Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 4175

RTP Payload Format for Uncompressed Video

Pages: 18
Proposed Standard
Errata
Updated by:  4421

ToP   noToC   RFC4175 - Page 1
Network Working Group                                          L. Gharai
Request for Comments: 4175                                       USC/ISI
Category: Standards Track                                     C. Perkins
                                                   University of Glasgow
                                                          September 2005


               RTP Payload Format for Uncompressed Video

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

This memo specifies a packetization scheme for encapsulating uncompressed video into a payload format for the Real-time Transport Protocol, RTP. It supports a range of standard- and high-definition video formats, including common television formats such as ITU BT.601, and standards from the Society of Motion Picture and Television Engineers (SMPTE), such as SMPTE 274M and SMPTE 296M. The format is designed to be applicable and extensible to new video formats as they are developed.

1. Introduction

This memo defines a scheme to packetize uncompressed, studio-quality video streams for transport using RTP [RTP]. It supports a range of standard and high-definition video formats, including ITU-R BT.601 [601], SMPTE 274M [274] and SMPTE 296M [296]. Formats for uncompressed standard definition television are defined by ITU Recommendation BT.601 [601] along with bit-serial and parallel interfaces in Recommendation BT.656 [656]. These formats allow both 625-line and 525-line operation, with 720 samples per digital active line, 4:2:2 color sub-sampling, and 8- or 10-bit digital representation.
ToP   noToC   RFC4175 - Page 2
   The representation of uncompressed high-definition television is
   specified in SMPTE standards 274M [274] and 296M [296].  SMPTE 274M
   defines a family of scanning systems with an image format of
   1920x1080 pixels with progressive and interlaced scanning, while
   SMPTE 296M defines systems with an image size of 1280x720 pixels and
   progressive scanning.  In progressive scanning, scan lines are
   displayed in sequence from top to bottom of a full frame.  In
   interlaced scanning, a frame is divided into its odd and even scan
   lines (called fields) and the two fields are displayed in succession.
   SMPTE 274M and 296M define images with aspect ratios of 16:9, and
   define the digital representation for RGB and YCbCr components.  In
   the case of YCbCr components, the Cb and Cr components are
   horizontally sub-sampled by a factor of two (4:2:2 color encoding).

   Although these formats differ in their details, they are structurally
   very similar.  This memo specifies a payload format to encapsulate
   these and other similar video formats for transport within RTP.

2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [2119].

3. Payload Design

Each scan line of digital video is packetized into one or more RTP packets. If the data for a complete scan line exceeds the network MTU, the scan line SHOULD be fragmented into multiple RTP packets, each smaller than the MTU. A single RTP packet MAY contain data for more than one scan line. Only the active samples are included in the RTP payload: inactive samples and the contents of horizontal and vertical blanking SHOULD NOT be transported. In instances where ancillary data is being transmitted, the sender and receiver can disambiguate between ancillary and video data via scan line numbers. That is, the ancillary data will use scan line numbers that are not within the scope of the video frame. Scan line numbers are included in the RTP payload header, along with a field identifier for interlaced video. For SMPTE 296M format video, valid scan line numbers are from 26 through 745, inclusive. For progressive scan SMPTE 274M format video, valid scan lines are from scan line 42 through 1121, inclusive. For interlaced scan SMPTE 274M format video, valid scan line numbers for field one (F=0) are from 21 to 560 and valid scan line numbers for the second field (F=1) are from 584 to 1123. For ITU-R BT.601 format video, the blanking intervals defined in
ToP   noToC   RFC4175 - Page 3
      BT.656 are used: for 625 line video, lines 24 to 310 of field one
      (F=0) and 337 to 623 of the second field (F=1) are valid; for 525
      line video, lines 21 to 263 of the first field, and 284 to 525 of
      the second field are valid.  Other formats (e.g., [372]) may
      define different ranges of active lines.

   The payload header contains a 16-bit extension to the standard 16-bit
   RTP sequence number, thereby extending the sequence number to 32 bits
   and enabling the payload format to accommodate high data rates
   without ambiguity.  This is necessary as the 16-bit RTP sequence
   number will roll over very quickly for high data rates.  For example,
   for a 1-Gbps video stream with packet sizes of at least 1000 octets,
   the standard RTP packet will roll over in 0.5 seconds, which can be a
   problem for detecting loss and out-of-order packets particularly in
   instances where the round-trip time is greater than half a second.
   The extended 32-bit number allows for a longer wrap-around time of
   approximately nine hours.

