ds1NearEndStatisticsGroup OBJECT-GROUP OBJECTS { dsx1CurrentIndex, dsx1CurrentESs, dsx1CurrentSESs, dsx1CurrentSEFSs, dsx1CurrentUASs, dsx1CurrentCSSs, dsx1CurrentPCVs, dsx1CurrentLESs, dsx1CurrentBESs, dsx1CurrentDMs, dsx1CurrentLCVs, dsx1IntervalIndex, dsx1IntervalNumber, dsx1IntervalESs, dsx1IntervalSESs, dsx1IntervalSEFSs, dsx1IntervalUASs, dsx1IntervalCSSs, dsx1IntervalPCVs, dsx1IntervalLESs, dsx1IntervalBESs, dsx1IntervalDMs, dsx1IntervalLCVs, dsx1IntervalValidData, dsx1TotalIndex, dsx1TotalESs, dsx1TotalSESs, dsx1TotalSEFSs, dsx1TotalUASs, dsx1TotalCSSs, dsx1TotalPCVs, dsx1TotalLESs, dsx1TotalBESs, dsx1TotalDMs, dsx1TotalLCVs } STATUS deprecated DESCRIPTION "A collection of objects providing statistics information applicable to all DS1 interfaces." ::= { ds1Groups 2 } ds1FarEndGroup OBJECT-GROUP OBJECTS { dsx1FarEndCurrentIndex, dsx1FarEndTimeElapsed, dsx1FarEndValidIntervals, dsx1FarEndCurrentESs, dsx1FarEndCurrentSESs,
dsx1FarEndCurrentSEFSs, dsx1FarEndCurrentUASs, dsx1FarEndCurrentCSSs, dsx1FarEndCurrentLESs, dsx1FarEndCurrentPCVs, dsx1FarEndCurrentBESs, dsx1FarEndCurrentDMs, dsx1FarEndInvalidIntervals, dsx1FarEndIntervalIndex, dsx1FarEndIntervalNumber, dsx1FarEndIntervalESs, dsx1FarEndIntervalSESs, dsx1FarEndIntervalSEFSs, dsx1FarEndIntervalUASs, dsx1FarEndIntervalCSSs, dsx1FarEndIntervalLESs, dsx1FarEndIntervalPCVs, dsx1FarEndIntervalBESs, dsx1FarEndIntervalDMs, dsx1FarEndIntervalValidData, dsx1FarEndTotalIndex, dsx1FarEndTotalESs, dsx1FarEndTotalSESs, dsx1FarEndTotalSEFSs, dsx1FarEndTotalUASs, dsx1FarEndTotalCSSs, dsx1FarEndTotalLESs, dsx1FarEndTotalPCVs, dsx1FarEndTotalBESs, dsx1FarEndTotalDMs } STATUS deprecated DESCRIPTION "A collection of objects providing remote configuration and statistics information." ::= { ds1Groups 3 } ds1DeprecatedGroup OBJECT-GROUP OBJECTS { dsx1IfIndex, dsx1FracIndex, dsx1FracNumber, dsx1FracIfIndex } STATUS deprecated DESCRIPTION "A collection of obsolete objects that may be implemented for backwards compatibility." ::= { ds1Groups 4 } ds1NearEndOptionalConfigGroup OBJECT-GROUP
OBJECTS { dsx1LineStatusLastChange, dsx1LineStatusChangeTrapEnable } STATUS current DESCRIPTION "A collection of objects that may be implemented on DS1 and DS2 interfaces." ::= { ds1Groups 5 } ds1DS2Group OBJECT-GROUP OBJECTS { dsx1LineIndex, dsx1LineType, dsx1LineCoding, dsx1SendCode, dsx1LineStatus, dsx1SignalMode, dsx1TransmitClockSource, dsx1Channelization } STATUS current DESCRIPTION "A collection of objects providing information about DS2 (6,312 kbps) and E2 (8,448 kbps) systems." ::= { ds1Groups 6 } ds1TransStatsGroup OBJECT-GROUP OBJECTS { dsx1CurrentESs, dsx1CurrentSESs, dsx1CurrentUASs, dsx1IntervalESs, dsx1IntervalSESs, dsx1IntervalUASs, dsx1TotalESs, dsx1TotalSESs, dsx1TotalUASs } STATUS current DESCRIPTION "A collection of objects that are the statistics that can be collected from a DS1 interface that is running transparent or unframed lineType. Statistics not in this list should return noSuchInstance." ::= { ds1Groups 7 } ds1NearEndOptionalTrapGroup NOTIFICATION-GROUP NOTIFICATIONS { dsx1LineStatusChange } STATUS current DESCRIPTION
