8.2.2. sha224-256.c
/*************************** sha224-256.c ***************************/ /********************* See RFC 4634 for details *********************/ /* * Description: * This file implements the Secure Hash Signature Standard * algorithms as defined in the National Institute of Standards * and Technology Federal Information Processing Standards * Publication (FIPS PUB) 180-1 published on April 17, 1995, 180-2 * published on August 1, 2002, and the FIPS PUB 180-2 Change * Notice published on February 28, 2004. * * A combined document showing all algorithms is available at * http://csrc.nist.gov/publications/fips/ * fips180-2/fips180-2withchangenotice.pdf * * The SHA-224 and SHA-256 algorithms produce 224-bit and 256-bit * message digests for a given data stream. It should take about * 2**n steps to find a message with the same digest as a given * message and 2**(n/2) to find any two messages with the same * digest, when n is the digest size in bits. Therefore, this * algorithm can serve as a means of providing a * "fingerprint" for a message. * * Portability Issues: * SHA-224 and SHA-256 are defined in terms of 32-bit "words". * This code uses <stdint.h> (included via "sha.h") to define 32 * and 8 bit unsigned integer types. If your C compiler does not * support 32 bit unsigned integers, this code is not * appropriate. * * Caveats: * SHA-224 and SHA-256 are designed to work with messages less * than 2^64 bits long. This implementation uses SHA224/256Input() * to hash the bits that are a multiple of the size of an 8-bit * character, and then uses SHA224/256FinalBits() to hash the * final few bits of the input. */ #include "sha.h" #include "sha-private.h"
/* Define the SHA shift, rotate left and rotate right macro */ #define SHA256_SHR(bits,word) ((word) >> (bits)) #define SHA256_ROTL(bits,word) \ (((word) << (bits)) | ((word) >> (32-(bits)))) #define SHA256_ROTR(bits,word) \ (((word) >> (bits)) | ((word) << (32-(bits)))) /* Define the SHA SIGMA and sigma macros */ #define SHA256_SIGMA0(word) \ (SHA256_ROTR( 2,word) ^ SHA256_ROTR(13,word) ^ SHA256_ROTR(22,word)) #define SHA256_SIGMA1(word) \ (SHA256_ROTR( 6,word) ^ SHA256_ROTR(11,word) ^ SHA256_ROTR(25,word)) #define SHA256_sigma0(word) \ (SHA256_ROTR( 7,word) ^ SHA256_ROTR(18,word) ^ SHA256_SHR( 3,word)) #define SHA256_sigma1(word) \ (SHA256_ROTR(17,word) ^ SHA256_ROTR(19,word) ^ SHA256_SHR(10,word)) /* * add "length" to the length */ static uint32_t addTemp; #define SHA224_256AddLength(context, length) \ (addTemp = (context)->Length_Low, (context)->Corrupted = \ (((context)->Length_Low += (length)) < addTemp) && \ (++(context)->Length_High == 0) ? 1 : 0) /* Local Function Prototypes */ static void SHA224_256Finalize(SHA256Context *context, uint8_t Pad_Byte); static void SHA224_256PadMessage(SHA256Context *context, uint8_t Pad_Byte); static void SHA224_256ProcessMessageBlock(SHA256Context *context); static int SHA224_256Reset(SHA256Context *context, uint32_t *H0); static int SHA224_256ResultN(SHA256Context *context, uint8_t Message_Digest[], int HashSize); /* Initial Hash Values: FIPS-180-2 Change Notice 1 */ static uint32_t SHA224_H0[SHA256HashSize/4] = { 0xC1059ED8, 0x367CD507, 0x3070DD17, 0xF70E5939, 0xFFC00B31, 0x68581511, 0x64F98FA7, 0xBEFA4FA4 }; /* Initial Hash Values: FIPS-180-2 section 5.3.2 */ static uint32_t SHA256_H0[SHA256HashSize/4] = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 };
/* * SHA224Reset * * Description: * This function will initialize the SHA384Context in preparation * for computing a new SHA224 message digest. * * Parameters: * context: [in/out] * The context to reset. * * Returns: * sha Error Code. */ int SHA224Reset(SHA224Context *context) { return SHA224_256Reset(context, SHA224_H0); } /* * SHA224Input * * Description: * This function accepts an array of octets as the next portion * of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_array: [in] * An array of characters representing the next portion of * the message. * length: [in] * The length of the message in message_array * * Returns: * sha Error Code. * */ int SHA224Input(SHA224Context *context, const uint8_t *message_array, unsigned int length) { return SHA256Input(context, message_array, length); } /* * SHA224FinalBits *
* Description: * This function will add in any final bits of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_bits: [in] * The final bits of the message, in the upper portion of the * byte. (Use 0b###00000 instead of 0b00000### to input the * three bits ###.) * length: [in] * The number of bits in message_bits, between 1 and 7. * * Returns: * sha Error Code. */ int SHA224FinalBits( SHA224Context *context, const uint8_t message_bits, unsigned int length) { return SHA256FinalBits(context, message_bits, length); } /* * SHA224Result * * Description: * This function will return the 224-bit message * digest into the Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 28th element. * * Parameters: * context: [in/out] * The context to use to calculate the SHA hash. * Message_Digest: [out] * Where the digest is returned. * * Returns: * sha Error Code. */ int SHA224Result(SHA224Context *context, uint8_t Message_Digest[SHA224HashSize]) { return SHA224_256ResultN(context, Message_Digest, SHA224HashSize); } /* * SHA256Reset
* * Description: * This function will initialize the SHA256Context in preparation * for computing a new SHA256 message digest. * * Parameters: * context: [in/out] * The context to reset. * * Returns: * sha Error Code. */ int SHA256Reset(SHA256Context *context) { return SHA224_256Reset(context, SHA256_H0); } /* * SHA256Input * * Description: * This function accepts an array of octets as the next portion * of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_array: [in] * An array of characters representing the next portion of * the message. * length: [in] * The length of the message in message_array * * Returns: * sha Error Code. */ int SHA256Input(SHA256Context *context, const uint8_t *message_array, unsigned int length) { if (!length) return shaSuccess; if (!context || !message_array) return shaNull; if (context->Computed) { context->Corrupted = shaStateError; return shaStateError;
} if (context->Corrupted) return context->Corrupted; while (length-- && !context->Corrupted) { context->Message_Block[context->Message_Block_Index++] = (*message_array & 0xFF); if (!SHA224_256AddLength(context, 8) && (context->Message_Block_Index == SHA256_Message_Block_Size)) SHA224_256ProcessMessageBlock(context); message_array++; } return shaSuccess; } /* * SHA256FinalBits * * Description: * This function will add in any final bits of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_bits: [in] * The final bits of the message, in the upper portion of the * byte. (Use 0b###00000 instead of 0b00000### to input the * three bits ###.) * length: [in] * The number of bits in message_bits, between 1 and 7. * * Returns: * sha Error Code. */ int SHA256FinalBits(SHA256Context *context, const uint8_t message_bits, unsigned int length) { uint8_t masks[8] = { /* 0 0b00000000 */ 0x00, /* 1 0b10000000 */ 0x80, /* 2 0b11000000 */ 0xC0, /* 3 0b11100000 */ 0xE0, /* 4 0b11110000 */ 0xF0, /* 5 0b11111000 */ 0xF8, /* 6 0b11111100 */ 0xFC, /* 7 0b11111110 */ 0xFE };
