Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 5531

RPC: Remote Procedure Call Protocol Specification Version 2

Pages: 63
Draft Standard
Errata
Obsoletes:  1831
Updated by:  9289
Part 2 of 4 – Pages 16 to 26
First   Prev   Next

Top   ToC   RFC5531 - Page 16   prevText

12. The RPC Language

Just as there was a need to describe the XDR data-types in a formal language, there is also need to describe the procedures that operate on these XDR data-types in a formal language as well. The RPC language is an extension to the XDR language, with the addition of "program", "procedure", and "version" declarations. The keywords "program" and "version" are reserved in the RPC language, and implementations of XDR compilers MAY reserve these keywords even when provided with pure XDR, non-RPC, descriptions. The following example is used to describe the essence of the language.
Top   ToC   RFC5531 - Page 17

12.1. An Example Service Described in the RPC Language

Here is an example of the specification of a simple ping program. program PING_PROG { /* * Latest and greatest version */ version PING_VERS_PINGBACK { void PINGPROC_NULL(void) = 0; /* * Ping the client, return the round-trip time * (in microseconds). Returns -1 if the operation * timed out. */ int PINGPROC_PINGBACK(void) = 1; } = 2; /* * Original version */ version PING_VERS_ORIG { void PINGPROC_NULL(void) = 0; } = 1; } = 1; const PING_VERS = 2; /* latest version */ The first version described is PING_VERS_PINGBACK with two procedures: PINGPROC_NULL and PINGPROC_PINGBACK. PINGPROC_NULL takes no arguments and returns no results, but it is useful for computing round-trip times from the client to the server and back again. By convention, procedure 0 of any RPC protocol should have the same semantics and never require any kind of authentication. The second procedure is used for the client to have the server do a reverse ping operation back to the client, and it returns the amount of time (in microseconds) that the operation used. The next version, PING_VERS_ORIG, is the original version of the protocol, and it does not contain the PINGPROC_PINGBACK procedure. It is useful for compatibility with old client programs, and as this program matures, it may be dropped from the protocol entirely.
Top   ToC   RFC5531 - Page 18

12.2. The RPC Language Specification

The RPC language is identical to the XDR language defined in RFC 4506, except for the added definition of a "program-def", described below. program-def: "program" identifier "{" version-def version-def * "}" "=" constant ";" version-def: "version" identifier "{" procedure-def procedure-def * "}" "=" constant ";" procedure-def: proc-return identifier "(" proc-firstarg ("," type-specifier )* ")" "=" constant ";" proc-return: "void" | type-specifier proc-firstarg: "void" | type-specifier

12.3. Syntax Notes

o The following keywords are added and cannot be used as identifiers: "program" and "version". o A version name cannot occur more than once within the scope of a program definition. Neither can a version number occur more than once within the scope of a program definition. o A procedure name cannot occur more than once within the scope of a version definition. Neither can a procedure number occur more than once within the scope of version definition. o Program identifiers are in the same name space as constant and type identifiers. o Only unsigned constants can be assigned to programs, versions, and procedures. o Current RPC language compilers do not generally support more than one type-specifier in procedure argument lists; the usual practice is to wrap arguments into a structure.
Top   ToC   RFC5531 - Page 19

13. IANA Considerations

The assignment of RPC program numbers, authentication flavor numbers, and authentication status numbers has in the past been performed by Sun Microsystems, Inc (Sun). This is inappropriate for an IETF Standards Track protocol, as such work is done well by the Internet Assigned Numbers Authority (IANA). This document proposes the transfer of authority over RPC program numbers, authentication flavor numbers, and authentication status numbers described here from Sun Microsystems, Inc. to IANA and describes how IANA will maintain and assign these numbers. Users of RPC protocols will benefit by having an independent body responsible for these number assignments.