"A collection of notifications that may be implemented on DS1 and DS2 interfaces." ::= { ds1Groups 8 } ds1ChanMappingGroup OBJECT-GROUP OBJECTS { dsx1ChanMappedIfIndex } STATUS current DESCRIPTION "A collection of objects that give a mapping of DS3 Channel (dsx1Ds1ChannelNumber) to ifIndex." ::= { ds1Groups 9 } ds1NearEndConfigurationGroup OBJECT-GROUP OBJECTS { dsx1LineIndex, dsx1TimeElapsed, dsx1ValidIntervals, dsx1LineType, dsx1LineCoding, dsx1SendCode, dsx1CircuitIdentifier, dsx1LoopbackConfig, dsx1LineStatus, dsx1SignalMode, dsx1TransmitClockSource, dsx1Fdl, dsx1InvalidIntervals, dsx1LineLength, dsx1LoopbackStatus, dsx1Ds1ChannelNumber, dsx1Channelization, dsx1LineMode, dsx1LineBuildOut } STATUS deprecated DESCRIPTION "A collection of objects providing configuration information applicable to all DS1 interfaces." ::= { ds1Groups 10 } ds1NearEndCfgGroup OBJECT-GROUP OBJECTS { dsx1LineIndex, dsx1TimeElapsed, dsx1ValidIntervals, dsx1LineType, dsx1LineCoding, dsx1SendCode, dsx1CircuitIdentifier, dsx1LoopbackConfig, dsx1LineStatus,
dsx1SignalMode, dsx1TransmitClockSource, dsx1Fdl, dsx1InvalidIntervals, dsx1LineLength, dsx1LoopbackStatus, dsx1Ds1ChannelNumber, dsx1Channelization, dsx1LineMode, dsx1LineBuildOut, dsx1LineImpedance } STATUS current DESCRIPTION "A collection of objects providing configuration information applicable to all DS1 interfaces." ::= { ds1Groups 11 } ds1NearEndStatGroup OBJECT-GROUP OBJECTS { dsx1CurrentIndex, dsx1CurrentESs, dsx1CurrentSESs, dsx1CurrentSEFSs, dsx1CurrentUASs, dsx1CurrentCSSs, dsx1CurrentPCVs, dsx1CurrentLESs, dsx1CurrentBESs, dsx1CurrentLCVs, dsx1IntervalIndex, dsx1IntervalNumber, dsx1IntervalESs, dsx1IntervalSESs, dsx1IntervalSEFSs, dsx1IntervalUASs, dsx1IntervalCSSs, dsx1IntervalPCVs, dsx1IntervalLESs, dsx1IntervalBESs, dsx1IntervalLCVs, dsx1IntervalValidData, dsx1TotalIndex, dsx1TotalESs, dsx1TotalSESs, dsx1TotalSEFSs, dsx1TotalUASs, dsx1TotalCSSs, dsx1TotalPCVs, dsx1TotalLESs,
dsx1TotalBESs, dsx1TotalLCVs } STATUS current DESCRIPTION "A collection of objects providing statistics information applicable to all DS1 interfaces." ::= { ds1Groups 12 } ds1FarEndNGroup OBJECT-GROUP OBJECTS { dsx1FarEndCurrentIndex, dsx1FarEndTimeElapsed, dsx1FarEndValidIntervals, dsx1FarEndCurrentESs, dsx1FarEndCurrentSESs, dsx1FarEndCurrentSEFSs, dsx1FarEndCurrentUASs, dsx1FarEndCurrentCSSs, dsx1FarEndCurrentLESs, dsx1FarEndCurrentPCVs, dsx1FarEndCurrentBESs, dsx1FarEndInvalidIntervals, dsx1FarEndIntervalIndex, dsx1FarEndIntervalNumber, dsx1FarEndIntervalESs, dsx1FarEndIntervalSESs, dsx1FarEndIntervalSEFSs, dsx1FarEndIntervalUASs, dsx1FarEndIntervalCSSs, dsx1FarEndIntervalLESs, dsx1FarEndIntervalPCVs, dsx1FarEndIntervalBESs, dsx1FarEndIntervalValidData, dsx1FarEndTotalIndex, dsx1FarEndTotalESs, dsx1FarEndTotalSESs, dsx1FarEndTotalSEFSs, dsx1FarEndTotalUASs, dsx1FarEndTotalCSSs, dsx1FarEndTotalLESs, dsx1FarEndTotalPCVs, dsx1FarEndTotalBESs} STATUS current DESCRIPTION "A collection of objects providing remote configuration and statistics information." ::= { ds1Groups 13 } END
5. Security Considerations
There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. The specific objects and their sensitivities/vulnerabilities are as follows. Setting the following objects to incorrect values may result in traffic interruptions: dsx1LineType dsx1LineCoding dsx1SendCode dsx1LoopbackConfig dsx1SignalMode dsx1TransmitClockSource dsx1Fdl dsx1LineLength dsx1Channelization dsx1LineMode dsx1LineBuildOut dsx1LineImpedance In the case of dsx1LineType, for example, both ends of a DS1/E1 must have the same value in order for traffic to flow. In the case of dsx1SendCode and dsx1LoopbackConfig, for