uint8_t markbit[8] = { /* 0 0b10000000 */ 0x80, /* 1 0b01000000 */ 0x40, /* 2 0b00100000 */ 0x20, /* 3 0b00010000 */ 0x10, /* 4 0b00001000 */ 0x08, /* 5 0b00000100 */ 0x04, /* 6 0b00000010 */ 0x02, /* 7 0b00000001 */ 0x01 }; if (!length) return shaSuccess; if (!context) return shaNull; if ((context->Computed) || (length >= 8) || (length == 0)) { context->Corrupted = shaStateError; return shaStateError; } if (context->Corrupted) return context->Corrupted; SHA224_256AddLength(context, length); SHA224_256Finalize(context, (uint8_t) ((message_bits & masks[length]) | markbit[length])); return shaSuccess; } /* * SHA256Result * * Description: * This function will return the 256-bit message * digest into the Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 32nd element. * * Parameters: * context: [in/out] * The context to use to calculate the SHA hash. * Message_Digest: [out] * Where the digest is returned. * * Returns: * sha Error Code. */ int SHA256Result(SHA256Context *context, uint8_t Message_Digest[]) {
return SHA224_256ResultN(context, Message_Digest, SHA256HashSize); } /* * SHA224_256Finalize * * Description: * This helper function finishes off the digest calculations. * * Parameters: * context: [in/out] * The SHA context to update * Pad_Byte: [in] * The last byte to add to the digest before the 0-padding * and length. This will contain the last bits of the message * followed by another single bit. If the message was an * exact multiple of 8-bits long, Pad_Byte will be 0x80. * * Returns: * sha Error Code. */ static void SHA224_256Finalize(SHA256Context *context, uint8_t Pad_Byte) { int i; SHA224_256PadMessage(context, Pad_Byte); /* message may be sensitive, so clear it out */ for (i = 0; i < SHA256_Message_Block_Size; ++i) context->Message_Block[i] = 0; context->Length_Low = 0; /* and clear length */ context->Length_High = 0; context->Computed = 1; } /* * SHA224_256PadMessage * * Description: * According to the standard, the message must be padded to an * even 512 bits. The first padding bit must be a '1'. The * last 64 bits represent the length of the original message. * All bits in between should be 0. This helper function will pad * the message according to those rules by filling the * Message_Block array accordingly. When it returns, it can be * assumed that the message digest has been computed. * * Parameters: * context: [in/out]
* The context to pad * Pad_Byte: [in] * The last byte to add to the digest before the 0-padding * and length. This will contain the last bits of the message * followed by another single bit. If the message was an * exact multiple of 8-bits long, Pad_Byte will be 0x80. * * Returns: * Nothing. */ static void SHA224_256PadMessage(SHA256Context *context, uint8_t Pad_Byte) { /* * Check to see if the current message block is too small to hold * the initial padding bits and length. If so, we will pad the * block, process it, and then continue padding into a second * block. */ if (context->Message_Block_Index >= (SHA256_Message_Block_Size-8)) { context->Message_Block[context->Message_Block_Index++] = Pad_Byte; while (context->Message_Block_Index < SHA256_Message_Block_Size) context->Message_Block[context->Message_Block_Index++] = 0; SHA224_256ProcessMessageBlock(context); } else context->Message_Block[context->Message_Block_Index++] = Pad_Byte; while (context->Message_Block_Index < (SHA256_Message_Block_Size-8)) context->Message_Block[context->Message_Block_Index++] = 0; /* * Store the message length as the last 8 octets */ context->Message_Block[56] = (uint8_t)(context->Length_High >> 24); context->Message_Block[57] = (uint8_t)(context->Length_High >> 16); context->Message_Block[58] = (uint8_t)(context->Length_High >> 8); context->Message_Block[59] = (uint8_t)(context->Length_High); context->Message_Block[60] = (uint8_t)(context->Length_Low >> 24); context->Message_Block[61] = (uint8_t)(context->Length_Low >> 16); context->Message_Block[62] = (uint8_t)(context->Length_Low >> 8); context->Message_Block[63] = (uint8_t)(context->Length_Low); SHA224_256ProcessMessageBlock(context); } /* * SHA224_256ProcessMessageBlock *
* Description: * This function will process the next 512 bits of the message * stored in the Message_Block array. * * Parameters: * context: [in/out] * The SHA context to update * * Returns: * Nothing. * * Comments: * Many of the variable names in this code, especially the * single character names, were used because those were the * names used in the publication. */ static void SHA224_256ProcessMessageBlock(SHA256Context *context) { /* Constants defined in FIPS-180-2, section 4.2.2 */ static const uint32_t K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; int t, t4; /* Loop counter */ uint32_t temp1, temp2; /* Temporary word value */ uint32_t W[64]; /* Word sequence */ uint32_t A, B, C, D, E, F, G, H; /* Word buffers */ /* * Initialize the first 16 words in the array W */ for (t = t4 = 0; t < 16; t++, t4 += 4) W[t] = (((uint32_t)context->Message_Block[t4]) << 24) | (((uint32_t)context->Message_Block[t4 + 1]) << 16) | (((uint32_t)context->Message_Block[t4 + 2]) << 8) | (((uint32_t)context->Message_Block[t4 + 3]));
for (t = 16; t < 64; t++) W[t] = SHA256_sigma1(W[t-2]) + W[t-7] + SHA256_sigma0(W[t-15]) + W[t-16]; A = context->Intermediate_Hash[0]; B = context->Intermediate_Hash[1]; C = context->Intermediate_Hash[2]; D = context->Intermediate_Hash[3]; E = context->Intermediate_Hash[4]; F = context->Intermediate_Hash[5]; G = context->Intermediate_Hash[6]; H = context->Intermediate_Hash[7]; for (t = 0; t < 64; t++) { temp1 = H + SHA256_SIGMA1(E) + SHA_Ch(E,F,G) + K[t] + W[t]; temp2 = SHA256_SIGMA0(A) + SHA_Maj(A,B,C); H = G; G = F; F = E; E = D + temp1; D = C; C = B; B = A; A = temp1 + temp2; } context->Intermediate_Hash[0] += A; context->Intermediate_Hash[1] += B; context->Intermediate_Hash[2] += C; context->Intermediate_Hash[3] += D; context->Intermediate_Hash[4] += E; context->Intermediate_Hash[5] += F; context->Intermediate_Hash[6] += G; context->Intermediate_Hash[7] += H; context->Message_Block_Index = 0; } /* * SHA224_256Reset * * Description: * This helper function will initialize the SHA256Context in * preparation for computing a new SHA256 message digest. * * Parameters: * context: [in/out] * The context to reset.
