Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 5042

Direct Data Placement Protocol (DDP) / Remote Direct Memory Access Protocol (RDMAP) Security

Pages: 52
Proposed Standard
Updated by:  7146
Part 3 of 3 – Pages 38 to 52
First   Prev   None

Top   ToC   RFC5042 - Page 38   prevText

7. Attacks from Local Peers

This section describes local attacks that are possible against the RDMA system defined in Figure 1 - RDMA Security Model and the RNIC Engine resources defined in Section 2.2.
Top   ToC   RFC5042 - Page 39

7.1. Local ULP Attacking a Shared CQ

DOS attacks against a Shared Completion Queue (CQ - see Section 2.2.6, Completion Queues) can be caused by either the local ULP or the Remote Peer if either attempts to cause more completions than its fair share of the number of entries; thus, potentially starving another unrelated ULP such that no Completion Queue entries are available. A Completion Queue entry can potentially be maliciously consumed by a completion from the Send Queue or a completion from the Receive Queue. In the former, the attacker is the local ULP. In the latter, the attacker is the Remote Peer. A form of attack can occur where the local ULPs can consume resources on the CQ. A local ULP that is slow to free resources on the CQ by not reaping the completion status quickly enough could stall all other local ULPs attempting to use that CQ. For these reasons, an RNIC MUST NOT enable sharing a CQ across ULPs that do not share Partial Mutual Trust.

7.2. Local Peer Attacking the RDMA Read Request Queue

If RDMA Read Request Queue resources are pooled across multiple Streams, one attack is if the local ULP attempts to unfairly allocate RDMA Read Request Queue resources for its Streams. For example, a local ULP attempts to allocate all available resources on a specific RDMA Read Request Queue for its Streams, thereby denying the resource to ULPs sharing the RDMA Read Request Queue. The same type of argument applies even if the RDMA Read Request is not shared, but a local ULP attempts to allocate all the RNIC's resources when the queue is created. Thus, access to interfaces that allocate RDMA Read Request Queue entries MUST be restricted to a trusted Local Peer, such as a Privileged Resource Manager. The Privileged Resource Manager SHOULD prevent a local ULP from allocating more than its fair share of resources.

7.3. Local ULP Attacking the PTT and STag Mapping

If a Non-Privileged ULP is able to directly manipulate the RNIC Page Translation Tables (which translate from an STag to a host address), it is possible that the Non-Privileged ULP could point the Page Translation Table at an unrelated Stream's or ULP's buffers and, thereby, be able to gain access to information of the unrelated Stream/ULP.
Top   ToC   RFC5042 - Page 40
   As discussed in Section 2, Architectural Model, introduction of a
   Privileged Resource Manager to arbitrate the mapping requests is an
   effective countermeasure.  This enables the Privileged Resource
   Manager to ensure that a local ULP can only initialize the Page
   Translation Table (PTT) to point to its own buffers.

   Thus, if Non-Privileged ULPs are supported, the Privileged Resource
   Manager MUST verify that the Non-Privileged ULP has the right to
   access a specific Data Buffer before allowing an STag for which the
   ULP has access rights to be associated with a specific Data Buffer.
   This can be done when the Page Translation Table is initialized to
   access the Data Buffer or when the STag is initialized to point to a
   group of Page Translation Table entries, or both.

8. Security considerations

Please see Sections 5, Attacks That Can be Mitigated with End-to-End Security; Section 6, Attacks from Remote Peers; and Section 7, Attacks from Local Peers, for a detailed analysis of attacks and normative countermeasures to mitigate the attacks. Additionally, the appendices provide a summary of the security requirements for specific audiences. Appendix A, ULP Issues for RDDP Client/Server Protocols, provides a summary of implementation issues and requirements for applications that implement a traditional client/server style of interaction. It provides additional insight and applicability of the normative text in Sections 5, 6, and 7. Appendix B, Summary of RNIC and ULP Implementation Requirements, provides a convenient summary of normative requirements for implementers.

9. IANA Considerations

IANA considerations are not addressed by this document. Any IANA considerations resulting from the use of DDP or RDMA must be addressed in the relevant standards.

10. References

10.1. Normative References

[DDP] Shah, H., Pinkerton, J., Recio, R., and P. Culley, "Direct Data Placement over Reliable Transports", RFC 5041, October 2007. [RDMAP] Recio, R., Culley, P., Garcia, D., and J. Hilland, "A Remote Direct Memory Access Protocol Specification", RFC 5040, October 2007.
Top   ToC   RFC5042 - Page 41
   [RFC2401]     Kent, S. and R. Atkinson, "Security Architecture for
                 the Internet Protocol", RFC 2401, November 1998.

