specification of the Controlled- Load Network Element Service", RFC 2211, September 1997. [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and W. Weiss, "An Architecture for Differentiated Services", RFC 2475, December 1998.
[RFC2747] Baker, F., Lindell, B., and M. Talwar, "RSVP Cryptographic Authentication", RFC 2747, January 2000. [RFC2753] Yavatkar, R., Pendarakis, D., and R. Guerin, "A Framework for Policy-based Admission Control", RFC 2753, January 2000. [RFC2983] Black, D., "Differentiated Services and Tunnels", RFC 2983, October 2000. [RFC2998] Bernet, Y., Ford, P., Yavatkar, R., Baker, F., Zhang, L., Speer, M., Braden, R., Davie, B., Wroclawski, J., and E. Felstaine, "A Framework for Integrated Services Operation over Diffserv Networks", RFC 2998, November 2000. [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition of Explicit Congestion Notification (ECN) to IP", RFC 3168, September 2001. [RFC3270] Le Faucheur, F., Wu, L., Davie, B., Davari, S., Vaananen, P., Krishnan, R., Cheval, P., and J. Heinanen, "Multi-Protocol Label Switching (MPLS) Support of Differentiated Services", RFC 3270, May 2002. [RFC3393] Demichelis, C. and P. Chimento, "IP Packet Delay Variation Metric for IP Performance Metrics (IPPM)", RFC 3393, November 2002. [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks", STD 62, RFC 3411, December 2002. [RFC3726] Brunner, M., "Requirements for Signaling Protocols", RFC 3726, April 2004. [RFC4216] Zhang, R. and J. Vasseur, "MPLS Inter-Autonomous System (AS) Traffic Engineering (TE) Requirements", RFC 4216, November 2005. [RFC4301] Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, December 2005. [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, December 2005.
[RFC4594] Babiarz, J., Chan, K., and F. Baker, "Configuration Guidelines for DiffServ Service Classes", RFC 4594, August 2006. [RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M. Zekauskas, "A One-way Active Measurement Protocol (OWAMP)", RFC 4656, September 2006. [RFC4774] Floyd, S., "Specifying Alternate Semantics for the Explicit Congestion Notification (ECN) Field", BCP 124, RFC 4774, November 2006. [RFC4778] Kaeo, M., "Operational Security Current Practices in Internet Service Provider Environments", RFC 4778, January 2007. [RFC5129] Davie, B., Briscoe, B., and J. Tay, "Explicit Congestion Marking in MPLS", RFC 5129, January 2008. [RFC5462] Andersson, L. and R. Asati, "Multiprotocol Label Switching (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic Class" Field", RFC 5462, February 2009. [P.800] "Methods for subjective determination of transmission quality", ITU-T Recommendation P.800, August 1996. [Y.1541] "Network Performance Objectives for IP-based Services", ITU-T Recommendation Y.1541, February 2006. [Babiarz06] Babiarz, J., Chan, K., Karagiannis, G., and P. Eardley, "SIP Controlled Admission and Preemption", Work in Progress, October 2006. [Behringer09] Behringer, M. and F. Le Faucheur, "Applicability of Keying Methods for RSVP Security", Work in Progress, March 2009. [Briscoe06] Briscoe, B., Eardley, P., Songhurst, D., Le Faucheur, F., Charny, A., Babiarz, J., Chan, K., Dudley, S., Karagiannis, G., Bader, A., and L. Westberg, "An edge-to-edge Deployment Model for Pre- Congestion Notification: Admission Control over a Diffserv Region", Work in Progress, October 2006.