13.1. Numbering Requests to IANA

Appendix B of this document describes the information to be sent to IANA to request one or more RPC numbers and the rules that apply. IANA will store the request for documentary purposes and put the following information into the public registry: o The short description of purpose and use o The program number(s) assigned o The short identifier string(s)

13.2. Protecting Past Assignments

Sun has made assignments in both the RPC program number space and the RPC authentication flavor number space since the original deployment of RPC. The assignments made by Sun Microsystems are still valid, and will be preserved. Sun has communicated all current assignments in both number spaces to IANA and final handoff of number assignment is complete. Current program and auth number assignments are provided in Appendix C. Current authentication status numbers are listed in Section 9 of this document in the "enum auth_stat" definition.

13.3. RPC Number Assignment

Future IANA practice will deal with the following partitioning of the 32-bit number space as listed in Section 8.3. Detailed information for the administration of the partitioned blocks in Section 8.3 is given below.
Top   ToC   RFC5531 - Page 20

13.3.1. To Be Assigned By IANA

The first block will be administered by IANA, with previous assignments by Sun protected. Previous assignments were restricted to the range decimal 100000-399999 (0x000186a0 to 0x00061a7f); therefore, IANA will begin assignments at decimal 400000. Individual numbers should be grated on a First Come First Served basis, and blocks should be granted under rules related to the size of the block.

13.3.2. Defined by Local Administrator

The "Defined by local administrator" block is available for any local administrative domain to use, in a similar manner to IP address ranges reserved for private use. The expected use would be through the establishment of a local domain "authority" for assigning numbers from this range. This authority would establish any policies or procedures to be used within that local domain for use or assignment of RPC numbers from the range. The local domain should be sufficiently isolated that it would be unlikely that RPC applications developed by other local domains could communicate with the domain. This could result in RPC number contention, which would cause one of the applications to fail. In the absence of a local administrator, this block can be utilized in a "Private Use" manner per [RFC5226].

13.3.3. Transient Block

The "Transient" block can be used by any RPC application on an "as available" basis. This range is intended for services that can communicate a dynamically selected RPC program number to clients of the service. Any mechanism can be used to communicate the number. For example, either shared memory when the client and server are located on the same system or a network message (either RPC or otherwise) that disseminates the selected number can be used. The transient block is not administered. An RPC service uses this range by selecting a number in the transient range and attempting to register that number with the local system's RPC bindery (see the RPCBPROC_SET or PMAPPROC_SET procedures in "Binding Protocols for ONC RPC Version 2", [RFC1833]). If successful, no other RPC service was using that number and the RPC Bindery has assigned that number to the requesting RPC application. The registration is valid until the RPC Bindery terminates, which normally would only happen if the system reboots, causing all applications, including the RPC service using the transient number, to terminate. If the transient number registration fails, another RPC application is using the number and
Top   ToC   RFC5531 - Page 21
   the requestor must select another number and try again.  To avoid
   conflicts, the recommended method is to select a number randomly from
   the transient range.

13.3.4. Reserved Block

The "Reserved" blocks are available for future use. RPC applications must not use numbers in these ranges unless their use is allowed by future action by the IESG.

13.3.5. RPC Number Sub-Blocks

RPC numbers are usually assigned for specific RPC services. Some applications, however, require multiple RPC numbers for a service. The most common example is an RPC service that needs to have multiple instances of the service active simultaneously at a specific site. RPC does not have an "instance identifier" in the protocol, so either a mechanism must be implemented to multiplex RPC requests amongst various instances of the service or unique RPC numbers must be used by each instance. In these cases, the RPC protocol used with the various numbers may be different or the same. The numbers may either be assigned dynamically by the application, or as part of a site-specific administrative decision. If possible, RPC services that dynamically assign RPC numbers should use the "Transient" RPC number block defined in Section 13.3.3. If not possible, RPC number sub-blocks may be requested. Assignment of RPC Number Sub-Blocks is controlled by the size of the sub-block being requested. "Specification Required" and "IESG Approval" are used as defined by Section 4.1 of [RFC5226]. Size of sub-block Assignment Method Authority ----------------- ----------------- --------- Up to 100 numbers First Come First Served IANA Up to 1000 numbers Specification Required IANA More than 1000 numbers IESG Approval required IESG Note: sub-blocks can be any size. The limits given above are maximums, and smaller size sub-blocks are allowed. Sub-blocks sized up to 100 numbers may be assigned by IANA on a First Come First Served basis. The RPC Service Description included in the range must include an indication of how the sub-block is managed. At a minimum, the statement should indicate whether the sub-block is
Top   ToC   RFC5531 - Page 22
   used with a single RPC protocol or multiple RPC protocols, and
   whether the numbers are dynamically assigned or statically (through
   administrative action) assigned.