   [RFC2402]     Kent, S. and R. Atkinson, "IP Authentication Header",
                 RFC 2402, November 1998.

   [RFC2406]     Kent, S. and R. Atkinson, "IP Encapsulating Security
                 Payload (ESP)", RFC 2406, November 1998.

   [RFC2409]     Harkins, D. and D. Carrel, "The Internet Key Exchange
                 (IKE)", RFC 2409, November 1998.

   [RFC3723]     Aboba, B., Tseng, J., Walker, J., Rangan, V., and F.
                 Travostino, "Securing Block Storage Protocols over IP",
                 RFC 3723, April 2004.

   [RFC4960]     Stewart, R., Ed., "Stream Control Transmission
                 Protocol", RFC 4960, September 2007.

   [RFC793]      Postel, J., "Transmission Control Protocol", STD 7, RFC
                 793, September 1981.

10.2. Informative References

[RFC4301] Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, December 2005. [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.1", RFC 4346, April 2006. [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", RFC 4949, August 2007. [APPLICABILITY] Bestler, C. and L. Coene, "Applicability of Remote Direct Memory Access Protocol (RDMA) and Direct Data Placement (DDP)", RFC 5045, October 2007. [NFSv4CHANNEL] Williams, N., "On the Use of Channel Bindings to Secure Channels", Work in Progress, July 2004. [VERBS-RDMAC] "RDMA Protocol Verbs Specification", RDMA Consortium standard, April 2003, <http://www.rdmaconsortium.org/ home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf>.
Top   ToC   RFC5042 - Page 42
   [VERBS-RDMAC-Overview]
                 "RDMA enabled NIC (RNIC) Verbs Overview", slide
                 presentation by Renato Recio, April 2003,
                 <http://www.rdmaconsortium.org/home/
                 RNIC_Verbs_Overview2.pdf>.

   [RFC3552]     Rescorla, E. and B. Korver, "Guidelines for Writing RFC
                 Text on Security Considerations", BCP 72, RFC 3552,
                 July 2003.

   [INFINIBAND]  "InfiniBand Architecture Specification Volume 1",
                 release 1.2, InfiniBand Trade Association standard,
                 <http://www.infinibandta.org/specs>.  Verbs are
                 documented in chapter 11.

   [DTLS]        Rescorla, E. and N. Modadugu, "Datagram Transport Layer
                 Security", RFC 4347, April 2006.

   [iSCSI]       Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M.,
                 and E. Zeidner, "Internet Small Computer Systems
                 Interface (iSCSI)", RFC 3720, April 2004.

   [iSER]        Ko, M., Chadalapaka, M., Hufferd, J., Elzur, U., Shah,
                 H., and P. Thaler, "Internet Small Computer System
                 Interface (iSCSI) Extensions for Remote Direct Memory
                 Access (RDMA)", RFC 5046, October 2007.

   [NFSv4]       Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
                 Beame, C., Eisler, M., and D. Noveck, "Network File
                 System (NFS) version 4 Protocol", RFC 3530, April 2003.

   [NFSv4.1]     Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
                 "NFSv4 Minor Version 1", Work in Progress, September
                 2007.
Top   ToC   RFC5042 - Page 43

Appendix A. ULP Issues for RDDP Client/Server Protocols

This section is a normative appendix to the document that is focused on client/server ULP implementation requirements to ensure a secure server implementation. The prior sections outlined specific attacks and their countermeasures. This section summarizes the attacks and countermeasures that have been defined in the prior section, which are applicable to creation of a secure ULP (e.g., application) server. A ULP server is defined as a ULP that must be able to communicate with many clients that do not necessarily have a trust relationship with each other, and to ensure that each client cannot attack another client through server interactions. Further, the server may wish to use multiple Streams to communicate with a specific client, and those Streams may share mutual trust. Note that this section assumes a compliant RNIC and Privileged Resource Manager implementation - thus, it focuses specifically on ULP server (e.g., application) implementation issues. All of the prior section's details on attacks and countermeasures apply to the server; thus, requirements that are repeated in this section use non-normative "must", "should", and "may". In some cases, normative SHOULD statements for the ULP from the main body of this document are made MUST statements for the ULP server because the operating conditions can be refined to make the motives for a SHOULD inapplicable. If a prior SHOULD is changed to a MUST in this section, it is explicitly noted and it uses uppercase normative statements. The following list summarizes the relevant attacks that clients can mount on the shared server by re-stating the previous normative statements to be client/server specific. Note that each client/server ULP may employ explicit RDMA Operations (RDMA Read, RDMA Write) in differing fashions. Therefore, where appropriate, "Local ULP", "Local Peer", and "Remote Peer" are used in place of "server" or "client", in order to retain full generality of each requirement. * Spoofing * Sections 5.1.1 to 5.1.3. For protection against many forms of spoofing attacks, enable IPsec. * Section 6.1.1, Using an STag on a Different Stream. To ensure that one client cannot access another client's data via use of the other client's STag, the server ULP must either scope an STag to a single Stream or use a unique Protection Domain per
Top   ToC   RFC5042 - Page 44
         client.  If a single client has multiple Streams that share
         Partial Mutual Trust, then the STag can be shared between the
         associated Streams by using a single Protection Domain among
         the associated Streams (see Section 5.4.4, ULPs That Provide
         Security, for additional issues).  To prevent unintended
         sharing of STags within the associated Streams, a server ULP
         should use STags in such a fashion that it is difficult to
         predict the next allocated STag number.

