Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 5430

Suite B Profile for Transport Layer Security (TLS)

Pages: 12
Obsoleted by:  6460

ToP   noToC   RFC5430 - Page 1
Network Working Group                                          M. Salter
Request for Comments: 5430                      National Security Agency
Category: Informational                                      E. Rescorla
                                                       Network Resonance
                                                              R. Housley
                                                          Vigil Security
                                                              March 2009


           Suite B Profile for Transport Layer Security (TLS)

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (c) 2009 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents in effect on the date of
   publication of this document (http://trustee.ietf.org/license-info).
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.
ToP   noToC   RFC5430 - Page 2

Abstract

The United States government has published guidelines for "NSA Suite B Cryptography", which defines cryptographic algorithm policy for national security applications. This document defines a profile of Transport Layer Security (TLS) version 1.2 that is fully conformant with Suite B. This document also defines a transitional profile for use with TLS version 1.0 and TLS version 1.1 which employs Suite B algorithms to the greatest extent possible.

Table of Contents

1. Introduction ....................................................2 2. Conventions Used in This Document ...............................3 3. Suite B Requirements ............................................3 4. Suite B Compliance and Interoperability Requirements ............4 4.1. Security Levels ............................................7 4.2. Acceptable Curves ..........................................8 4.3. Certificates ...............................................8 4.4. signature_algorithms Extension .............................9 4.5. CertificateRequest Message .................................9 4.6. CertificateVerify Message .................................10 4.7. ServerKeyExchange Message Signature .......................10 5. Security Considerations ........................................10 6. Acknowledgements ...............................................10 7. References .....................................................11 7.1. Normative References ......................................11 7.2. Informative References ....................................11

1. Introduction

The United States government has posted the Fact Sheet on National Security Agency (NSA) Suite B Cryptography [NSA], and at the time of writing, it states: To complement the existing policy for the use of the Advanced Encryption Standard (AES) to protect national security systems and information as specified in The National Policy on the use of the Advanced Encryption Standard (AES) to Protect National Security Systems and National Security Information (CNSSP-15), the National Security Agency (NSA) announced Suite B Cryptography at the 2005 RSA Conference. In addition to the AES, Suite B includes cryptographic algorithms for hashing, digital signatures, and key exchange. Suite B only specifies the cryptographic algorithms to be used. Many other factors need to be addressed in determining whether a particular device implementing a particular set of
ToP   noToC   RFC5430 - Page 3
       cryptographic algorithms should be used to satisfy a particular
       requirement.

   Among those factors are "requirements for interoperability both
   domestically and internationally".

   This document does not define any new cipher suites; instead, it
   defines two profiles:

   o  A Suite B compliant profile for use with TLS version 1.2 [RFC5246]
      and the cipher suites defined in [RFC5289].  This profile uses
      only Suite B algorithms.

   o  A transitional profile for use with TLS version 1.0 [RFC2246] or
      TLS version 1.1 [RFC4346] and the cipher suites defined in
      [RFC4492].  This profile uses the Suite B cryptographic algorithms
      to the greatest extent possible and provides backward
      compatibility.  While the transitional profile is not Suite B
      compliant, it provides a transition path towards the Suite B
      compliant profile.

2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Suite B Requirements

The Fact Sheet on Suite B Cryptography requires that key establishment and authentication algorithms be based on Elliptic Curve Cryptography, and that the encryption algorithm be AES [AES]. Suite B defines two security levels, of 128 and 192 bits. In particular, Suite B includes: Encryption: Advanced Encryption Standard (AES) [AES] -- FIPS 197 (with key sizes of 128 and 256 bits) Digital Signature: Elliptic Curve Digital Signature Algorithm (ECDSA) [DSS] - FIPS 186-2 (using the curves with 256- and 384-bit prime moduli) Key Exchange: Elliptic Curve Diffie-Hellman (ECDH) - NIST Special Publication 800-56A [PWKE] (using the curves with 256- and 384-bit prime moduli)
ToP   noToC   RFC5430 - Page 4
   The 128-bit security level corresponds to an elliptic curve size of
   256 bits and AES-128; it also makes use of SHA-256 [SHS].  The 192-
   bit security level corresponds to an elliptic curve size of 384 bits
   and AES-256; it also makes use of SHA-384 [SHS].

   Note: Some people refer to the two security levels based on the AES
   key size that is employed instead of the overall security provided by
   the combination of Suite B algorithms.  At the 128-bit security
   level, an AES key size of 128 bits is used, which does not lead to
   any confusion.  However, at the 192-bit security level, an AES key
   size of 256 bits is used, which sometimes leads to an expectation of
   more security than is offered by the combination of Suite B
   algorithms.

   To accommodate backward compatibility, a Suite B compliant client or
   server can be configured to accept a cipher suite that is not part of
   Suite B. However, whenever a Suite B compliant client and a Suite B
   compliant server establish a TLS version 1.2 session, only Suite B
   algorithms are employed.