* H0 * The initial hash value to use. * * Returns: * sha Error Code. */ static int SHA224_256Reset(SHA256Context *context, uint32_t *H0) { if (!context) return shaNull; context->Length_Low = 0; context->Length_High = 0; context->Message_Block_Index = 0; context->Intermediate_Hash[0] = H0[0]; context->Intermediate_Hash[1] = H0[1]; context->Intermediate_Hash[2] = H0[2]; context->Intermediate_Hash[3] = H0[3]; context->Intermediate_Hash[4] = H0[4]; context->Intermediate_Hash[5] = H0[5]; context->Intermediate_Hash[6] = H0[6]; context->Intermediate_Hash[7] = H0[7]; context->Computed = 0; context->Corrupted = 0; return shaSuccess; } /* * SHA224_256ResultN * * Description: * This helper function will return the 224-bit or 256-bit message * digest into the Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 28th/32nd element. * * Parameters: * context: [in/out] * The context to use to calculate the SHA hash. * Message_Digest: [out] * Where the digest is returned. * HashSize: [in] * The size of the hash, either 28 or 32. * * Returns:
* sha Error Code. */ static int SHA224_256ResultN(SHA256Context *context, uint8_t Message_Digest[], int HashSize) { int i; if (!context || !Message_Digest) return shaNull; if (context->Corrupted) return context->Corrupted; if (!context->Computed) SHA224_256Finalize(context, 0x80); for (i = 0; i < HashSize; ++i) Message_Digest[i] = (uint8_t) (context->Intermediate_Hash[i>>2] >> 8 * ( 3 - ( i & 0x03 ) )); return shaSuccess; }8.2.3. sha384-512.c
/*************************** sha384-512.c ***************************/ /********************* See RFC 4634 for details *********************/ /* * Description: * This file implements the Secure Hash Signature Standard * algorithms as defined in the National Institute of Standards * and Technology Federal Information Processing Standards * Publication (FIPS PUB) 180-1 published on April 17, 1995, 180-2 * published on August 1, 2002, and the FIPS PUB 180-2 Change * Notice published on February 28, 2004. * * A combined document showing all algorithms is available at * http://csrc.nist.gov/publications/fips/ * fips180-2/fips180-2withchangenotice.pdf * * The SHA-384 and SHA-512 algorithms produce 384-bit and 512-bit * message digests for a given data stream. It should take about * 2**n steps to find a message with the same digest as a given * message and 2**(n/2) to find any two messages with the same * digest, when n is the digest size in bits. Therefore, this * algorithm can serve as a means of providing a * "fingerprint" for a message. *
* Portability Issues: * SHA-384 and SHA-512 are defined in terms of 64-bit "words", * but if USE_32BIT_ONLY is #defined, this code is implemented in * terms of 32-bit "words". This code uses <stdint.h> (included * via "sha.h") to define the 64, 32 and 8 bit unsigned integer * types. If your C compiler does not support 64 bit unsigned * integers, and you do not #define USE_32BIT_ONLY, this code is * not appropriate. * * Caveats: * SHA-384 and SHA-512 are designed to work with messages less * than 2^128 bits long. This implementation uses * SHA384/512Input() to hash the bits that are a multiple of the * size of an 8-bit character, and then uses SHA384/256FinalBits() * to hash the final few bits of the input. * */ #include "sha.h" #include "sha-private.h" #ifdef USE_32BIT_ONLY /* * Define 64-bit arithmetic in terms of 32-bit arithmetic. * Each 64-bit number is represented in a 2-word array. * All macros are defined such that the result is the last parameter. */ /* * Define shift, rotate left and rotate right functions */ #define SHA512_SHR(bits, word, ret) ( \ /* (((uint64_t)((word))) >> (bits)) */ \ (ret)[0] = (((bits) < 32) && ((bits) >= 0)) ? \ ((word)[0] >> (bits)) : 0, \ (ret)[1] = ((bits) > 32) ? ((word)[0] >> ((bits) - 32)) : \ ((bits) == 32) ? (word)[0] : \ ((bits) >= 0) ? \ (((word)[0] << (32 - (bits))) | \ ((word)[1] >> (bits))) : 0 ) #define SHA512_SHL(bits, word, ret) ( \ /* (((uint64_t)(word)) << (bits)) */ \ (ret)[0] = ((bits) > 32) ? ((word)[1] << ((bits) - 32)) : \ ((bits) == 32) ? (word)[1] : \ ((bits) >= 0) ? \ (((word)[0] << (bits)) | \ ((word)[1] >> (32 - (bits)))) : \
0, \ (ret)[1] = (((bits) < 32) && ((bits) >= 0)) ? \ ((word)[1] << (bits)) : 0 ) /* * Define 64-bit OR */ #define SHA512_OR(word1, word2, ret) ( \ (ret)[0] = (word1)[0] | (word2)[0], \ (ret)[1] = (word1)[1] | (word2)[1] ) /* * Define 64-bit XOR */ #define SHA512_XOR(word1, word2, ret) ( \ (ret)[0] = (word1)[0] ^ (word2)[0], \ (ret)[1] = (word1)[1] ^ (word2)[1] ) /* * Define 64-bit AND */ #define SHA512_AND(word1, word2, ret) ( \ (ret)[0] = (word1)[0] & (word2)[0], \ (ret)[1] = (word1)[1] & (word2)[1] ) /* * Define 64-bit TILDA */ #define SHA512_TILDA(word, ret) \ ( (ret)[0] = ~(word)[0], (ret)[1] = ~(word)[1] ) /* * Define 64-bit ADD */ #define SHA512_ADD(word1, word2, ret) ( \ (ret)[1] = (word1)[1], (ret)[1] += (word2)[1], \ (ret)[0] = (word1)[0] + (word2)[0] + ((ret)[1] < (word1)[1]) ) /* * Add the 4word value in word2 to word1. */ static uint32_t ADDTO4_temp, ADDTO4_temp2; #define SHA512_ADDTO4(word1, word2) ( \ ADDTO4_temp = (word1)[3], \ (word1)[3] += (word2)[3], \ ADDTO4_temp2 = (word1)[2], \ (word1)[2] += (word2)[2] + ((word1)[3] < ADDTO4_temp), \ ADDTO4_temp = (word1)[1], \
(word1)[1] += (word2)[1] + ((word1)[2] < ADDTO4_temp2), \ (word1)[0] += (word2)[0] + ((word1)[1] < ADDTO4_temp) ) /* * Add the 2word value in word2 to word1. */ static uint32_t ADDTO2_temp; #define SHA512_ADDTO2(word1, word2) ( \ ADDTO2_temp = (word1)[1], \ (word1)[1] += (word2)[1], \ (word1)[0] += (word2)[0] + ((word1)[1] < ADDTO2_temp) ) /* * SHA rotate ((word >> bits) | (word << (64-bits))) */ static uint32_t ROTR_temp1[2], ROTR_temp2[2]; #define SHA512_ROTR(bits, word, ret) ( \ SHA512_SHR((bits), (word), ROTR_temp1), \ SHA512_SHL(64-(bits), (word), ROTR_temp2), \ SHA512_OR(ROTR_temp1, ROTR_temp2, (ret)) ) /* * Define the SHA SIGMA and sigma macros * SHA512_ROTR(28,word) ^ SHA512_ROTR(34,word) ^ SHA512_ROTR(39,word) */ static uint32_t SIGMA0_temp1[2], SIGMA0_temp2[2], SIGMA0_temp3[2], SIGMA0_temp4[2]; #define SHA512_SIGMA0(word, ret) ( \ SHA512_ROTR(28, (word), SIGMA0_temp1), \ SHA512_ROTR(34, (word), SIGMA0_temp2), \ SHA512_ROTR(39, (word), SIGMA0_temp3), \ SHA512_XOR(SIGMA0_temp2, SIGMA0_temp3, SIGMA0_temp4), \ SHA512_XOR(SIGMA0_temp1, SIGMA0_temp4, (ret)) ) /* * SHA512_ROTR(14,word) ^ SHA512_ROTR(18,word) ^ SHA512_ROTR(41,word) */ static uint32_t SIGMA1_temp1[2], SIGMA1_temp2[2], SIGMA1_temp3[2], SIGMA1_temp4[2]; #define SHA512_SIGMA1(word, ret) ( \ SHA512_ROTR(14, (word), SIGMA1_temp1), \ SHA512_ROTR(18, (word), SIGMA1_temp2), \ SHA512_ROTR(41, (word), SIGMA1_temp3), \ SHA512_XOR(SIGMA1_temp2, SIGMA1_temp3, SIGMA1_temp4), \ SHA512_XOR(SIGMA1_temp1, SIGMA1_temp4, (ret)) ) /* * (SHA512_ROTR( 1,word) ^ SHA512_ROTR( 8,word) ^ SHA512_SHR( 7,word))