   *   Tampering

     *   6.2.2 Modifying a Buffer after Indication.  Before the local
         ULP operates on a buffer that was written by the Remote Peer
         using an RDMA Write or RDMA Read, the local ULP MUST ensure the
         buffer can no longer be modified by invalidating the STag for
         remote access (note that this is stronger than the SHOULD in
         Section 6.2.2).  This can be done either by explicitly revoking
         remote access rights for the STag when the Remote Peer
         indicates the operation has completed, or by checking to make
         sure the Remote Peer Invalidated the STag through the RDMAP
         Invalidate capability.  If the Remote Peer did not invalidate
         the STag, the local ULP then explicitly revokes the STag remote
         access rights.

   *   Information Disclosure

     *   6.3.2, Using RDMA Read to Access Stale Data.  In a general
         purpose server environment, there is no compelling rationale
         not to require a buffer to be initialized before remote read is
         enabled (and an enormous downside of unintentionally sharing
         data). Thus, a local ULP MUST (this is stronger than the SHOULD
         in Section 6.3.2) ensure that no stale data is contained in a
         buffer before remote read access rights are granted to a Remote
         Peer (this can be done by zeroing the contents of the memory,
         for example).

     *   6.3.3, Accessing a Buffer after the Transfer.  This mitigation
         is already covered by Section 6.2.2 (above).

     *   6.3.4, Accessing Unintended Data with a Valid STag.  The ULP
         must set the base and bounds of the buffer when the STag is
         initialized to expose only the data to be retrieved.

     *   6.3.5, RDMA Read into an RDMA Write Buffer.  If a peer only
         intends a buffer to be exposed for remote write access, it must
         set the access rights to the buffer to only enable remote write
         access.
Top   ToC   RFC5042 - Page 45
     *   6.3.6, Using Multiple STags That Alias to the Same Buffer.  The
         requirement in Section 6.1.1 (above) mitigates this attack.  A
         server buffer is exposed to only one client at a time to ensure
         that no information disclosure or information tampering occurs
         between peers.

     *   5.3, Network-Based Eavesdropping.  Confidentiality services
         should be enabled by the ULP if this threat is a concern.

   *   Denial of Service

     *   6.4.3.1, Multiple Streams Sharing Receive Buffers.  ULP memory
         footprint size can be important for some server ULPs.  If a
         server ULP is expecting significant network traffic from
         multiple clients, using a receive buffer queue per Stream where
         there is a large number of Streams can consume substantial
         amounts of memory.  Thus, a receive queue that can be shared by
         multiple Streams is attractive.

         However, because of the attacks outlined in this section,
         sharing a single receive queue between multiple clients must
         only be done if a mechanism is in place to ensure that one
         client cannot consume receive buffers in excess of its limits,
         as defined by each ULP.  For multiple Streams within a single
         client ULP (which presumably shared Partial Mutual Trust), this
         added overhead may be avoided.

     *   7.1 Local ULP Attacking a Shared CQ.  The normative RNIC
         mitigations require that the RNIC not enable sharing of a CQ if
         the local ULPs do not share Partial Mutual Trust.  Thus, while
         the ULP is not allowed to enable this feature in an unsafe
         mode, if the two local ULPs share Partial Mutual Trust, they
         must behave in the following manner:

         1) The sizing of the completion queue is based on the size of
         the receive queue and send queues, as documented in 6.4.3.2,
         Remote or Local Peer Attacking a Shared CQ.

         2) The local ULP ensures that CQ entries are reaped frequently
         enough to adhere to Section 6.4.3.2's rules.