[Briscoe08] Briscoe, B., "Emulating Border Flow Policing using Re-PCN on Bulk Data", Work in Progress, September 2008. [Briscoe09] Briscoe, B., "Tunnelling of Explicit Congestion Notification", Work in Progress, March 2009. [Bryant08] Bryant, S., Davie, B., Martini, L., and E. Rosen, "Pseudowire Congestion Control Framework", Work in Progress, May 2008. [Charny07-1] Charny, A., Babiarz, J., Menth, M., and X. Zhang, "Comparison of Proposed PCN Approaches", Work in Progress, November 2007. [Charny07-2] Charny, A., Zhang, X., Le Faucheur, F., and V. Liatsos, "Pre-Congestion Notification Using Single Marking for Admission and Termination", Work in Progress, November 2007. [Charny07-3] Charny, A., "Email to PCN WG mailing list", November 2007, <http://www1.ietf.org/mail-archive/ web/pcn/current/msg00871.html>. [Charny08] Charny, A., "Email to PCN WG mailing list", March 2008, <http://www1.ietf.org/mail-archive/web/ pcn/current/msg01359.html>. [Eardley07] Eardley, P., "Email to PCN WG mailing list", October 2007, <http://www1.ietf.org/mail-archive/ web/pcn/current/msg00831.html>. [Eardley09] Eardley, P., "Metering and marking behaviour of PCN- nodes", Work in Progress, May 2009. [Gibbens99] Gibbens, R. and F. Kelly, "Distributed connection acceptance control for a connectionless network", Proceedings International Teletraffic Congress (ITC16), Edinburgh, pp. 941-952, 1999. [Hancock02] Hancock, R. and E. Hepworth, "Slide 14 of 'NSIS: An Outline Framework for QoS Signalling'", May 2002, <h ttp://www-nrc.nokia.com/sua/nsis/interim/ nsis-framework-outline.ppt>.
[Iyer03] Iyer, S., Bhattacharyya, S., Taft, N., and C. Diot, "An approach to alleviate link overload as observed on an IP backbone", IEEE INFOCOM, 2003, <http://www.ieee-infocom.org/2003/papers/10_04.pdf>. [Karsten02] Karsten, M. and J. Schmitt, "Admission Control Based on Packet Marking and Feedback Signalling -- Mechanisms, Implementation and Experiments", TU- Darmstadt Technical Report TR-KOM-2002-03, May 2002, <http://www.kom.e-technik.tu-darmstadt.de/ publications/abstracts/KS02-5.html>. [Kumar01] Kumar, A., Rastogi, R., Silberschatz, A., and B. Yener, "Algorithms for Provisioning Virtual Private Networks in the Hose Model", Proceedings ACM SIGCOMM (ITC16), , 2001. [Lefaucheur06] Le Faucheur, F., Charny, A., Briscoe, B., Eardley, P., Babiarz, J., and K. Chan, "RSVP Extensions for Admission Control over Diffserv using Pre-congestion Notification (PCN)", Work in Progress, June 2006. [M3I] "M3I - Market Managed Multiservice Internet", <http://www.m3iproject.org/>. [Menth08-1] Menth, M., Lehrieder, F., Eardley, P., Charny, A., and J. Babiarz, "Edge-Assisted Marked Flow Termination", Work in Progress, February 2008. [Menth08-2] Menth, M., Babiarz, J., Moncaster, T., and B. Briscoe, "PCN Encoding for Packet-Specific Dual Marking (PSDM)", Work in Progress, July 2008. [Menth09-1] Menth, M. and M. Hartmann, "Threshold Configuration and Routing Optimization for PCN-Based Resilient Admission Control", Computer Networks, 2009, <http://dx.doi.org/10.1016/j.comnet.2009.01.013>. [Menth09-2] Menth, M., Lehrieder, F., Briscoe, B., Eardley, P., Moncaster, T., Babiarz, J., Chan, K., Charny, A., Karagiannis, G., Zhang, X., Taylor, T., Satoh, D., and R. Geib, "A Survey of PCN-Based Admission Control and Flow Termination", IEEE Communications Surveys and Tutorials, <http:// www3.informatik.uni-wuerzburg.de/staff/menth/ Publications/papers/Menth08-PCN-Overview.pdf>>.