*/ static uint32_t sigma0_temp1[2], sigma0_temp2[2], sigma0_temp3[2], sigma0_temp4[2]; #define SHA512_sigma0(word, ret) ( \ SHA512_ROTR( 1, (word), sigma0_temp1), \ SHA512_ROTR( 8, (word), sigma0_temp2), \ SHA512_SHR( 7, (word), sigma0_temp3), \ SHA512_XOR(sigma0_temp2, sigma0_temp3, sigma0_temp4), \ SHA512_XOR(sigma0_temp1, sigma0_temp4, (ret)) ) /* * (SHA512_ROTR(19,word) ^ SHA512_ROTR(61,word) ^ SHA512_SHR( 6,word)) */ static uint32_t sigma1_temp1[2], sigma1_temp2[2], sigma1_temp3[2], sigma1_temp4[2]; #define SHA512_sigma1(word, ret) ( \ SHA512_ROTR(19, (word), sigma1_temp1), \ SHA512_ROTR(61, (word), sigma1_temp2), \ SHA512_SHR( 6, (word), sigma1_temp3), \ SHA512_XOR(sigma1_temp2, sigma1_temp3, sigma1_temp4), \ SHA512_XOR(sigma1_temp1, sigma1_temp4, (ret)) ) #undef SHA_Ch #undef SHA_Maj #ifndef USE_MODIFIED_MACROS /* * These definitions are the ones used in FIPS-180-2, section 4.1.3 * Ch(x,y,z) ((x & y) ^ (~x & z)) */ static uint32_t Ch_temp1[2], Ch_temp2[2], Ch_temp3[2]; #define SHA_Ch(x, y, z, ret) ( \ SHA512_AND(x, y, Ch_temp1), \ SHA512_TILDA(x, Ch_temp2), \ SHA512_AND(Ch_temp2, z, Ch_temp3), \ SHA512_XOR(Ch_temp1, Ch_temp3, (ret)) ) /* * Maj(x,y,z) (((x)&(y)) ^ ((x)&(z)) ^ ((y)&(z))) */ static uint32_t Maj_temp1[2], Maj_temp2[2], Maj_temp3[2], Maj_temp4[2]; #define SHA_Maj(x, y, z, ret) ( \ SHA512_AND(x, y, Maj_temp1), \ SHA512_AND(x, z, Maj_temp2), \ SHA512_AND(y, z, Maj_temp3), \ SHA512_XOR(Maj_temp2, Maj_temp3, Maj_temp4), \ SHA512_XOR(Maj_temp1, Maj_temp4, (ret)) )
#else /* !USE_32BIT_ONLY */ /* * These definitions are potentially faster equivalents for the ones * used in FIPS-180-2, section 4.1.3. * ((x & y) ^ (~x & z)) becomes * ((x & (y ^ z)) ^ z) */ #define SHA_Ch(x, y, z, ret) ( \ (ret)[0] = (((x)[0] & ((y)[0] ^ (z)[0])) ^ (z)[0]), \ (ret)[1] = (((x)[1] & ((y)[1] ^ (z)[1])) ^ (z)[1]) ) /* * ((x & y) ^ (x & z) ^ (y & z)) becomes * ((x & (y | z)) | (y & z)) */ #define SHA_Maj(x, y, z, ret) ( \ ret[0] = (((x)[0] & ((y)[0] | (z)[0])) | ((y)[0] & (z)[0])), \ ret[1] = (((x)[1] & ((y)[1] | (z)[1])) | ((y)[1] & (z)[1])) ) #endif /* USE_MODIFIED_MACROS */ /* * add "length" to the length */ static uint32_t addTemp[4] = { 0, 0, 0, 0 }; #define SHA384_512AddLength(context, length) ( \ addTemp[3] = (length), SHA512_ADDTO4((context)->Length, addTemp), \ (context)->Corrupted = (((context)->Length[3] == 0) && \ ((context)->Length[2] == 0) && ((context)->Length[1] == 0) && \ ((context)->Length[0] < 8)) ? 1 : 0 ) /* Local Function Prototypes */ static void SHA384_512Finalize(SHA512Context *context, uint8_t Pad_Byte); static void SHA384_512PadMessage(SHA512Context *context, uint8_t Pad_Byte); static void SHA384_512ProcessMessageBlock(SHA512Context *context); static int SHA384_512Reset(SHA512Context *context, uint32_t H0[]); static int SHA384_512ResultN( SHA512Context *context, uint8_t Message_Digest[], int HashSize); /* Initial Hash Values: FIPS-180-2 sections 5.3.3 and 5.3.4 */ static uint32_t SHA384_H0[SHA512HashSize/4] = { 0xCBBB9D5D, 0xC1059ED8, 0x629A292A, 0x367CD507, 0x9159015A, 0x3070DD17, 0x152FECD8, 0xF70E5939, 0x67332667, 0xFFC00B31, 0x8EB44A87, 0x68581511, 0xDB0C2E0D, 0x64F98FA7, 0x47B5481D, 0xBEFA4FA4 };
static uint32_t SHA512_H0[SHA512HashSize/4] = { 0x6A09E667, 0xF3BCC908, 0xBB67AE85, 0x84CAA73B, 0x3C6EF372, 0xFE94F82B, 0xA54FF53A, 0x5F1D36F1, 0x510E527F, 0xADE682D1, 0x9B05688C, 0x2B3E6C1F, 0x1F83D9AB, 0xFB41BD6B, 0x5BE0CD19, 0x137E2179 }; #else /* !USE_32BIT_ONLY */ /* Define the SHA shift, rotate left and rotate right macro */ #define SHA512_SHR(bits,word) (((uint64_t)(word)) >> (bits)) #define SHA512_ROTR(bits,word) ((((uint64_t)(word)) >> (bits)) | \ (((uint64_t)(word)) << (64-(bits)))) /* Define the SHA SIGMA and sigma macros */ #define SHA512_SIGMA0(word) \ (SHA512_ROTR(28,word) ^ SHA512_ROTR(34,word) ^ SHA512_ROTR(39,word)) #define SHA512_SIGMA1(word) \ (SHA512_ROTR(14,word) ^ SHA512_ROTR(18,word) ^ SHA512_ROTR(41,word)) #define SHA512_sigma0(word) \ (SHA512_ROTR( 1,word) ^ SHA512_ROTR( 8,word) ^ SHA512_SHR( 7,word)) #define SHA512_sigma1(word) \ (SHA512_ROTR(19,word) ^ SHA512_ROTR(61,word) ^ SHA512_SHR( 6,word)) /* * add "length" to the length */ static uint64_t addTemp; #define SHA384_512AddLength(context, length) \ (addTemp = context->Length_Low, context->Corrupted = \ ((context->Length_Low += length) < addTemp) && \ (++context->Length_High == 0) ? 1 : 0) /* Local Function Prototypes */ static void SHA384_512Finalize(SHA512Context *context, uint8_t Pad_Byte); static void SHA384_512PadMessage(SHA512Context *context, uint8_t Pad_Byte); static void SHA384_512ProcessMessageBlock(SHA512Context *context); static int SHA384_512Reset(SHA512Context *context, uint64_t H0[]); static int SHA384_512ResultN(SHA512Context *context, uint8_t Message_Digest[], int HashSize); /* Initial Hash Values: FIPS-180-2 sections 5.3.3 and 5.3.4 */ static uint64_t SHA384_H0[] = { 0xCBBB9D5DC1059ED8ll, 0x629A292A367CD507ll, 0x9159015A3070DD17ll, 0x152FECD8F70E5939ll, 0x67332667FFC00B31ll, 0x8EB44A8768581511ll, 0xDB0C2E0D64F98FA7ll, 0x47B5481DBEFA4FA4ll
}; static uint64_t SHA512_H0[] = { 0x6A09E667F3BCC908ll, 0xBB67AE8584CAA73Bll, 0x3C6EF372FE94F82Bll, 0xA54FF53A5F1D36F1ll, 0x510E527FADE682D1ll, 0x9B05688C2B3E6C1Fll, 0x1F83D9ABFB41BD6Bll, 0x5BE0CD19137E2179ll }; #endif /* USE_32BIT_ONLY */ /* * SHA384Reset * * Description: * This function will initialize the SHA384Context in preparation * for computing a new SHA384 message digest. * * Parameters: * context: [in/out] * The context to reset. * * Returns: * sha Error Code. * */ int SHA384Reset(SHA384Context *context) { return SHA384_512Reset(context, SHA384_H0); } /* * SHA384Input * * Description: * This function accepts an array of octets as the next portion * of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_array: [in] * An array of characters representing the next portion of * the message. * length: [in] * The length of the message in message_array * * Returns: * sha Error Code. *
*/ int SHA384Input(SHA384Context *context, const uint8_t *message_array, unsigned int length) { return SHA512Input(context, message_array, length); } /* * SHA384FinalBits * * Description: * This function will add in any final bits of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_bits: [in] * The final bits of the message, in the upper portion of the * byte. (Use 0b###00000 instead of 0b00000### to input the * three bits ###.) * length: [in] * The number of bits in message_bits, between 1 and 7. * * Returns: * sha Error Code. * */ int SHA384FinalBits(SHA384Context *context, const uint8_t message_bits, unsigned int length) { return SHA512FinalBits(context, message_bits, length); } /* * SHA384Result * * Description: * This function will return the 384-bit message * digest into the Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 48th element. * * Parameters: * context: [in/out] * The context to use to calculate the SHA hash. * Message_Digest: [out] * Where the digest is returned. *
* Returns: * sha Error Code. * */ int SHA384Result(SHA384Context *context, uint8_t Message_Digest[SHA384HashSize]) { return SHA384_512ResultN(context, Message_Digest, SHA384HashSize); } /* * SHA512Reset * * Description: * This function will initialize the SHA512Context in preparation * for computing a new SHA512 message digest. * * Parameters: * context: [in/out] * The context to reset. * * Returns: * sha Error Code. * */ int SHA512Reset(SHA512Context *context) { return SHA384_512Reset(context, SHA512_H0); } /* * SHA512Input * * Description: * This function accepts an array of octets as the next portion * of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_array: [in] * An array of characters representing the next portion of * the message. * length: [in] * The length of the message in message_array * * Returns: * sha Error Code.