another example, traffic may stop transmitting when particular loopbacks are applied. Setting the following object to an incorrect value will not harm the traffic, but it may cause a circuit to be misidentified and thereby create difficulties for service personnel when attempting to troubleshoot a problem: dsx1CircuitIdentifier Setting the following object can cause an increase in the number of traps received by the network management station: dsx1LineStatusChangeTrapEnable The readable objects in this MIB module (i.e., the objects with a MAX-ACCESS other than not-accessible) may be considered sensitive in some environments since, collectively, they provide extensive information about the performance of interfaces in DS1/J1/E1/DS2/E2 equipment or networks and can reveal some aspects of their
configuration. In such environments, it is important to control even GET and NOTIFY access to these objects and possibly to encrypt the values of these objects when sending them over the network via SNMP. SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module. It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy). Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.6. Acknowledgments
This document was produced by the AToM MIB Working Group.7. References
7.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999. [RFC2579] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Textual Conventions for SMIv2", STD 58, RFC 2579, April 1999. [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Conformance Statements for SMIv2", STD 58, RFC 2580, April 1999. [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2863, June 2000.
[AT&T-TR-54016] AT&T Technical Reference, Requirements for Interfacing Digital Terminal Equipment to Services Employing the Extended Superframe Format, Publication 54016, May 1988. [ANSI-T1.403] American National Standard for Telecommunications -- Carrier-to-Customer Installation - DS1 Metallic Interface, T1.403, February 1989. [CCITT-G.703] ITU-T G.703, Physical/Electrical Characteristics of Hierarchical Digital Interfaces, November 2001. [ITU-T-G.704] ITU-T G.704: Synchronous frame structures used at 1544, 6312, 2048, 8488 and 44 736 kbit/s Hierarchical Levels, October 1998. [ANSI-T1.231] American National Standard for Telecommunications -- Digital Hierarchy DS1-- Layer 1 In-Service Digital Transmission Performance Monitoring, T1.231.02, October 2003. [ITU-T-O.162] ITU-T O.162, Equipment To Perform In Service Monitoring On 2048 kbit/s Signals, October 1992. [CCITT-G.821] ITU-T G.821, Error Performance Of An International Digital Connection Forming Part Of An Integrated Services Digital Network, December 2002. [AT&T-TR-62411] AT&T Technical Reference, Technical Reference 62411, ACCUNET T1.5 Service Description And Interface Specification, December 1990. [CCITT-G.706] ITU-T G.706, Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to Basic Frame Structures Defined in Recommendation G.704, April 1991. [CCITT-G.732] ITU-T G.732, Characteristics Of Primary PCM Multiplex Equipment Operating at 2048 kbit/s, November 1988. [ITU-T-G.775] ITU-T G.775: Loss of signal (LOS) and alarm indication signal (AIS) defect detection and clearance criteria, October 1998. [ITU-T-G.826] ITU-T G.826: Error performance parameters and objectives for international, constant bit rate digital paths at or above the primary rate, December 2002.