[Moncaster09-1] Moncaster, T., Briscoe, B., and M. Menth, "Baseline Encoding and Transport of Pre-Congestion Information", Work in Progress, May 2009. [Moncaster09-2] Moncaster, T., Briscoe, B., and M. Menth, "A PCN encoding using 2 DSCPs to provide 3 or more states", Work in Progress, April 2009. [Sarker08] Sarker, Z. and I. Johansson, "Usecases and Benefits of end to end ECN support in PCN Domains", Work in Progress, November 2008. [Songhurst06] Songhurst, DJ., Eardley, P., Briscoe, B., Di Cairano Gilfedder, C., and J. Tay, "Guaranteed QoS Synthesis for Admission Control with Shared Capacity", BT Technical Report TR-CXR9-2006-001, Feburary 2006, <http://www.cs.ucl.ac.uk/staff/ B.Briscoe/projects/ipe2eqos/gqs/papers/ GQS_shared_tr.pdf>. [Taylor09] Charny, A., Huang, F., Menth, M., and T. Taylor, "PCN Boundary Node Behaviour for the Controlled Load (CL) Mode of Operation", Work in Progress, March 2009. [Tsou08] Tsou, T., Huang, F., and T. Taylor, "Applicability Statement for the Use of Pre-Congestion Notification in a Resource-Controlled Network", Work in Progress, November 2008. [Westberg08] Westberg, L., Bhargava, A., Bader, A., Karagiannis, G., and H. Mekkes, "LC-PCN: The Load Control PCN Solution", Work in Progress, November 2008.
Appendix A. Possible Future Work Items
This section mentions some topics that are outside the PCN WG's current charter but that have been mentioned as areas of interest. They might be work items for the PCN WG after a future re-chartering, some other IETF WG, another standards body, or an operator-specific usage that is not standardised. Note: It should be crystal clear that this section discusses possibilities only. The first set of possibilities relate to the restrictions described in Section 6.3: o A single PCN-domain encompasses several autonomous systems that do not trust each other. A possible solution is a mechanism like re- PCN [Briscoe08]. o Not all the nodes run PCN. For example, the PCN-domain is a multi-site enterprise network. The sites are connected by a VPN tunnel; although PCN doesn't operate inside the tunnel, the PCN mechanisms still work properly because of the good QoS on the virtual link (the tunnel). Another example is that PCN is deployed on the general Internet (ie, widely but not universally deployed). o Applying the PCN mechanisms to other types of traffic, ie, beyond inelastic traffic -- for instance, applying the PCN mechanisms to traffic scheduled with the Assured Forwarding per-hop behaviour. One example could be flow-rate adaptation by elastic applications that adapt according to the pre-congestion information. o The aggregation assumption doesn't hold, because the link capacity is too low. Measurement-based admission control is less accurate, with a greater risk of over-admission for instance. o The applicability of PCN mechanisms for emergency use (911, GETS, WPS, MLPP, etc.). Other possibilities include: o Probing. This is discussed in Appendix A.1 below. o The PCN-domain extends to the end users. This scenario is described in [Babiarz06]. The end users need to be trusted to do their own policing. If there is sufficient traffic, then the aggregation assumption may hold. A variant is that the PCN-domain extends out as far as the LAN edge switch.
o Indicating pre-congestion through signalling messages rather than in-band (in the form of PCN-marked packets). o The decision-making functionality is at a centralised node rather than at the PCN-boundary-nodes. This requires that the PCN- egress-node signals PCN-feedback-information to the centralised node, and that the centralised node signals to the PCN-ingress- node the decision about admission (or termination). Such possibility may need the centralised node and the PCN-boundary- nodes to be configured with each other's addresses. The centralised case is described further in [Tsou08]. o Signalling extensions for specific protocols (eg, RSVP and NSIS) -- for example, the details of how the signalling protocol installs the flowspec at the PCN-ingress-node for an admitted PCN- flow, and how the signalling protocol carries the PCN-feedback- information. Perhaps also for other functions such as for coping with failure of a PCN-boundary-node ([Briscoe06] considers what happens if RSVP is the QoS signalling protocol) and for establishing a tunnel across the PCN-domain if it is necessary to carry ECN marks transparently. o Policing by the PCN-ingress-node may not be needed if the PCN- domain can trust that the upstream network has already policed the traffic on its behalf. o PCN for Pseudowire. PCN may be used as a congestion avoidance mechanism for edge-to-edge pseudowire emulations [Bryant08]. o PCN for MPLS. [RFC3270] defines how to support the Diffserv architecture in MPLS (Multiprotocol Label Switching) networks. [RFC5129] describes how to add PCN for admission control of microflows into a set of MPLS aggregates. PCN-marking is done in MPLS's EXP field (which [RFC5462] re-names the Class of Service (CoS) field). o PCN for Ethernet. Similarly, it may be possible to extend PCN into Ethernet networks, where PCN-marking is done in the Ethernet header. Note: Specific consideration of this extension is outside of the IETF's remit.