   Each scan line comprises an integer number of pixels.  Each pixel is
   represented by a number of samples.  Samples may be coded as 8-, 10-,
   12-, or 16-bit values.  A sample may represent a color component or a
   luminance component of the video.  Color samples may be shared
   between adjacent pixels.  The sharing of color samples between
   adjacent pixels is known as color sub-sampling.  This is typically
   done in the YCbCr color space for the purpose of reducing the size of
   the image data.

   Pixels that share sample values MUST be transported together as a
   "pixel group".  If 10-bit or 12-bit samples are used, each pixel may
   also comprise a non-integer number of octets.  In this case, several
   pixels MUST be combined into an octet-aligned pixel group for
   transmission.  These restrictions simplify the operation of receivers
   by ensuring that the complete payload is octet aligned, and that
   samples relating to a single pixel are not fragmented across multiple
   packets [ALF].

   For example, in YCbCr video with 4:1:1 color sub-sampling, each group
   of 4 adjacent pixels comprises 6 samples, Y1 Y2 Y3 Y4 Cr Cb, with the
   Cr and Cb values being shared between all 4 pixels.  If samples are
   8-bit values, the result is a group of 4 pixels comprising 6 octets.
   If, however, samples are 10-bit values, the resulting 60-bit group is
   not octet aligned.  To be both octet aligned and appropriately
   framed, two groups of 4 adjacent pixels must be collected, thereby
   becoming octet aligned on a 15-octet boundary.  This length is
   referred to as the pixel group size ("pgroup").
ToP   noToC   RFC4175 - Page 4
   Formally, the "pgroup" parameter is the size in octets of the
   smallest grouping of pixels such that 1) the grouping comprises an
   integer number of octets; and 2) if color sub-sampling is used,
   samples are only shared within the grouping.  When packetizing
   digital active line content, video data MUST NOT be fragmented within
   a pgroup.

   Video content is almost always associated with additional information
   such as audio tracks, time code, etc.  In professional digital video
   applications, this data is commonly embedded in non-active portions
   of the video stream (horizontal and vertical blanking periods) so
   that precise and robust synchronization is maintained.  This payload
   format requires that applications using such synchronized ancillary
   data SHOULD deliver it in separate RTP sessions that operate
   concurrently with the video session.  The normal RTP mechanisms
   SHOULD be used to synchronize the media.

4. RTP Packetization

The standard RTP header is followed by a 2-octet payload header that extends the RTP Sequence Number, and by a 6-octet payload header for each line (or partial line) of video included. One or more lines, or partial lines, of video data follow. This format makes the payload header 32-bit aligned in the common case, where one scan line (or fragment) of video is included in each RTP packet. For example, if two lines of video are encapsulated, the payload format will be as shown in Figure 1.
ToP   noToC   RFC4175 - Page 5
       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | V |P|X|   CC  |M|    PT       |       Sequence Number         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Time Stamp                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                             SSRC                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Extended Sequence Number    |            Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |F|          Line No            |C|           Offset            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Length             |F|          Line No            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |C|           Offset            |                               .
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               .
      .                                                               .
      .                 Two (partial) lines of video data             .
      .                                                               .
      +---------------------------------------------------------------+

     Figure 1: RTP Payload Format showing two (partial) lines of video

4.1. The RTP Header

The fields of the fixed RTP header have their usual meaning, with the following additional notes: Payload Type (PT): 7 bits A dynamically allocated payload type field that designates the payload as uncompressed video. Timestamp: 32 bits For progressive scan video, the timestamp denotes the sampling instant of the frame to which the RTP packet belongs. Packets MUST NOT include data from multiple frames, and all packets belonging to the same frame MUST have the same timestamp. For interlaced video, the timestamp denotes the sampling instant of the field to which the RTP packet belongs. Packets MUST NOT include data from multiple fields, and all packets belonging to the same field MUST have the same timestamp. Use of field timestamps, rather than a frame timestamp and field indicator bit, is needed to support reverse 3-2 pulldown.
ToP   noToC   RFC4175 - Page 6
     A 90-kHz timestamp SHOULD be used in both cases.  If the sampling
     instant does not correspond to an integer value of the clock (as
     may be the case when interleaving), the value SHALL be truncated to
     the next lowest integer, with no ambiguity.