* */ int SHA512Input(SHA512Context *context, const uint8_t *message_array, unsigned int length) { if (!length) return shaSuccess; if (!context || !message_array) return shaNull; if (context->Computed) { context->Corrupted = shaStateError; return shaStateError; } if (context->Corrupted) return context->Corrupted; while (length-- && !context->Corrupted) { context->Message_Block[context->Message_Block_Index++] = (*message_array & 0xFF); if (!SHA384_512AddLength(context, 8) && (context->Message_Block_Index == SHA512_Message_Block_Size)) SHA384_512ProcessMessageBlock(context); message_array++; } return shaSuccess; } /* * SHA512FinalBits * * Description: * This function will add in any final bits of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_bits: [in] * The final bits of the message, in the upper portion of the * byte. (Use 0b###00000 instead of 0b00000### to input the * three bits ###.) * length: [in]
* The number of bits in message_bits, between 1 and 7. * * Returns: * sha Error Code. * */ int SHA512FinalBits(SHA512Context *context, const uint8_t message_bits, unsigned int length) { uint8_t masks[8] = { /* 0 0b00000000 */ 0x00, /* 1 0b10000000 */ 0x80, /* 2 0b11000000 */ 0xC0, /* 3 0b11100000 */ 0xE0, /* 4 0b11110000 */ 0xF0, /* 5 0b11111000 */ 0xF8, /* 6 0b11111100 */ 0xFC, /* 7 0b11111110 */ 0xFE }; uint8_t markbit[8] = { /* 0 0b10000000 */ 0x80, /* 1 0b01000000 */ 0x40, /* 2 0b00100000 */ 0x20, /* 3 0b00010000 */ 0x10, /* 4 0b00001000 */ 0x08, /* 5 0b00000100 */ 0x04, /* 6 0b00000010 */ 0x02, /* 7 0b00000001 */ 0x01 }; if (!length) return shaSuccess; if (!context) return shaNull; if ((context->Computed) || (length >= 8) || (length == 0)) { context->Corrupted = shaStateError; return shaStateError; } if (context->Corrupted) return context->Corrupted; SHA384_512AddLength(context, length); SHA384_512Finalize(context, (uint8_t) ((message_bits & masks[length]) | markbit[length])); return shaSuccess; } /* * SHA384_512Finalize * * Description: * This helper function finishes off the digest calculations.
* * Parameters: * context: [in/out] * The SHA context to update * Pad_Byte: [in] * The last byte to add to the digest before the 0-padding * and length. This will contain the last bits of the message * followed by another single bit. If the message was an * exact multiple of 8-bits long, Pad_Byte will be 0x80. * * Returns: * sha Error Code. * */ static void SHA384_512Finalize(SHA512Context *context, uint8_t Pad_Byte) { int_least16_t i; SHA384_512PadMessage(context, Pad_Byte); /* message may be sensitive, clear it out */ for (i = 0; i < SHA512_Message_Block_Size; ++i) context->Message_Block[i] = 0; #ifdef USE_32BIT_ONLY /* and clear length */ context->Length[0] = context->Length[1] = 0; context->Length[2] = context->Length[3] = 0; #else /* !USE_32BIT_ONLY */ context->Length_Low = 0; context->Length_High = 0; #endif /* USE_32BIT_ONLY */ context->Computed = 1; } /* * SHA512Result * * Description: * This function will return the 512-bit message * digest into the Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 64th element. * * Parameters: * context: [in/out] * The context to use to calculate the SHA hash. * Message_Digest: [out] * Where the digest is returned. * * Returns:
* sha Error Code. * */ int SHA512Result(SHA512Context *context, uint8_t Message_Digest[SHA512HashSize]) { return SHA384_512ResultN(context, Message_Digest, SHA512HashSize); } /* * SHA384_512PadMessage * * Description: * According to the standard, the message must be padded to an * even 1024 bits. The first padding bit must be a '1'. The * last 128 bits represent the length of the original message. * All bits in between should be 0. This helper function will * pad the message according to those rules by filling the * Message_Block array accordingly. When it returns, it can be * assumed that the message digest has been computed. * * Parameters: * context: [in/out] * The context to pad * Pad_Byte: [in] * The last byte to add to the digest before the 0-padding * and length. This will contain the last bits of the message * followed by another single bit. If the message was an * exact multiple of 8-bits long, Pad_Byte will be 0x80. * * Returns: * Nothing. * */ static void SHA384_512PadMessage(SHA512Context *context, uint8_t Pad_Byte) { /* * Check to see if the current message block is too small to hold * the initial padding bits and length. If so, we will pad the * block, process it, and then continue padding into a second * block. */ if (context->Message_Block_Index >= (SHA512_Message_Block_Size-16)) { context->Message_Block[context->Message_Block_Index++] = Pad_Byte; while (context->Message_Block_Index < SHA512_Message_Block_Size) context->Message_Block[context->Message_Block_Index++] = 0;
SHA384_512ProcessMessageBlock(context); } else context->Message_Block[context->Message_Block_Index++] = Pad_Byte; while (context->Message_Block_Index < (SHA512_Message_Block_Size-16)) context->Message_Block[context->Message_Block_Index++] = 0; /* * Store the message length as the last 16 octets */ #ifdef USE_32BIT_ONLY context->Message_Block[112] = (uint8_t)(context->Length[0] >> 24); context->Message_Block[113] = (uint8_t)(context->Length[0] >> 16); context->Message_Block[114] = (uint8_t)(context->Length[0] >> 8); context->Message_Block[115] = (uint8_t)(context->Length[0]); context->Message_Block[116] = (uint8_t)(context->Length[1] >> 24); context->Message_Block[117] = (uint8_t)(context->Length[1] >> 16); context->Message_Block[118] = (uint8_t)(context->Length[1] >> 8); context->Message_Block[119] = (uint8_t)(context->Length[1]); context->Message_Block[120] = (uint8_t)(context->Length[2] >> 24); context->Message_Block[121] = (uint8_t)(context->Length[2] >> 16); context->Message_Block[122] = (uint8_t)(context->Length[2] >> 8); context->Message_Block[123] = (uint8_t)(context->Length[2]); context->Message_Block[124] = (uint8_t)(context->Length[3] >> 24); context->Message_Block[125] = (uint8_t)(context->Length[3] >> 16); context->Message_Block[126] = (uint8_t)(context->Length[3] >> 8); context->Message_Block[127] = (uint8_t)(context->Length[3]); #else /* !USE_32BIT_ONLY */ context->Message_Block[112] = (uint8_t)(context->Length_High >> 56); context->Message_Block[113] = (uint8_t)(context->Length_High >> 48); context->Message_Block[114] = (uint8_t)(context->Length_High >> 40); context->Message_Block[115] = (uint8_t)(context->Length_High >> 32); context->Message_Block[116] = (uint8_t)(context->Length_High >> 24); context->Message_Block[117] = (uint8_t)(context->Length_High >> 16); context->Message_Block[118] = (uint8_t)(context->Length_High >> 8); context->Message_Block[119] = (uint8_t)(context->Length_High); context->Message_Block[120] = (uint8_t)(context->Length_Low >> 56); context->Message_Block[121] = (uint8_t)(context->Length_Low >> 48); context->Message_Block[122] = (uint8_t)(context->Length_Low >> 40); context->Message_Block[123] = (uint8_t)(context->Length_Low >> 32); context->Message_Block[124] = (uint8_t)(context->Length_Low >> 24); context->Message_Block[125] = (uint8_t)(context->Length_Low >> 16); context->Message_Block[126] = (uint8_t)(context->Length_Low >> 8); context->Message_Block[127] = (uint8_t)(context->Length_Low); #endif /* USE_32BIT_ONLY */
SHA384_512ProcessMessageBlock(context); } /* * SHA384_512ProcessMessageBlock * * Description: * This helper function will process the next 1024 bits of the * message stored in the Message_Block array. * * Parameters: * context: [in/out] * The SHA context to update * * Returns: * Nothing. * * Comments: * Many of the variable names in this code, especially the * single character names, were used because those were the * names used in the publication. * * */ static void SHA384_512ProcessMessageBlock(SHA512Context *context) { /* Constants defined in FIPS-180-2, section 4.2.3 */ #ifdef USE_32BIT_ONLY static const uint32_t K[80*2] = { 0x428A2F98, 0xD728AE22, 0x71374491, 0x23EF65CD, 0xB5C0FBCF, 0xEC4D3B2F, 0xE9B5DBA5, 0x8189DBBC, 0x3956C25B, 0xF348B538, 0x59F111F1, 0xB605D019, 0x923F82A4, 0xAF194F9B, 0xAB1C5ED5, 0xDA6D8118, 0xD807AA98, 0xA3030242, 0x12835B01, 0x45706FBE, 0x243185BE, 0x4EE4B28C, 0x550C7DC3, 0xD5FFB4E2, 0x72BE5D74, 0xF27B896F, 0x80DEB1FE, 0x3B1696B1, 0x9BDC06A7, 0x25C71235, 0xC19BF174, 0xCF692694, 0xE49B69C1, 0x9EF14AD2, 0xEFBE4786, 0x384F25E3, 0x0FC19DC6, 0x8B8CD5B5, 0x240CA1CC, 0x77AC9C65, 0x2DE92C6F, 0x592B0275, 0x4A7484AA, 0x6EA6E483, 0x5CB0A9DC, 0xBD41FBD4, 0x76F988DA, 0x831153B5, 0x983E5152, 0xEE66DFAB, 0xA831C66D, 0x2DB43210, 0xB00327C8, 0x98FB213F, 0xBF597FC7, 0xBEEF0EE4, 0xC6E00BF3, 0x3DA88FC2, 0xD5A79147, 0x930AA725, 0x06CA6351, 0xE003826F, 0x14292967, 0x0A0E6E70, 0x27B70A85, 0x46D22FFC, 0x2E1B2138, 0x5C26C926, 0x4D2C6DFC, 0x5AC42AED, 0x53380D13, 0x9D95B3DF, 0x650A7354, 0x8BAF63DE, 0x766A0ABB, 0x3C77B2A8, 0x81C2C92E, 0x47EDAEE6, 0x92722C85, 0x1482353B, 0xA2BFE8A1, 0x4CF10364, 0xA81A664B, 0xBC423001, 0xC24B8B70, 0xD0F89791, 0xC76C51A3, 0x0654BE30, 0xD192E819, 0xD6EF5218, 0xD6990624, 0x5565A910, 0xF40E3585, 0x5771202A, 0x106AA070,
0x32BBD1B8, 0x19A4C116, 0xB8D2D0C8, 0x1E376C08, 0x5141AB53, 0x2748774C, 0xDF8EEB99, 0x34B0BCB5, 0xE19B48A8, 0x391C0CB3, 0xC5C95A63, 0x4ED8AA4A, 0xE3418ACB, 0x5B9CCA4F, 0x7763E373, 0x682E6FF3, 0xD6B2B8A3, 0x748F82EE, 0x5DEFB2FC, 0x78A5636F, 0x43172F60, 0x84C87814, 0xA1F0AB72, 0x8CC70208, 0x1A6439EC, 0x90BEFFFA, 0x23631E28, 0xA4506CEB, 0xDE82BDE9, 0xBEF9A3F7, 0xB2C67915, 0xC67178F2, 0xE372532B, 0xCA273ECE, 0xEA26619C, 0xD186B8C7, 0x21C0C207, 0xEADA7DD6, 0xCDE0EB1E, 0xF57D4F7F, 0xEE6ED178, 0x06F067AA, 0x72176FBA, 0x0A637DC5, 0xA2C898A6, 0x113F9804, 0xBEF90DAE, 0x1B710B35, 0x131C471B, 0x28DB77F5, 0x23047D84, 0x32CAAB7B, 0x40C72493, 0x3C9EBE0A, 0x15C9BEBC, 0x431D67C4, 0x9C100D4C, 0x4CC5D4BE, 0xCB3E42B6, 0x597F299C, 0xFC657E2A, 0x5FCB6FAB, 0x3AD6FAEC, 0x6C44198C, 0x4A475817 }; int t, t2, t8; /* Loop counter */ uint32_t temp1[2], temp2[2], /* Temporary word values */ temp3[2], temp4[2], temp5[2]; uint32_t W[2*80]; /* Word sequence */ uint32_t A[2], B[2], C[2], D[2], /* Word buffers */ E[2], F[2], G[2], H[2]; /* Initialize the first 16 words in the array W */ for (t = t2 = t8 = 0; t < 16; t++, t8 += 8) { W[t2++] = ((((uint32_t)context->Message_Block[t8 ])) << 24) | ((((uint32_t)context->Message_Block[t8 + 1])) << 16) | ((((uint32_t)context->Message_Block[t8 + 2])) << 8) | ((((uint32_t)context->Message_Block[t8 + 3]))); W[t2++] = ((((uint32_t)context->Message_Block[t8 + 4])) << 24) | ((((uint32_t)context->Message_Block[t8 + 5])) << 16) | ((((uint32_t)context->Message_Block[t8 + 6])) << 8) | ((((uint32_t)context->Message_Block[t8 + 7]))); } for (t = 16; t < 80; t++, t2 += 2) { /* W[t] = SHA512_sigma1(W[t-2]) + W[t-7] + SHA512_sigma0(W[t-15]) + W[t-16]; */ uint32_t *Wt2 = &W[t2-2*2]; uint32_t *Wt7 = &W[t2-7*2]; uint32_t *Wt15 = &W[t2-15*2]; uint32_t *Wt16 = &W[t2-16*2]; SHA512_sigma1(Wt2, temp1); SHA512_ADD(temp1, Wt7, temp2); SHA512_sigma0(Wt15, temp1); SHA512_ADD(temp1, Wt16, temp3); SHA512_ADD(temp2, temp3, &W[t2]); } A[0] = context->Intermediate_Hash[0];
A[1] = context->Intermediate_Hash[1]; B[0] = context->Intermediate_Hash[2]; B[1] = context->Intermediate_Hash[3]; C[0] = context->Intermediate_Hash[4]; C[1] = context->Intermediate_Hash[5]; D[0] = context->Intermediate_Hash[6]; D[1] = context->Intermediate_Hash[7]; E[0] = context->Intermediate_Hash[8]; E[1] = context->Intermediate_Hash[9]; F[0] = context->Intermediate_Hash[10]; F[1] = context->Intermediate_Hash[11]; G[0] = context->Intermediate_Hash[12]; G[1] = context->Intermediate_Hash[13]; H[0] = context->Intermediate_Hash[14]; H[1] = context->Intermediate_Hash[15]; for (t = t2 = 0; t < 80; t++, t2 += 2) { /* * temp1 = H + SHA512_SIGMA1(E) + SHA_Ch(E,F,G) + K[t] + W[t]; */ SHA512_SIGMA1(E,temp1); SHA512_ADD(H, temp1, temp2); SHA_Ch(E,F,G,temp3); SHA512_ADD(temp2, temp3, temp4); SHA512_ADD(&K[t2], &W[t2], temp5); SHA512_ADD(temp4, temp5, temp1); /* * temp2 = SHA512_SIGMA0(A) + SHA_Maj(A,B,C); */ SHA512_SIGMA0(A,temp3); SHA_Maj(A,B,C,temp4); SHA512_ADD(temp3, temp4, temp2); H[0] = G[0]; H[1] = G[1]; G[0] = F[0]; G[1] = F[1]; F[0] = E[0]; F[1] = E[1]; SHA512_ADD(D, temp1, E); D[0] = C[0]; D[1] = C[1]; C[0] = B[0]; C[1] = B[1]; B[0] = A[0]; B[1] = A[1]; SHA512_ADD(temp1, temp2, A); } SHA512_ADDTO2(&context->Intermediate_Hash[0], A); SHA512_ADDTO2(&context->Intermediate_Hash[2], B); SHA512_ADDTO2(&context->Intermediate_Hash[4], C); SHA512_ADDTO2(&context->Intermediate_Hash[6], D); SHA512_ADDTO2(&context->Intermediate_Hash[8], E); SHA512_ADDTO2(&context->Intermediate_Hash[10], F);