4. Suite B Compliance and Interoperability Requirements

TLS version 1.1 [RFC4346] and earlier do not support Galois Counter Mode (GCM) cipher suites [RFC5289]. However, TLS version 1.2 [RFC5246] and later do support GCM. For Suite B TLS compliance, GCM cipher suites are REQUIRED to be used whenever both the client and the server support the necessary cipher suites. Also, for Suite B TLS compliance, Cipher Block Chaining (CBC) cipher suites are employed when GCM cipher suites cannot be employed. For a client to implement the Suite B compliant profile, it MUST implement TLS version 1.2 or later, and the following cipher suite rules apply: o A Suite B compliant TLS version 1.2 or later client MUST offer at least two cipher suites for each supported security level. For the 128-bit security level, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 and TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 MUST be offered in this order in the ClientHello message. For the 192-bit security level, TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 and TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 MUST be offered in this order in the ClientHello message. One of these cipher suites MUST be the first (most preferred) cipher suite in the ClientHello message.
ToP   noToC   RFC5430 - Page 5
   o  A Suite B compliant TLS version 1.2 or later client that offers
      backward compatibility with TLS version 1.1 or earlier servers MAY
      offer an additional cipher suite for each supported security
      level.  If these cipher suites are offered, they MUST appear after
      the ones discussed above.  For the 128-bit security level,
      TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA MAY be offered in the
      ClientHello message.  For the 192-bit security level,
      TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA MAY be offered in the
      ClientHello message.

   o  A Suite B compliant TLS version 1.2 or later client that offers
      interoperability with non-Suite B compliant servers MAY offer
      additional cipher suites.  If any additional cipher suites are
      offered, they MUST appear after the ones discussed above in the
      ClientHello message.

   For a client to implement the Suite B transitional profile, it MUST
   implement TLS version 1.1 or earlier and the following cipher suite
   rules apply:

   o  A Suite B transitional TLS version 1.1 or earlier client MUST
      offer the cipher suite for the 128-bit security level, the cipher
      suite for the 192-bit security level, or both.  For the 128-bit
      security level, TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA MUST be
      offered in the ClientHello message.  For the 192-bit security
      level, TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA MUST be offered in the
      ClientHello message.  One of these cipher suites MUST be the first
      (most preferred) cipher suite in the ClientHello message.

   o  A Suite B transitional TLS version 1.1 or earlier client that
      offers interoperability with non-Suite B compliant servers MAY
      offer additional cipher suites.  If any additional cipher suites
      are offered, they MUST appear after the ones discussed above in
      the ClientHello message.

   A Suite B compliant TLS server MUST be configured to support the 128-
   bit security level, the 192-bit security level, or both security
   levels.  The cipher suite rules for each of these security levels is
   described below.  If a Suite B compliant TLS server is configured to
   support both security levels, then the configuration MUST prefer one
   security level over the other.  In practice, this means that the
   cipher suite rules associated with the cipher suites listed in
   Section 4.1 for the preferred security level are processed before the
   cipher suite rules for the less preferred security level.
ToP   noToC   RFC5430 - Page 6
   For a server to implement the Suite B conformant profile at the 128-
   bit security level, the following cipher suite rules apply:

   o  A Suite B compliant TLS version 1.2 or later server MUST accept
      the TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 cipher suite if it is
      offered.

   o  If the preceding cipher suite is not offered, then a Suite B
      compliant TLS version 1.2 or later server MUST accept the
      TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 cipher suite if it is
      offered.

   o  If neither of the preceding two cipher suites is offered, then a
      Suite B compliant TLS version 1.2 or later server that offers
      backward compatibility with TLS version 1.1 or earlier clients MAY
      accept the TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA cipher suite if it
      is offered.

   o  If the server is not offered any of the preceding three cipher
      suites and interoperability with clients that are not compliant or
      interoperable with Suite B is desired, then the server MAY accept
      another offered cipher suite that is considered acceptable by the
      server administrator.

   For a server to implement the Suite B transitional profile at the
   128-bit security level, the following cipher suite rules apply:

   o  A Suite B transitional TLS version 1.1 or earlier server MUST
      accept the TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA cipher suite if it
      is offered.

   o  If the server is not offered the preceding cipher suite and
      interoperability with clients that are not Suite B transitional is
      desired, then the server MAY accept another offered cipher suite
      that is considered acceptable by the server administrator.