[ANSI-T1.107] American National Standard for Telecommunications -- Digital Hierarchy - Format Specifications, T1.107, January 2002. [RFC3593] Tesink, K., "Textual Conventions for MIB Modules Using Performance History Based on 15 Minute Intervals", RFC 3593, September 2003. [ITU-T-M.1400] ITU-T M.1400: Designation For Interconnections Among Network Operators, October 2001. [JT-G704] JT-G.704: Synchronous frame structures used at Primary and Secondary Hierarchical Levels, 2002. [JT-G706] JT-G.706: Frame Alignment and Cyclic Redundancy Check (CRC) Procedures. [JT-I431] JT-I.431: ISDN Primary Rate User-Network Interface,Layer 1 Specifications, 2002.7.2. Informative References
[RFC1213] McCloghrie, K. and M. Rose, "Management Information Base for Network Management of TCP/IP-based internets:MIB-II", STD 17, RFC 1213, March 1991. [RFC3895] Nicklass, O., "Definitions of Managed Objects for the DS1, E1, DS2, and E2 Interface Types", RFC 3895, September 2004. [RFC2495] Fowler, D., "Definitions of Managed Objects for the DS1, E1, DS2 and E2 Interface Types", RFC 2495, January 1999. [RFC1406] Baker, F. and J. Watt, "Definitions of Managed Objects for the DS1 and E1 Interface Types", RFC 1406, January 1993. [AT&T-UM-305] AT&T Information Systems, AT&T ESF DS1 Channel Service Unit User's Manual, 999-100-305, February 1988. [RFC3896] Nicklass, O., "Definitions of Managed Objects for the DS3/E3 Interface Type", RFC 3896, September 2004.
[RFC3592] Tesink, K., "Definitions of Managed Objects for the Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) Interface Type", RFC 3592, September 2003. [RFC2494] Fowler, D., "Definitions of Managed Objects for the DS0 and DS0 Bundle Interface Type", RFC 2494, January 1999. [ANSI-T1.102] American National Standard for Telecommunications -- Digital Hierarchy - Electrical Interfaces, T1.102, December 1993. [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet-Standard Management Framework", RFC 3410, December 2002.
Appendix A - Use of dsx1IfIndex and dsx1LineIndex
This appendix exists to document the previous use of dsx1IfIndex and dsx1LineIndex and to clarify the relationship of dsx1LineIndex as defined in RFC 1406 with the dsx1LineIndex as defined in this document. The following shows the old and new definitions and the relationship: [New Definition]: "This object should be made equal to ifIndex. The next paragraph describes its previous usage. Making the object equal to ifIndex allows proper use of ifStackTable and ds0/ds0bundle mibs. [Old Definition]: "This object is the identifier of a DS1 Interface on a managed device. If there is an ifEntry that is directly associated with this and only this DS1 interface, it should have the same value as ifIndex. Otherwise, number the dsx1LineIndices with an unique identifier following the rules of choosing a number that is greater than ifNumber and numbering the inside interfaces (e.g., equipment side) with even numbers and outside interfaces (e.g., network side) with odd numbers." When the "Old Definition" was created, it was described this way to allow a manager to treat the value as if it were an ifIndex; i.e., the value would be either: 1) an ifIndex value or 2) a value that was guaranteed to be different from all valid ifIndex values. The new definition is a subset of that definition; i.e., the value is always an ifIndex value. The following is Section 3.1 from RFC 1406: Different physical configurations for the support of SNMP with DS1 equipment exist. To accommodate these scenarios, two different indices for DS1 interfaces are introduced in this MIB. These indices are dsx1IfIndex and dsx1LineIndex. External interface scenario: the SNMP Agent represents all managed DS1 lines as external interfaces (for example, an Agent residing on the device supporting DS1 interfaces directly): For this scenario, all interfaces are assigned an integer value equal to ifIndex, and the following applies: ifIndex=dsx1IfIndex=dsx1LineIndex for all interfaces.