A.1. Probing
A.1.1. Introduction
Probing is a potential mechanism to assist admission control. PCN's admission control, as described so far, is essentially a reactive mechanism where the PCN-egress-node monitors the pre- congestion level for traffic from each PCN-ingress-node; if the level rises, then it blocks new flows on that ingress-egress-aggregate. However, it's possible that an ingress-egress-aggregate carries no traffic, and so the PCN-egress-node can't make an admission decision using the usual method described earlier. One approach is to be "optimistic" and simply admit the new flow. However, it's possible to envisage a scenario where the traffic levels on other ingress-egress-aggregates are already so high that they're blocking new PCN-flows, and admitting a new flow onto this "empty" ingress-egress-aggregate adds extra traffic onto a link that is already pre-congested. This may 'tip the balance' so that PCN's flow termination mechanism is activated or some packets are dropped. This risk could be lessened by configuring, on each link, a sufficient 'safety margin' above the PCN-threshold-rate. An alternative approach is to make PCN a more proactive mechanism. The PCN-ingress-node explicitly determines, before admitting the prospective new flow, whether the ingress-egress-aggregate can support it. This can be seen as a "pessimistic" approach, in contrast to the "optimism" of the approach above. It involves probing: a PCN-ingress-node generates and sends probe packets in order to test the pre-congestion level that the flow would experience. One possibility is that a probe packet is just a dummy data packet, generated by the PCN-ingress-node and addressed to the PCN-egress- node.A.1.2. Probing Functions
The probing functions are: o Make the decision that probing is needed. As described above, this is when the ingress-egress-aggregate (or the ECMP path -- see Section 6.4) carries no PCN-traffic. An alternative is to always probe, ie, probe before admitting any PCN-flow.
o (if required) Communicate the request that probing is needed; the PCN-egress-node signals to the PCN-ingress-node that probing is needed. o (if required) Generate probe traffic; the PCN-ingress-node generates the probe traffic. The appropriate number (or rate) of probe packets will depend on the PCN-metering algorithm; for example, an excess-traffic-metering algorithm triggers fewer PCN- marks than a threshold-metering algorithm, and so will need more probe packets. o Forward probe packets; as far as PCN-interior-nodes are concerned, probe packets are handled the same as (ordinary data) PCN-packets in terms of routing, scheduling, and PCN-marking. o Consume probe packets; the PCN-egress-node consumes probe packets to ensure that they don't travel beyond the PCN-domain.A.1.3. Discussion of Rationale for Probing, Its Downsides and Open Issues
It is an unresolved question whether probing is really needed, but two viewpoints have been put forward as to why it is useful. The first is perhaps the most obvious: there is no PCN-traffic on the ingress-egress-aggregate. The second assumes that multipath routing (eg, ECMP) is running in the PCN-domain. We now consider each in turn. The first viewpoint assumes the following: o There is no PCN-traffic on the ingress-egress-aggregate (so a normal admission decision cannot be made). o Simply admitting the new flow has a significant risk of leading to overload: packets dropped or flows terminated. On the former bullet, [Eardley07] suggests that, during the future busy hour of a national network with about 100 PCN-boundary-nodes, there are likely to be significant numbers of aggregates with very few flows under nearly all circumstances. The latter bullet could occur if new flows start on many of the empty ingress-egress-aggregates, which together overload a link in the PCN- domain. To be a problem, this would probably have to happen in a short time period (flash crowd) because, after the reaction time of the system, other (non-empty) ingress-egress-aggregates that pass through the link will measure pre-congestion and so block new flows. Also, flows naturally end anyway.