   For a server to implement the Suite B conformant profile at the 192-
   bit security level, the following cipher suite rules apply:

   o  A Suite B compliant TLS version 1.2 or later server MUST accept
      the TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 cipher suite if it is
      offered.

   o  If the preceding cipher suite is not offered, then a Suite B
      compliant TLS version 1.2 or later server MUST accept the
      TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 cipher suite if it is
      offered.
ToP   noToC   RFC5430 - Page 7
   o  If neither of the preceding two cipher suites is offered, then a
      Suite B compliant TLS version 1.2 or later server that offers
      backward compatibility with TLS version 1.1 or earlier clients MAY
      accept the TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA cipher suite if it
      is offered.

   o  If the server is not offered any of the preceding three cipher
      suites and interoperability with clients that are not compliant or
      interoperable with Suite B is desired, then the server MAY accept
      another offered cipher suite that is considered acceptable by the
      server administrator.

   For a server to implement the Suite B transitional profile at the
   192-bit security level, the following cipher suite rules apply:

   o  A Suite B transitional TLS version 1.1 or earlier server MUST
      accept the TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA cipher suite if it
      is offered.

   o  If the server is not offered the preceding cipher suite and
      interoperability with clients that are not Suite B transitional is
      desired, then the server MAY accept another offered cipher suite
      that is considered acceptable by the server administrator.

   Note that these rules explicitly permit the use of CBC cipher suites
   in TLS version 1.2 connections in order to permit operation between
   Suite B compliant and non-Suite B compliant implementations.  For
   instance, a Suite B compliant TLS version 1.2 client might offer TLS
   version 1.2 with both GCM and CBC cipher suites when communicating
   with a non-Suite B TLS version 1.2 server, which then selected the
   CBC cipher suites.  This connection would nevertheless meet the
   requirements of this specification.  However, any two Suite B
   compliant implementations will negotiate a GCM cipher suite when
   doing TLS version 1.2.

4.1. Security Levels

As described in Section 1, Suite B specifies two security levels: 128-bit and 192-bit. The following table lists the cipher suites for each security level. Within each security level, the cipher suites are listed in their preferred order for selection by a TLS version 1.2 implementation.
ToP   noToC   RFC5430 - Page 8
       +-----------------------------------------+----------------+
       | Cipher Suite                            | Security Level |
       +-----------------------------------------+----------------+
       | TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 | 128            |
       | TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 | 128            |
       | TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA    | 128            |
       | TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 | 192            |
       | TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 | 192            |
       | TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA    | 192            |
       +-----------------------------------------+----------------+

4.2. Acceptable Curves

RFC 4492 defines a variety of elliptic curves. For cipher suites defined in this specification, only secp256r1(23) or secp384r1(24) may be used. These are the same curves that appear in FIPS 186-2 [DSS] as P-256 and P-384, respectively. For cipher suites at the 128-bit security level, secp256r1 MUST be used. For cipher suites at the 192-bit security level, secp384r1 MUST be used. RFC 4492 requires that the uncompressed(0) form be supported. The ansiX962_compressed_prime(1) point formats MAY also be supported. Clients desiring to negotiate only a Suite B compliant connection MUST generate a "Supported Elliptic Curves Extension" containing only the allowed curves. These curves MUST match the cipher suite security levels being offered. Clients that are willing to do both Suite B compliant and non-Suite B compliant connections MAY omit the extension or send the extension but offer other curves as well as the appropriate Suite B ones. Servers desiring to negotiate a Suite B compliant connection SHOULD check for the presence of the extension, but MUST NOT negotiate inappropriate curves even if they are offered by the client. This allows a client that is willing to do either Suite B compliant or non-Suite B compliant modes to interoperate with a server that will only do Suite B compliant modes. If the client does not advertise an acceptable curve, the server MUST generate a fatal "handshake_failure" alert and terminate the connection. Clients MUST check the chosen curve to make sure it is acceptable.

4.3. Certificates

Server and client certificates used to establish a Suite B compliant connection MUST be signed with ECDSA. Digital signatures MUST be calculated using either the P-256 curve along with the SHA-256 hash algorithm or calculated using the P-384 curve along with the SHA-384 hash algorithm. For certificates used at the 128-bit security level, the subject public key MUST use the P-256 curve and be signed with
ToP   noToC   RFC5430 - Page 9
   either the P-384 curve or the P-256 curve.  For certificates used at
   the 192-bit security level, the subject public key MUST use the P-384
   curve and be signed with the P-384 curve.

   In TLS version 1.0 and TLS version 1.1, the key exchange algorithm
   used in the TLS_ECDHE_ECDSA-collection of cipher suites requires the
   server's certificate to be signed with a particular signature scheme.
   TLS version 1.2 offers more flexibility.  This specification does not
   impose any additional restrictions on the server certificate
   signature or the signature schemes used elsewhere in the
   certification path.  (Often such restrictions will be useful, and it
   is expected that this will be taken into account in practices of
   certification authorities.  However, such restrictions are not
   strictly required, even if it is beyond the capabilities of a client
   to completely validate a given certification path, the client may be
   able to validate the server's certificate by relying on a trusted
   certification authority whose certificate appears as one of the
   intermediate certificates in the certification path.)