The dsx1IfIndex column of the DS1 Configuration table relates each DS1 interface to its corresponding interface (ifIndex) in the Internet-standard MIB (MIB-II STD 17, RFC 1213) [RFC1213]. External & Internal interface scenario: the SNMP Agents resides on a host external from the device supporting DS1 interfaces (e.g., a router). The Agent represents both the host and the DS1 device. The index dsx1LineIndex is used to not only represent the DS1 interfaces external from the host/DS1-device combination, but also the DS1 interfaces connecting the host and the DS1 device. The index dsx1IfIndex is always equal to ifIndex. Example: A shelf full of CSUs connected to a router. An SNMP Agent residing on the router proxies for itself and the CSU. The router has also an Ethernet interface: +-----+ | | | | | | +---------------------+ |E | | 1.544 MBPS | Line#A | DS1 Link |t | R |---------------+ - - - - - - - - - +------> |h | | | | |e | O | 1.544 MBPS | Line#B | DS1 Link |r | |---------------+ - - - - - - - - - - +------> |n | U | | CSU Shelf | |e | | 1.544 MBPS | Line#C | DS1 Link |t | T |---------------+ - - - -- -- - - - - +------> | | | | | |-----| E | 1.544 MBPS | Line#D | DS1 Link | | |---------------+ - - - - -- - - - - +------> | | R | |_____________________| | | | | +-----+ The assignment of the index values could for example be: ifIndex (= dsx1IfIndex) dsx1LineIndex 1 NA NA (Ethernet) 2 Line#A Router Side 6 2 Line#A Network Side 7 3 Line#B Router Side 8 3 Line#B Network Side 9 4 Line#C Router Side 10 4 Line#C Network Side 11 5 Line#D Router Side 12 5 Line#D Network Side 13
For this example, ifNumber is equal to 5. Note the following description of dsx1LineIndex: the dsx1LineIndex identifies a DS1 Interface on a managed device. If there is an ifEntry that is directly associated with this and only this DS1 interface, it should have the same value as ifIndex. Otherwise, number the dsx1LineIndices with an unique identifier following the rules of choosing a number greater than ifNumber and numbering inside interfaces (e.g., equipment side) with even numbers and outside interfaces (e.g., network side) with odd numbers. If the CSU shelf is managed by itself by a local SNMP Agent, the situation would be: ifIndex (= dsx1IfIndex) dsx1LineIndex 1 Line#A Network Side 1 2 Line#A RouterSide 2 3 Line#B Network Side 3 4 Line#B RouterSide 4 5 Line#C Network Side 5 6 Line#C Router Side 6 7 Line#D Network Side 7 8 Line#D Router Side 8Appendix B - The Delay Approach to Unavailable Seconds
This procedure is illustrated below for a DS1 ESF interface. Similar rules would apply for other DS1, DS2, and E1 interface variants. The procedure guarantees that the statistical counters are correctly updated at all times, although they lag real time by 10 seconds. At the end of each 15-minute interval, the current interval counts are transferred to the most recent interval entry and each interval is shifted up by one position, with the oldest being discarded if necessary in order to make room. The current interval counts then start over from zero. Note, however, that the signal state calculation does not start afresh at each interval boundary; rather, signal state information is retained across interval boundaries.