The downsides of probing for this viewpoint are: o Probing adds delay to the admission control process. o Sufficient probing traffic has to be generated to test the pre- congestion level of the ingress-egress-aggregate. But the probing traffic itself may cause pre-congestion, causing other PCN-flows to be blocked or even terminated -- and, in the flash crowd scenario, there will be probing on many ingress-egress-aggregates. The second viewpoint applies in the case where there is multipath routing (eg, ECMP) in the PCN-domain. Note that ECMP is often used on core networks. There are two possibilities: (1) If admission control is based on measurements of the ingress- egress-aggregate, then the viewpoint that probing is useful assumes: * There's a significant chance that the traffic is unevenly balanced across the ECMP paths and, hence, there's a significant risk of admitting a flow that should be blocked (because it follows an ECMP path that is pre-congested) or of blocking a flow that should be admitted. Note: [Charny07-3] suggests unbalanced traffic is quite possible, even with quite a large number of flows on a PCN-link (eg, 1000), when Assumption 3 (aggregation) is likely to be satisfied. (2) If admission control is based on measurements of pre-congestion on specific ECMP paths, then the viewpoint that probing is useful assumes: * There is no PCN-traffic on the ECMP path on which to base an admission decision. * Simply admitting the new flow has a significant risk of leading to overload. * The PCN-egress-node can match a packet to an ECMP path. Note: This is similar to the first viewpoint and so, similarly, could occur in a flash crowd if a new flow starts more or less simultaneously on many of the empty ECMP paths. Because there are several ECMP paths between each pair of PCN-boundary-nodes, it's presumably more likely that an ECMP path is "empty" than an ingress-egress-aggregate is. To constrain the number of ECMP paths, a few tunnels could be set up between each pair of PCN-
boundary-nodes. Tunnelling also solves the issue in the point immediately above (which is otherwise hard to solve because an ECMP routing decision is made independently on each node). The downsides of probing for this viewpoint are: o Probing adds delay to the admission control process. o Sufficient probing traffic has to be generated to test the pre- congestion level of the ECMP path. But there's the risk that the probing traffic itself may cause pre-congestion, causing other PCN-flows to be blocked or even terminated. o The PCN-egress-node needs to consume the probe packets to ensure they don't travel beyond the PCN-domain, since they might confuse the destination end node. This is non-trivial, since probe packets are addressed to the destination end node in order to test the relevant ECMP path (ie, they are not addressed to the PCN- egress-node, unlike the first viewpoint above). The open issues associated with these viewpoints include: o What rate and pattern of probe packets does the PCN-ingress-node need to generate so that there's enough traffic to make the admission decision? o What difficulty does the delay (whilst probing is done), and possible packet drops, cause applications? o Can the delay be alleviated by automatically and periodically probing on the ingress-egress-aggregate? Or does this add too much overhead? o Are there other ways of dealing with the flash crowd scenario? For instance, by limiting the rate at which new flows are admitted, or perhaps by a PCN-egress-node blocking new flows on its empty ingress-egress-aggregates when its non-empty ones are pre-congested. o (Second viewpoint only) How does the PCN-egress-node disambiguate probe packets from data packets (so it can consume the former)? The PCN-egress-node must match the characteristic setting of particular bits in the probe packet's header or body, but these bits must not be used by any PCN-interior-node's ECMP algorithm. In the general case, this isn't possible, but it should be possible for a typical ECMP algorithm (which examines the source and destination IP addresses and port numbers, the protocol ID, and the DSCP).
Author's Address
Philip Eardley (editor) BT B54/77, Sirius House Adastral Park Martlesham Heath Ipswich, Suffolk IP5 3RE United Kingdom EMail: philip.eardley@bt.com