     *   6.4.3.2, Remote or Local Peer Attacking a Shared CQ.  There are
         two mitigations specified in this section - one requires a
         worst-case size of the CQ, and can be implemented entirely
         within the Privileged Resource Manager.  The second approach
         requires cooperation with the local ULP server (not to post too
         many buffers), and enables a smaller CQ to be used.
Top   ToC   RFC5042 - Page 46
         In some server environments, partial trust of the server ULP
         (but not the clients) is acceptable; thus, the smaller CQ fully
         mitigates the remote attacker.  In other environments, the
         local server ULP could also contain untrusted elements that can
         attack the local machine (or have bugs).  In those
         environments, the worst-case size of the CQ must be used.

     *   6.4.3.3, Attacking the RDMA Read Request Queue.  The section
         requires a server's Privileged Resource Manager not to allow
         sharing of RDMA Read Request Queues across multiple Streams
         that do not share Partial Mutual Trust for a ULP that performs
         RDMA Read operations to server buffers.  However, because the
         server ULP knows which of its Streams best share Partial Mutual
         Trust, this requirement can be reflected back to the ULP.  The
         ULP (i.e., server) requirement, in this case, is that it MUST
         NOT allow RDMA Read Request Queues to be shared between ULPs
         that do not have Partial Mutual Trust.

     *   6.4.5, Remote Invalidate an STag Shared on Multiple Streams.
         This mitigation is already covered by Section 6.2.2 (above).

Appendix B. Summary of RNIC and ULP Implementation Requirements

This appendix is informative. Below is a summary of implementation requirements for the RNIC: * 3 Trust and Resource Sharing * 5.4.5 Requirements for IPsec Encapsulation of DDP * 6.1.1 Using an STag on a Different Stream * 6.2.1 Buffer Overrun - RDMA Write or Read Response * 6.2.2 Modifying a Buffer after Indication * 6.4.1 RNIC Resource Consumption * 6.4.3.1 Multiple Streams Sharing Receive Buffers * 6.4.3.2 Remote or Local Peer Attacking a Shared CQ * 6.4.3.3 Attacking the RDMA Read Request Queue * 6.4.6 Remote Peer Attacking an Unshared CQ * 6.5 Elevation of Privilege 39
Top   ToC   RFC5042 - Page 47
   *   7.1 Local ULP Attacking a Shared CQ

   *   7.3 Local ULP Attacking the PTT and STag Mapping

   Below is a summary of implementation requirements for the ULP above
   the RNIC:

   *   5.3 Information Disclosure - Network-Based Eavesdropping

   *   6.1.1 Using an STag on a Different Stream

   *   6.2.2 Modifying a Buffer after Indication

   *   6.3.2 Using RDMA Read to Access Stale Data

   *   6.3.3 Accessing a Buffer after the Transfer

   *   6.3.4 Accessing Unintended Data with a Valid STag

   *   6.3.5 RDMA Read into an RDMA Write Buffer

   *   6.3.6 Using Multiple STags That Alias to the Same Buffer

   *   6.4.5 Remote Invalidate an STag Shared on Multiple Streams

Appendix C. Partial Trust Taxonomy

This appendix is informative. Partial Trust is defined as when one party is willing to assume that another party will refrain from a specific attack or set of attacks, the parties are said to be in a state of Partial Trust. Note that the partially trusted peer may attempt a different set of attacks. This may be appropriate for many ULPs where any adverse effects of the betrayal is easily confined and does not place other clients or ULPs at risk. The Trust Models described in this section have three primary distinguishing characteristics. The Trust Model refers to a local ULP and Remote Peer, which are intended to be the local and remote ULP instances communicating via RDMA/DDP.
Top   ToC   RFC5042 - Page 48
   *   Local Resource Sharing (yes/no) - When local resources are
       shared, they are shared across a grouping of RDMAP/DDP Streams.
       If local resources are not shared, the resources are dedicated on
       a per Stream basis.  Resources are defined in Section 2.2,
       Resources.  The advantage of not sharing resources between
       Streams is that it reduces the types of attacks that are
       possible.  The disadvantage is that ULPs might run out of
       resources.

   *   Local Partial Trust (yes/no) - Local Partial Trust is determined
       based on whether the local grouping of RDMAP/DDP Streams (which
       typically equates to one ULP or group of ULPs) mutually trust
       each other not to perform a specific set of attacks.

   *   Remote Partial Trust (yes/no) - The Remote Partial Trust level is
       determined based on whether the local ULP of a specific RDMAP/DDP
       Stream partially trusts the Remote Peer of the Stream (see the
       definition of Partial Trust in Section 1, Introduction).