   Marker bit (M): 1 bit

     If progressive scan video is being transmitted, the marker bit
     denotes the end of a video frame.  If interlaced video is being
     transmitted, it denotes the end of the field.  The marker bit MUST
     be set to 1 for the last packet of the video frame/field.  It MUST
     be set to 0 for other packets.

   Sequence Number: 16 bits

     The low-order bits for RTP sequence number.  The standard 16-bit
     sequence number is augmented with another 16 bits in the payload
     header in order avoid problems due to wrap-around when operating at
     high rate rates.

4.2. Payload Header

Extended Sequence Number: 16 bits The high order bits of the extended 32-bit sequence number, in network byte order. Length: 16 bits Number of octets of data included from this scan line, in network byte order. This MUST be a multiple of the pgroup value. Line No.: 15 bits Scan line number of encapsulated data, in network byte order. Successive RTP packets MAY contains parts of the same scan line (with an incremented RTP sequence number, but the same timestamp), if it is necessary to fragment a line. Offset: 15 bits Offset of the first pixel of the payload data within the scan line. If YCbCr format data is being transported, this is the pixel offset of the luminance sample; if RGB format data is being transported, it is the pixel offset of the red sample; if BGR format data is being transported, it is the pixel offset of the blue sample. The
ToP   noToC   RFC4175 - Page 7
     value is in network byte order.  The offset has a value of zero if
     the first sample in the payload corresponds to the start of the
     line, and increments by one for each pixel.

   Field Identification (F): 1 bit

     Identifies which field the scan line belongs to, for interlaced
     data.  F=0 identifies the first field and F=1 the second field.
     For progressive scan data (e.g., SMPTE 296M format video), F MUST
     always be set to zero.

   Continuation (C): 1 bit

     Determines if an additional scan line header follows the current
     scan line header in the RTP packet.  Set to 1 if an additional
     header follows, implying that the RTP packet is carrying data for
     more than one scan line.  Set to 0 otherwise.  Several scan lines
     MAY be included in a single packet, up to the path MTU limit.  The
     only way to determine the number of scan lines included per packet
     is to parse the payload headers.

4.3. Payload Data

Depending on the video format, each RTP packet can include either a single complete scan line, a single fragment of a scan line, or one (or more) complete scan lines and scan line fragments. The length of each scan line or scan line fragment MUST be an integer multiple of the pgroup size in octets. Scan lines SHOULD be fragmented so that the resulting RTP packet is smaller than the path MTU. It is possible that the scan line length is not evenly divisible by the number of pixels in a pgroup, so the final pixel data of a scan line does not align to either an octet or a pgroup boundary. Nonetheless, the payload MUST contain a whole number of pgroups; the sender MUST fill the remaining bits of the final pgroup with zero and the receiver MUST ignore the fill data. (In effect, the trailing edge of the image is black-filled to a pgroup boundary.) For RGB format video, samples are packed in order Red-Green-Blue. For BGR format video, samples are packed in order Blue-Green-Red. For both formats, if 8-bit samples are used, the pgroup is 3 octets. If 10-bit samples are used, samples from 4 adjacent pixels form 15- octet pgroups. If 12-bit samples are used, samples from 2 adjacent pixels form 9-octet pgroups. If 16-bit samples are used, each pixel forms a separate 6-octet pgroup.
ToP   noToC   RFC4175 - Page 8
   For RGBA format video, samples are packed in order Red-Green-Blue-
   Alpha.  For BGRA format video, samples are packed in order Blue-
   Green-Red-Alpha.  For 8-, 10-, 12-, or 16-bit samples, each pixel
   forms its own pgroup, with octet sizes of 4, 5, 6, and 8,
   respectively.

   If the video is in YCbCr format, the packing of samples into the
   payload depends on the color sub-sampling used.

   For YCbCr 4:4:4 format video, samples are packed in order Cb-Y-Cr for
   both interlaced and progressive frames.  If 8-bit samples are used,
   the pgroup is 3 octets.  If 10-bit samples are used, samples from 4
   adjacent pixels form 15-octet pgroups.  If 12-bit samples are used,
   samples from 2 adjacent pixels form 9-octet pgroups.  If 16-bit
   samples are used, each pixel forms a separate 6-octet pgroup.