   Likewise, this specification does not impose restrictions on
   signature schemes used in the certification path for the client's
   certificate when mutual authentication is employed.

4.4. signature_algorithms Extension

The signature_algorithms extension is defined in Section 7.4.1.4.1 of TLS version 1.2 [RFC5246]. A Suite B compliant TLS version 1.2 or later client MUST include the signature_algorithms extension. For the 128-bit security level, SHA-256 with ECDSA MUST be offered in the signature_algorithms extension. For the 192-bit security level, SHA- 384 with ECDSA MUST be offered in the signature_algorithms extension. Other offerings MAY be included to indicate the signature algorithms that are acceptable in cipher suites that are offered for interoperability with servers that are not compliant with Suite B and to indicate the signature algorithms that are acceptable for certification path validation.

4.5. CertificateRequest Message

A Suite B compliant TLS version 1.2 or later server MUST include SHA- 256 with ECDSA and/or SHA-384 with ECDSA in the supported_signature_algorithms field of the CertificateRequest message. For the 128-bit security level, SHA-256 with ECDSA MUST appear in the supported_signature_algorithms field. For the 192-bit security level, SHA-384 with ECDSA MUST appear in the supported_signature_algorithms field.
ToP   noToC   RFC5430 - Page 10

4.6. CertificateVerify Message

A Suite B compliant TLS version 1.2 or later client MUST use SHA-256 with ECDSA or SHA-384 with ECDSA for the signature in the CertificateVerify message. For the 128-bit security level, SHA-256 with ECDSA MUST be used. For the 192-bit security level, SHA-384 with ECDSA MUST be used.

4.7. ServerKeyExchange Message Signature

In the TLS_ECDHE_ECDSA-collection of cipher suites, the server sends its ephemeral ECDH public key and a specification of the corresponding curve in the ServerKeyExchange message. These parameters MUST be signed with ECDSA using the private key corresponding to the public key in the server's certificate. A TLS version 1.1 or earlier server MUST sign the ServerKeyExchange message using SHA-1 with ECDSA. A Suite B compliant TLS version 1.2 or later server MUST sign the ServerKeyExchange message using either SHA-256 with ECDSA or SHA-384 with ECDSA. For the 128-bit security level, SHA-256 with ECDSA MUST be used. For the 192-bit security level, SHA-384 with ECDSA MUST be used.

5. Security Considerations

Most of the security considerations for this document are described in "The Transport Layer Security (TLS) Protocol Version 1.2" [RFC5246], "Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)" [RFC4492], "AES Galois Counter Mode (GCM) Cipher Suites for TLS" [RFC5288], and "TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode (GCM)" [RFC5289]. Readers should consult those documents. In order to meet the goal of a consistent security level for the entire cipher suite, in Suite B mode TLS implementations MUST ONLY use the curves defined in Section 4.2. Otherwise, it is possible to have a set of symmetric algorithms with much weaker or stronger security properties than the asymmetric (ECC) algorithms.

6. Acknowledgements

Thanks to Pasi Eronen, Steve Hanna, and Paul Hoffman for their review, comments, and insightful suggestions. This work was supported by the US Department of Defense.
ToP   noToC   RFC5430 - Page 11

7. References

7.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B. Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)", RFC 4492, May 2006. [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, August 2008. [RFC5289] Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA- 256/384 and AES Galois Counter Mode (GCM)", RFC 5289, August 2008. [AES] National Institute of Standards and Technology, "Specification for the Advanced Encryption Standard (AES)", FIPS 197, November 2001. [DSS] National Institute of Standards and Technology, "Digital Signature Standard", FIPS 186-2, January 2000. [PWKE] National Institute of Standards and Technology, "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)", NIST Special Publication 800-56A, March 2007. [SHS] National Institute of Standards and Technology, "Secure Hash Standard", FIPS 180-2, August 2002.

7.2. Informative References

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC 2246, January 1999. [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.1", RFC 4346, April 2006. [RFC5288] Salowey, J., Choudhury, A., and D. McGrew, "AES Galois Counter Mode (GCM) Cipher Suites for TLS", RFC 5288, August 2008. [NSA] National Security Agency, "Fact Sheet NSA Suite B Cryptography", <http://www.nsa.gov/ia/Industry/crypto_suite_b.cfm>.
ToP   noToC   RFC5430 - Page 12

Authors' Addresses

Margaret Salter National Security Agency 9800 Savage Rd. Fort Meade 20755-6709 USA EMail: msalter@restarea.ncsc.mil Eric Rescorla Network Resonance 2064 Edgewood Drive Palo Alto 94303 USA EMail: ekr@rtfm.com Russ Housley Vigil Security 918 Spring Knoll Drive Herndon 21070 USA EMail: housley@vigilsec.com