SHA512_ADDTO2(&context->Intermediate_Hash[12], G); SHA512_ADDTO2(&context->Intermediate_Hash[14], H); #else /* !USE_32BIT_ONLY */ static const uint64_t K[80] = { 0x428A2F98D728AE22ll, 0x7137449123EF65CDll, 0xB5C0FBCFEC4D3B2Fll, 0xE9B5DBA58189DBBCll, 0x3956C25BF348B538ll, 0x59F111F1B605D019ll, 0x923F82A4AF194F9Bll, 0xAB1C5ED5DA6D8118ll, 0xD807AA98A3030242ll, 0x12835B0145706FBEll, 0x243185BE4EE4B28Cll, 0x550C7DC3D5FFB4E2ll, 0x72BE5D74F27B896Fll, 0x80DEB1FE3B1696B1ll, 0x9BDC06A725C71235ll, 0xC19BF174CF692694ll, 0xE49B69C19EF14AD2ll, 0xEFBE4786384F25E3ll, 0x0FC19DC68B8CD5B5ll, 0x240CA1CC77AC9C65ll, 0x2DE92C6F592B0275ll, 0x4A7484AA6EA6E483ll, 0x5CB0A9DCBD41FBD4ll, 0x76F988DA831153B5ll, 0x983E5152EE66DFABll, 0xA831C66D2DB43210ll, 0xB00327C898FB213Fll, 0xBF597FC7BEEF0EE4ll, 0xC6E00BF33DA88FC2ll, 0xD5A79147930AA725ll, 0x06CA6351E003826Fll, 0x142929670A0E6E70ll, 0x27B70A8546D22FFCll, 0x2E1B21385C26C926ll, 0x4D2C6DFC5AC42AEDll, 0x53380D139D95B3DFll, 0x650A73548BAF63DEll, 0x766A0ABB3C77B2A8ll, 0x81C2C92E47EDAEE6ll, 0x92722C851482353Bll, 0xA2BFE8A14CF10364ll, 0xA81A664BBC423001ll, 0xC24B8B70D0F89791ll, 0xC76C51A30654BE30ll, 0xD192E819D6EF5218ll, 0xD69906245565A910ll, 0xF40E35855771202All, 0x106AA07032BBD1B8ll, 0x19A4C116B8D2D0C8ll, 0x1E376C085141AB53ll, 0x2748774CDF8EEB99ll, 0x34B0BCB5E19B48A8ll, 0x391C0CB3C5C95A63ll, 0x4ED8AA4AE3418ACBll, 0x5B9CCA4F7763E373ll, 0x682E6FF3D6B2B8A3ll, 0x748F82EE5DEFB2FCll, 0x78A5636F43172F60ll, 0x84C87814A1F0AB72ll, 0x8CC702081A6439ECll, 0x90BEFFFA23631E28ll, 0xA4506CEBDE82BDE9ll, 0xBEF9A3F7B2C67915ll, 0xC67178F2E372532Bll, 0xCA273ECEEA26619Cll, 0xD186B8C721C0C207ll, 0xEADA7DD6CDE0EB1Ell, 0xF57D4F7FEE6ED178ll, 0x06F067AA72176FBAll, 0x0A637DC5A2C898A6ll, 0x113F9804BEF90DAEll, 0x1B710B35131C471Bll, 0x28DB77F523047D84ll, 0x32CAAB7B40C72493ll, 0x3C9EBE0A15C9BEBCll, 0x431D67C49C100D4Cll, 0x4CC5D4BECB3E42B6ll, 0x597F299CFC657E2All, 0x5FCB6FAB3AD6FAECll, 0x6C44198C4A475817ll }; int t, t8; /* Loop counter */ uint64_t temp1, temp2; /* Temporary word value */ uint64_t W[80]; /* Word sequence */ uint64_t A, B, C, D, E, F, G, H; /* Word buffers */ /* * Initialize the first 16 words in the array W */ for (t = t8 = 0; t < 16; t++, t8 += 8) W[t] = ((uint64_t)(context->Message_Block[t8 ]) << 56) | ((uint64_t)(context->Message_Block[t8 + 1]) << 48) | ((uint64_t)(context->Message_Block[t8 + 2]) << 40) | ((uint64_t)(context->Message_Block[t8 + 3]) << 32) | ((uint64_t)(context->Message_Block[t8 + 4]) << 24) | ((uint64_t)(context->Message_Block[t8 + 5]) << 16) |
((uint64_t)(context->Message_Block[t8 + 6]) << 8) | ((uint64_t)(context->Message_Block[t8 + 7])); for (t = 16; t < 80; t++) W[t] = SHA512_sigma1(W[t-2]) + W[t-7] + SHA512_sigma0(W[t-15]) + W[t-16]; A = context->Intermediate_Hash[0]; B = context->Intermediate_Hash[1]; C = context->Intermediate_Hash[2]; D = context->Intermediate_Hash[3]; E = context->Intermediate_Hash[4]; F = context->Intermediate_Hash[5]; G = context->Intermediate_Hash[6]; H = context->Intermediate_Hash[7]; for (t = 0; t < 80; t++) { temp1 = H + SHA512_SIGMA1(E) + SHA_Ch(E,F,G) + K[t] + W[t]; temp2 = SHA512_SIGMA0(A) + SHA_Maj(A,B,C); H = G; G = F; F = E; E = D + temp1; D = C; C = B; B = A; A = temp1 + temp2; } context->Intermediate_Hash[0] += A; context->Intermediate_Hash[1] += B; context->Intermediate_Hash[2] += C; context->Intermediate_Hash[3] += D; context->Intermediate_Hash[4] += E; context->Intermediate_Hash[5] += F; context->Intermediate_Hash[6] += G; context->Intermediate_Hash[7] += H; #endif /* USE_32BIT_ONLY */ context->Message_Block_Index = 0; } /* * SHA384_512Reset * * Description: * This helper function will initialize the SHA512Context in * preparation for computing a new SHA384 or SHA512 message
* digest. * * Parameters: * context: [in/out] * The context to reset. * H0 * The initial hash value to use. * * Returns: * sha Error Code. * */ #ifdef USE_32BIT_ONLY static int SHA384_512Reset(SHA512Context *context, uint32_t H0[]) #else /* !USE_32BIT_ONLY */ static int SHA384_512Reset(SHA512Context *context, uint64_t H0[]) #endif /* USE_32BIT_ONLY */ { int i; if (!context) return shaNull; context->Message_Block_Index = 0; #ifdef USE_32BIT_ONLY context->Length[0] = context->Length[1] = 0; context->Length[2] = context->Length[3] = 0; for (i = 0; i < SHA512HashSize/4; i++) context->Intermediate_Hash[i] = H0[i]; #else /* !USE_32BIT_ONLY */ context->Length_High = context->Length_Low = 0; for (i = 0; i < SHA512HashSize/8; i++) context->Intermediate_Hash[i] = H0[i]; #endif /* USE_32BIT_ONLY */ context->Computed = 0; context->Corrupted = 0; return shaSuccess; } /* * SHA384_512ResultN * * Description: * This helper function will return the 384-bit or 512-bit message
* digest into the Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 48th/64th element. * * Parameters: * context: [in/out] * The context to use to calculate the SHA hash. * Message_Digest: [out] * Where the digest is returned. * HashSize: [in] * The size of the hash, either 48 or 64. * * Returns: * sha Error Code. * */ static int SHA384_512ResultN(SHA512Context *context, uint8_t Message_Digest[], int HashSize) { int i; #ifdef USE_32BIT_ONLY int i2; #endif /* USE_32BIT_ONLY */ if (!context || !Message_Digest) return shaNull; if (context->Corrupted) return context->Corrupted; if (!context->Computed) SHA384_512Finalize(context, 0x80); #ifdef USE_32BIT_ONLY for (i = i2 = 0; i < HashSize; ) { Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2]>>24); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2]>>16); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2]>>8); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2++]); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2]>>24); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2]>>16); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2]>>8); Message_Digest[i++]=(uint8_t)(context->Intermediate_Hash[i2++]); } #else /* !USE_32BIT_ONLY */ for (i = 0; i < HashSize; ++i) Message_Digest[i] = (uint8_t)