   Sub-blocks of up to 1000 numbers must be documented in detail.  The
   documentation must describe the RPC protocol or protocols that are to
   be used in the range.  It must also describe how the numbers within
   the sub-block are to be assigned or used.

   Sub-blocks sized over 1000 numbers must be documented as described
   above, and the assignment must be approved by the IESG.  It is
   expected that this will be rare.

   In order to avoid multiple requests of large blocks of numbers, the
   following rule is proposed.

   Requests up to and including 100 RPC numbers are handled via the
   First Come First Served assignment method.  This 100 number threshold
   applies to the total number of RPC numbers assigned to an individual
   or entity.  For example, if an individual or entity first requests,
   say, 70 numbers, and then later requests 40 numbers, then the request
   for the 40 numbers will be assigned via the Specification Required
   method.  As long as the total number of numbers assigned does not
   exceed 1000, IANA is free to waive the Specification Required
   assignment for incremental requests of less than 100 numbers.

   If an individual or entity has under 1000 numbers and later requests
   an additional set of numbers such that the individual or entity would
   be granted over 1000 numbers, then the additional request will
   require IESG Approval.

13.4. RPC Authentication Flavor Number Assignment

The second number space is the authentication mechanism identifier, or "flavor", number. This number is used to distinguish between various authentication mechanisms that can be optionally used with an RPC message. An authentication identifier is used in the "flavor" field of the "opaque_auth" structure.

13.4.1. Assignment Policy

Appendix B of this document describes the information to be sent to IANA to request one or more RPC auth numbers and the rules that apply. IANA will store the request for documentary purposes and put the following information into the public registry:
Top   ToC   RFC5531 - Page 23
   o  The short identifier string(s)

   o  The auth number(s) assigned

   o  The short description of purpose and use

13.4.2. Auth Flavors vs. Pseudo-Flavors

Recent progress in RPC security has moved away from new auth flavors as used by AUTH_DH [DH], and has focused on using the existing RPCSEC_GSS [RFC2203] flavor and inventing novel GSS-API (Generic Security Services Application Programming Interface) mechanisms that can be used with it. Even though RPCSEC_GSS is an assigned authentication flavor, use of a new RPCSEC_GSS mechanism with the Network File System (NFS) ([RFC1094] [RFC1813], and [RFC3530]) will require the registration of 'pseudo-flavors' that are used to negotiate security mechanisms in an unambiguous way, as defined by [RFC2623]. Existing pseudo-flavors have been granted in the decimal range 390000-390255. New pseudo-flavor requests will be granted by IANA within this block on a First Come First Served basis. For non-pseudo-flavor requests, IANA will begin granting RPC authentication flavor numbers at 400000 on a First Come First Served basis to avoid conflicts with currently granted numbers. For authentication flavors or RPCSEC_GSS mechanisms to be used on the Internet, it is strongly advised that an Informational or Standards Track RFC be published describing the authentication mechanism behaviour and parameters.

13.5. Authentication Status Number Assignment

The final number space is the authentication status or "auth_stat" values that describe the nature of a problem found during an attempt to authenticate or validate authentication. The complete initial list of these values is found in Section 9 of this document, in the "auth_stat" enum listing. It is expected that it will be rare to add values, but that a small number of new values may be added from time to time as new authentication flavors introduce new possibilities. Numbers should be granted on a First Come First Served basis to avoid conflicts with currently granted numbers.