+---------------------------------------------------------------------+ | READ COUNTERS & STATUS INFO FROM HARDWARE | | | | BPV EXZ LOS FE CRC CS AIS SEF OOF LOF RAI G1-G6 SE FE LV SL | +---------------------------------------------------------------------+ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | V V V V V V V V V V V V V V V V +---------------------------------------------------------------------+ | ACCUM ONE-SEC STATS, CHK ERR THRESHOLDS, & UPDT SIGNAL STATE | | | | |<---------- NEAR END ----------->| |<-------- FAR END ------>| | | | | LCV LES PCV ES CSS BES SES SEFS A/U PCV ES CSS BES SES SEFS A/U | +---------------------------------------------------------------------+ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | V V V V V V V V | V V V V V V | +------------------------------+ | +----------------------+ | | ONE-SEC DELAY | | | ONE-SEC DELAY | | | (1 OF 10) | | | (1 OF 10) | | +------------------------------+ | +----------------------+ | | | | | | | | | | | | | | | | | / / / / / / / / / / / / / / / / | | | | | | | | | | | | | | | | V V V V V V V V | V V V V V V | +------------------------------+ | +----------------------+ | | ONE-SEC DELAY | | | ONE-SEC DELAY | | | (10 OF 10) | | | (10 OF 10) | | +------------------------------+ | +----------------------+ | | | | | | | | | | | | | | | | | V V V V V V V V V V V V V V V V +---------------------------------------------------------------------+ | UPDATE STATISTICS COUNTERS | | | |<-------------- NEAR END ----------->| |<--------- FAR END --------->| | | |LCV LES PCV ES CSS BES SES SEFS UAS DM PCV ES CSS BES SES SEFS UAS DM| +---------------------------------------------------------------------+ Note that if such a procedure is adopted, there is no current interval data for the first 10 seconds after a system comes up. noSuchInstance must be returned if a management station attempts to access the current interval counters during this time. It is an implementation-specific matter whether an agent assumes that the initial state of the interface is available or unavailable.
Appendix C - Changes from Pervious Versions
C.1. Changes from RFC 3895
The changes from RFC 3895 [RFC3895] are the following: (1) Values were added to dsx1LineType to support J1 types. (2) The object dsx1LineImpedance was added. (3) All DM-related objects were deprecated following their removal from ITU performance standards. (4) Relevant text and reference section were updated. (5) Changes in Compliance Statements to include new values.C.2. Changes from RFC 2495
The changes from RFC 2495 [RFC2495] are the following: (1) The dsx1FracIfIndex SYNTAX matches the description range. (2) A value was added to dsx1TransmitClockSource. (3) Values were added to dsx1LineType. (4) Two objects were added, dsx1LineMode and dsx1LineBuildOut, to better express transceiver mode and LineBuildOut for T1. (5) Reference was added to Circuit Identifier object. (6) Align the DESCRIPTION clauses of few statistic objects with the near-end definition, with the far-end definition, and with [RFC3593]. (7) Changes in Compliance Statements to include new objects. (8) A typographical error in dsx2E2 was fixed; new name is dsx1E2.C.3. Changes from RFC 1406
The changes from RFC 1406 [RFC1406] are the following: (1) The Fractional table has been deprecated. (2) This document uses SMIv2. (3) Usage is given for ifTable and ifXTable. (4) Example usage of ifStackTable is included. (5) dsx1IfIndex has been deprecated. (6) Support for DS2 and E2 has been added. (7) Additional lineTypes for DS2, E2, and unframed E1 were added. (8) The definition of valid intervals has been clarified for the case where the agent proxied for other devices. In particular, the treatment of missing intervals has been clarified. (9) An inward loopback has been added. (10) Additional lineStatus bits have been added for Near End in Unavailable Signal State, Carrier Equipment Out of Service, DS2 Payload AIS, and DS2 Performance Threshold.
(11) A read-write line Length object has been added. (12) Signal mode of other has been added. (13) Added a lineStatus last change, trap and enabler. (14) The e1(19) ifType has been obsoleted, so this MIB does not list it as a supported ifType. (15) Textual Conventions for statistics objects have been used. (16) A new object, dsx1LoopbackStatus, has been introduced to reflect the loopbacks established on a DS1 interface and the source to the requests. dsx1LoopbackConfig continues to be the desired loopback state while dsx1LoopbackStatus reflects the actual state. (17) A dual loopback has been added to allow the setting of an inward loopback and a line loopback at the same time. (18) An object indicating which channel to use within a parent object (i.e., DS3) has been added. (19) An object has been added to indicate whether or not this DS1/E1 is channelized. (20) Line coding type of B6ZS has been added for DS2.C.4. Companion Documents
This document is a companion to the documents that define managed objects for the DS0 [RFC2494], DS3/E3 [RFC3896], and Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) [RFC3592] Interface Types.Author's Address
Orly Nicklass, Editor RAD Data Communications, Ltd. Ziv Tower, 24 Roul Walenberg Tel Aviv, Israel, 69719 Phone: 9723-765-9969 EMail: orly_n@rad.com
Full Copyright Statement Copyright (C) The IETF Trust (2007). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.