(context->Intermediate_Hash[i>>3] >> 8 * ( 7 - ( i % 8 ) )); #endif /* USE_32BIT_ONLY */ return shaSuccess; }8.2.4. usha.c
/**************************** usha.c ****************************/ /******************** See RFC 4634 for details ******************/ /* * Description: * This file implements a unified interface to the SHA algorithms. */ #include "sha.h" /* * USHAReset * * Description: * This function will initialize the SHA Context in preparation * for computing a new SHA message digest. * * Parameters: * context: [in/out] * The context to reset. * whichSha: [in] * Selects which SHA reset to call * * Returns: * sha Error Code. * */ int USHAReset(USHAContext *ctx, enum SHAversion whichSha) { if (ctx) { ctx->whichSha = whichSha; switch (whichSha) { case SHA1: return SHA1Reset((SHA1Context*)&ctx->ctx); case SHA224: return SHA224Reset((SHA224Context*)&ctx->ctx); case SHA256: return SHA256Reset((SHA256Context*)&ctx->ctx); case SHA384: return SHA384Reset((SHA384Context*)&ctx->ctx); case SHA512: return SHA512Reset((SHA512Context*)&ctx->ctx); default: return shaBadParam; } } else { return shaNull;
} } /* * USHAInput * * Description: * This function accepts an array of octets as the next portion * of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_array: [in] * An array of characters representing the next portion of * the message. * length: [in] * The length of the message in message_array * * Returns: * sha Error Code. * */ int USHAInput(USHAContext *ctx, const uint8_t *bytes, unsigned int bytecount) { if (ctx) { switch (ctx->whichSha) { case SHA1: return SHA1Input((SHA1Context*)&ctx->ctx, bytes, bytecount); case SHA224: return SHA224Input((SHA224Context*)&ctx->ctx, bytes, bytecount); case SHA256: return SHA256Input((SHA256Context*)&ctx->ctx, bytes, bytecount); case SHA384: return SHA384Input((SHA384Context*)&ctx->ctx, bytes, bytecount); case SHA512: return SHA512Input((SHA512Context*)&ctx->ctx, bytes, bytecount); default: return shaBadParam; } } else { return shaNull; } }
/* * USHAFinalBits * * Description: * This function will add in any final bits of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_bits: [in] * The final bits of the message, in the upper portion of the * byte. (Use 0b###00000 instead of 0b00000### to input the * three bits ###.) * length: [in] * The number of bits in message_bits, between 1 and 7. * * Returns: * sha Error Code. */ int USHAFinalBits(USHAContext *ctx, const uint8_t bits, unsigned int bitcount) { if (ctx) { switch (ctx->whichSha) { case SHA1: return SHA1FinalBits((SHA1Context*)&ctx->ctx, bits, bitcount); case SHA224: return SHA224FinalBits((SHA224Context*)&ctx->ctx, bits, bitcount); case SHA256: return SHA256FinalBits((SHA256Context*)&ctx->ctx, bits, bitcount); case SHA384: return SHA384FinalBits((SHA384Context*)&ctx->ctx, bits, bitcount); case SHA512: return SHA512FinalBits((SHA512Context*)&ctx->ctx, bits, bitcount); default: return shaBadParam; } } else { return shaNull; } } /* * USHAResult *
* Description: * This function will return the 160-bit message digest into the * Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 19th element. * * Parameters: * context: [in/out] * The context to use to calculate the SHA-1 hash. * Message_Digest: [out] * Where the digest is returned. * * Returns: * sha Error Code. * */ int USHAResult(USHAContext *ctx, uint8_t Message_Digest[USHAMaxHashSize]) { if (ctx) { switch (ctx->whichSha) { case SHA1: return SHA1Result((SHA1Context*)&ctx->ctx, Message_Digest); case SHA224: return SHA224Result((SHA224Context*)&ctx->ctx, Message_Digest); case SHA256: return SHA256Result((SHA256Context*)&ctx->ctx, Message_Digest); case SHA384: return SHA384Result((SHA384Context*)&ctx->ctx, Message_Digest); case SHA512: return SHA512Result((SHA512Context*)&ctx->ctx, Message_Digest); default: return shaBadParam; } } else { return shaNull; } } /* * USHABlockSize * * Description: * This function will return the blocksize for the given SHA * algorithm. * * Parameters: * whichSha: * which SHA algorithm to query
* * Returns: * block size * */ int USHABlockSize(enum SHAversion whichSha) { switch (whichSha) { case SHA1: return SHA1_Message_Block_Size; case SHA224: return SHA224_Message_Block_Size; case SHA256: return SHA256_Message_Block_Size; case SHA384: return SHA384_Message_Block_Size; default: case SHA512: return SHA512_Message_Block_Size; } } /* * USHAHashSize * * Description: * This function will return the hashsize for the given SHA * algorithm. * * Parameters: * whichSha: * which SHA algorithm to query * * Returns: * hash size * */ int USHAHashSize(enum SHAversion whichSha) { switch (whichSha) { case SHA1: return SHA1HashSize; case SHA224: return SHA224HashSize; case SHA256: return SHA256HashSize; case SHA384: return SHA384HashSize; default: case SHA512: return SHA512HashSize; } } /* * USHAHashSizeBits * * Description:
* This function will return the hashsize for the given SHA * algorithm, expressed in bits. * * Parameters: * whichSha: * which SHA algorithm to query * * Returns: * hash size in bits * */ int USHAHashSizeBits(enum SHAversion whichSha) { switch (whichSha) { case SHA1: return SHA1HashSizeBits; case SHA224: return SHA224HashSizeBits; case SHA256: return SHA256HashSizeBits; case SHA384: return SHA384HashSizeBits; default: case SHA512: return SHA512HashSizeBits; } }8.2.5. sha-private.h
/*************************** sha-private.h ***************************/ /********************** See RFC 4634 for details *********************/ #ifndef _SHA_PRIVATE__H #define _SHA_PRIVATE__H /* * These definitions are defined in FIPS-180-2, section 4.1. * Ch() and Maj() are defined identically in sections 4.1.1, * 4.1.2 and 4.1.3. * * The definitions used in FIPS-180-2 are as follows: */ #ifndef USE_MODIFIED_MACROS #define SHA_Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define SHA_Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #else /* USE_MODIFIED_MACROS */ /* * The following definitions are equivalent and potentially faster. */ #define SHA_Ch(x, y, z) (((x) & ((y) ^ (z))) ^ (z)) #define SHA_Maj(x, y, z) (((x) & ((y) | (z))) | ((y) & (z)))
#endif /* USE_MODIFIED_MACROS */ #define SHA_Parity(x, y, z) ((x) ^ (y) ^ (z)) #endif /* _SHA_PRIVATE__H */