13.5.1. Assignment Policy

Appendix B of this document describes the information to be sent to IANA to request one or more auth_stat values and the rules that apply. IANA will store the request for documentary purposes, and put the following information into the public registry:
Top   ToC   RFC5531 - Page 24
   o  The short identifier string(s)

   o  The auth_stat number(s) assigned

   o  The short description of purpose and use

14. Security Considerations

AUTH_SYS as described in Appendix A is known to be insecure due to the lack of a verifier to permit the credential to be validated. AUTH_SYS SHOULD NOT be used for services that permit clients to modify data. AUTH_SYS MUST NOT be specified as RECOMMENDED or REQUIRED for any Standards Track RPC service. AUTH_DH as mentioned in Sections 8.2 and 13.4.2 is considered obsolete and insecure; see [RFC2695]. AUTH_DH SHOULD NOT be used for services that permit clients to modify data. AUTH_DH MUST NOT be specified as RECOMMENDED or REQUIRED for any Standards Track RPC service. [RFC2203] defines a new security flavor, RPCSEC_GSS, which permits GSS-API [RFC2743] mechanisms to be used for securing RPC. All non- trivial RPC programs developed in the future should implement RPCSEC_GSS-based security appropriately. [RFC2623] describes how this was done for a widely deployed RPC program. Standards Track RPC services MUST mandate support for RPCSEC_GSS, and MUST mandate support for an authentication pseudo-flavor with appropriate levels of security, depending on the need for simple authentication, integrity (a.k.a. non-repudiation), or data privacy.
Top   ToC   RFC5531 - Page 25

Appendix A: System Authentication

The client may wish to identify itself, for example, as it is identified on a UNIX(tm) system. The flavor of the client credential is "AUTH_SYS". The opaque data constituting the credential encodes the following structure: struct authsys_parms { unsigned int stamp; string machinename<255>; unsigned int uid; unsigned int gid; unsigned int gids<16>; }; The "stamp" is an arbitrary ID that the caller machine may generate. The "machinename" is the name of the caller's machine (like "krypton"). The "uid" is the caller's effective user ID. The "gid" is the caller's effective group ID. "gids" are a counted array of groups that contain the caller as a member. The verifier accompanying the credential should have "AUTH_NONE" flavor value (defined above). Note that this credential is only unique within a particular domain of machine names, uids, and gids. The flavor value of the verifier received in the reply message from the server may be "AUTH_NONE" or "AUTH_SHORT". In the case of "AUTH_SHORT", the bytes of the reply verifier's string encode an opaque structure. This new opaque structure may now be passed to the server instead of the original "AUTH_SYS" flavor credential. The server may keep a cache that maps shorthand opaque structures (passed back by way of an "AUTH_SHORT" style reply verifier) to the original credentials of the caller. The caller can save network bandwidth and server cpu cycles by using the shorthand credential. The server may flush the shorthand opaque structure at any time. If this happens, the remote procedure call message will be rejected due to an authentication error. The reason for the failure will be "AUTH_REJECTEDCRED". At this point, the client may wish to try the original "AUTH_SYS" style of credential. It should be noted that use of this flavor of authentication does not guarantee any security for the users or providers of a service, in itself. The authentication provided by this scheme can be considered legitimate only when applications using this scheme and the network can be secured externally, and privileged transport addresses are used for the communicating end-points (an example of this is the use of privileged TCP/UDP ports in UNIX systems -- note that not all systems enforce privileged transport address mechanisms).
Top   ToC   RFC5531 - Page 26

Appendix B: Requesting RPC-Related Numbers from IANA

RPC program numbers, authentication flavor numbers, and authentication status numbers that must be unique across all networks are assigned by the Internet Assigned Number Authority. To apply for a single number or a block of numbers, electronic mail must be sent to IANA <iana@iana.org> with the following information: o The type of number(s) (program number or authentication flavor number or authentication status number) sought o How many numbers are sought o The name of the person or company that will use the number o An "identifier string" that associates the number with a service o Email address of the contact person for the service that will be using the number o A short description of the purpose and use of the number o If an authentication flavor number is sought, and the number will be a 'pseudo-flavor' intended for use with RPCSEC_GSS and NFS, mappings analogous to those in Section 4.2 of [RFC2623] Specific numbers cannot be requested. Numbers are assigned on a First Come First Served basis. For all RPC authentication flavor and authentication status numbers to be used on the Internet, it is strongly advised that an Informational or Standards Track RFC be published describing the authentication mechanism behaviour and parameters.


(next page on part 3)

Next Section