   For YCbCr 4:2:2 format video, the Cb and Cr components are
   horizontally sub-sampled by a factor of two (each Cb and Cr sample
   corresponds to two Y components).  Samples are packed in order Cb0-
   Y0-Cr0-Y1 for both interlaced and progressive scan lines.  For 8-,
   10-, 12-, or 16-bit samples, the pgroup is formed from two adjacent
   pixels (4, 5, 6, or 8 octets, respectively).

   For YCbCr 4:1:1 format video, the Cb and Cr components are
   horizontally sub-sampled by a factor of four (each Cb and Cr sample
   corresponds to four Y components).  Samples are packed in order Cb0-
   Y0-Y1-Cr0-Y2-Y3 for both interlaced and progressive scan lines.  For
   8-, 10-, 12-, or 16-bit samples, the pgroup is formed from four
   adjacent pixels (6, 15, 9, or 12 octets, respectively).

   For YCbCr 4:2:0 video, the Cb and Cr components are sub-sampled by a
   factor of two both horizontally and vertically.  Therefore,
   chrominance samples are shared between certain adjacent lines.
   Figure 2 shows the composition of luminance and chrominance samples
   for a 6x6 pixel grid of 4:2:0 YCbCr video.  The pixel group is a
   group of four pixels arranged in a 2x2 matrix.  The octet size of the
   pgroup for progressive scan 4:2:0 video with samples sizes of 8, 10,
   12, and 16 bits is 6, 15, 9, and 12 octets, respectively.  For
   interlaced 4:2:0 video, the corresponding pgroups are 4, 5, 6, and 8
   octets.
ToP   noToC   RFC4175 - Page 9
       line 0:  Y00   Y01   Y02   Y03   Y04   Y05
                Cb00 Cr00   Cb01 Cr01   Cb02 Cr02
       line 1:  Y10   Y11   Y12   Y13   Y14   Y15

       line 2:  Y20   Y21   Y22   Y23   Y24   Y25
                Cb10 Cr10   Cb11 Cr11   Cb12 Cr12
       line 3:  Y30   Y31   Y32   Y33   Y34   Y35

       line 4:  Y40   Y41   Y42   Y43   Y44   Y45
                Cb20 Cr20   Cb21 Cr21   Cb22 Cr22
       line 5:  Y50   Y51   Y52   Y53   Y54   Y55

     Figure 2: Chrominance/luminance composition in 4:2:0 YCbCr video

   When packetizing progressive scan 4:2:0 YCbCr video, samples from two
   consecutive scan lines are included in each packet.  The scan line
   number in the payload header is set to that of the first scan line of
   the pair:

     line 0/1:
     Y00-Y01-Y10-Y11-Cb00-Cr00 Y02-Y03-Y12-Y13-Cb01-Cr01
                                           Y04-Y05-Y14-Y15-Cb02-Cr02

     line 2/3:
     Y20-Y21-Y30-Y31-Cb10-Cr10 Y22-Y23-Y32-Y33-Cb11-Cr11
                                           Y24-Y25-Y34-Y35-Cb12-Cr12

     line 4/5:
     Y40-Y41-Y50-Y51-Cb20-Cr20 Y42-Y43-Y52-Y53-Cb21-Cr21
                                           Y44-Y45-Y54-Y55-Cb22-Cr22

     Figure 3: Packetization of progressive 4:2:0 YCbCr video

   For interlaced transport, chrominance samples are transported with
   every other line.  The first set of chrominance samples may be
   transported with either the first line of field 0, or the first line
   of field 1.  Figure 4 illustrates the transport of chrominance
   samples starting with the first line of field 0 (signaled by the
   "top-field-first" MIME parameter).
ToP   noToC   RFC4175 - Page 10
     field 0:
        line 0: Y00-Y01-Cb00-Cr00 Y02-Y03-Cb01-Cr01 Y04-Y05-Cb02-Cr02
        line 2: Y20-Y21 Y22-Y23 Y24-Y25
        line 4: Y40-Y41-Cb20-Cr20 Y42-Y43-Cb21-Cr21 Y44-Y45-Cb22-Cr22

     field 1:
        line 1: Y10-Y11 Y12-Y13 Y14-Y15
        line 3: Y30-Y31-Cb10-Cr10 Y32-Y33-Cb11 Cr11 Y34-Y35-Cb12-Cr12
        line 5: Y50-Y51 Y52-Y53 Y54-Y55

     Figure 4: Packetization of interlaced 4:2:0 YCbCr video with
               top-field-first.