   Not all the combinations of the trust characteristics are expected to
   be used by ULPs.  This document specifically analyzes five ULP Trust
   Models that are expected to be in common use.  The Trust Models are
   as follows:

   *   NS-NT - Non-Shared Local Resources, no Local Trust, no Remote
       Trust; typically, a server ULP that wants to run in the safest
       mode possible.  All attack mitigations are in place to ensure
       robust operation.

   *   NS-RT - Non-Shared Local Resources, no Local Trust, Remote
       Partial Trust; typically, a peer-to-peer ULP that has, by some
       method outside of the scope of this document, authenticated the
       Remote Peer.  Note that unless some form of key based
       authentication is used on a per RDMA/DDP Stream basis, it may not
       be possible for man-in-the-middle attacks to occur.

   *   S-NT - Shared Local Resources, no Local Trust, no Remote Trust;
       typically, a server ULP that runs in an untrusted environment
       where the amount of resources required is either too large or too
       dynamic to dedicate for each RDMAP/DDP Stream.

   *   S-LT - Shared Local Resources, Local Partial Trust, no Remote
       Trust; typically, a ULP that provides a session layer and uses
       multiple Streams, to provides additional throughput or fail-over
       capabilities.  All the Streams within the local ULP partially
       trust each other, but do not trust the Remote Peer.  This Trust
       Model may be appropriate for embedded environments.
Top   ToC   RFC5042 - Page 49
   *   S-T - Shared Local Resources, Local Partial Trust, Remote Partial
       Trust; typically, a distributed application, such as a
       distributed database application or High Performance Computer
       (HPC) application, which is intended to run on a cluster.  Due to
       extreme resource and performance requirements, the application
       typically authenticates with all of its peers and then runs in a
       highly trusted environment.  The application peers are all in a
       single application fault domain and depend on one another to be
       well-behaved when accessing data structures.  If a trusted Remote
       Peer has an implementation defect that results in poor behavior,
       the entire application could be corrupted.

   Models NS-NT and S-NT, above, are typical for Internet networking -
   neither the local ULP nor the Remote Peer is trusted.  Sometimes,
   optimizations can be done that enable sharing of Page Translation
   Tables across multiple local ULPs; thus, Model S-LT can be
   advantageous.  Model S-T is typically used when resource scaling
   across a large parallel ULP makes it infeasible to use any other
   model.  Resource scaling issues can either be due to performance
   around scaling or because there simply are not enough resources.
   Model NS-RT is probably the least likely model to be used, but is
   presented for completeness.

Acknowledgments

Sara Bitan Microsoft Corporation EMail: sarab@microsoft.com Allyn Romanow Cisco Systems 170 W Tasman Drive San Jose, CA 95134 USA Phone: +1 (408) 525-8836 EMail: allyn@cisco.com Catherine Meadows Naval Research Laboratory Code 5543 Washington, DC 20375 USA EMail: meadows@itd.nrl.navy.mil
Top   ToC   RFC5042 - Page 50
   Patricia Thaler
   Agilent Technologies, Inc.
   1101 Creekside Ridge Drive, #100
   M/S-RG10
   Roseville, CA 95678 USA
   Phone: +1 (916) 788-5662
   EMail: pat_thaler@agilent.com

   James Livingston
   NEC Solutions (America), Inc.
   7525 166th Ave. N.E., Suite D210
   Redmond, WA 98052-7811 USA
   Phone: +1 (425) 897-2033
   EMail: james.livingston@necsam.com

   John Carrier
   Cray Inc.
   411 First Avenue S, Suite 600
   Seattle, WA 98104-2860
   Phone: 206-701-2090
   EMail: carrier@cray.com

   Caitlin Bestler
   Broadcom
   49 Discovery
   Irvine, CA 92618
   EMail: cait@asomi.com

   Bernard Aboba
   Microsoft Corporation
   One Microsoft Way USA
   Redmond, WA 98052
   Phone: +1 (425) 706-6606
   EMail: bernarda@windows.microsoft.com
Top   ToC   RFC5042 - Page 51

Authors' Addresses

James Pinkerton Microsoft Corporation One Microsoft Way Redmond, WA 98052 USA Phone: +1 (425) 705-5442 EMail: jpink@windows.microsoft.com Ellen Deleganes Self P.O. Box 9245 Brooks, OR 97305 Phone: (503) 642-3950 EMail: deleganes@yahoo.com
Top   ToC   RFC5042 - Page 52
Full Copyright Statement

   Copyright (C) The IETF Trust (2007).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.