   Chrominance values may be sampled with different offsets relative to
   luminance values.  For instance, in Figure 2, chrominance values are
   sampled at the same distance from neighboring luminance samples.  It
   is also possible for a chrominance sample to be co-sited with a
   luminance sample, as in Figure 5:

       line 0:  Y00-C   Y01   Y02-C   Y03   Y04-C   Y05

       line 1:  Y10     Y11   Y12     Y13   Y14     Y15

       line 2:  Y20-C   Y21   Y22-C   Y23   Y24-C   Y25

       line 3:  Y30     Y31   Y32     Y33   Y34     Y35

       line 4:  Y40-C   Y41   Y42-C   Y43   Y44-C   Y45

       line 5:  Y50     Y51   Y52     Y53   Y54     Y55

     Figure 5: Co-sited video sampling in 4:2:0 YCbCr video where C
               designates a CbCr pair

   In general, chrominance values may be placed between luminance
   samples or co-sited.  Positions can be designated by an integer
   numbering system starting from left to right and top to bottom.  The
   position matrices shown in Figures 6, 7, and 8 apply for 4:2:0,
   4:2:2, and 4:1:1 video, respectively:

       line N:    Y[0] [1] Y[2]   Y[0] [1] Y[2]
                   [3] [4] Y[5]    [3] [4]  [5]
       line N+1:  Y[6] [7] Y[8]   Y[6] [7] Y[8]

     Figure 6: Chrominance position matrix for 4:2:0 YCbCr video
ToP   noToC   RFC4175 - Page 11
       line N:    Y[0] [1] Y[2] [3]  Y[0] [1] Y[2] [3]
       line N+1:  Y[0] [1] Y[2] [3]  Y[0] [1] Y[2] [3]

     Figure 7: Chrominance position matrix for 4:2:2 YCbCr video


       line N:    Y[0] [1] Y[2] [3] Y[4] [5] Y[6]
       line N+1:  Y[0] [1] Y[2] [3] Y[4] [5] Y[6]

     Figure 8: Chrominance position matrix for 4:1:1 YCbCr video

   Although these positions do not affect the packetization order of
   chrominance and luminance samples, the information is needed for
   interpolation prior to display and therefore should be signaled to
   the receiver.

5. RTCP Considerations

RTCP SHOULD be used as specified in RFC 3550 [RTP]. It is to be noted that the sender's octet count in SR packets and the cumulative number of packets lost will wrap around quickly for high data rate streams. This means that these two fields may not accurately represent octet count and number of packets lost since the beginning of transmission, as defined in RFC 3550. Therefore, for network monitoring purposes, other means of keeping track of these variables SHOULD be used.

6. IANA Considerations

The IANA has registered one new MIME subtype along with an associated RTP Payload Format, and has created two sub-parameter registries, as described in the following.

6.1. MIME type registration

MIME media type name: video MIME subtype name: raw Required parameters: rate: The RTP timestamp clock rate. Applications using this payload format SHOULD use a value of 90000. sampling: Determines the color (sub-)sampling mode of the video stream. Currently defined values are RGB, RGBA, BGR, BGRA, YCbCr-4:4:4, YCbCr-4:2:2, YCbCr-4:2:0, and YCbCr-4:1:1. New values may be registered as described in section 6.2 of RFC 4175.
ToP   noToC   RFC4175 - Page 12
     width: Determines the number of pixels per line.  This is an
     integer between 1 and 32767.

     height: Determines the number of lines per frame.  This is an
     integer between 1 and 32767.

     depth: Determines the number of bits per sample.  This is an
     integer with typical values including 8, 10, 12, and 16.

     colorimetry: This parameter defines the set of colorimetric
     specifications and other transfer characteristics for the video
     source, by reference to an external specification.  Valid values
     and their specification are:

          BT601-5      ITU Recommendation BT.601-5 [601]
          BT709-2      ITU Recommendation BT.709-2 [709]
          SMPTE240M    SMPTE standard 240M [240]

     New values may be registered as described in section 6.2 of RFC
     4175.


   Optional parameters:

     Interlace: If this OPTIONAL parameter is present, it indicates that
     the video stream is interlaced.  If absent, progressive scan is
     implied.

     Top-field-first: If this OPTIONAL parameter is present, it
     indicates that chrominance samples are packetized starting with the
     first line of field 0.  Its absence implies that chrominance
     samples are packetized starting with the first line of field 1.

     chroma-position: This OPTIONAL parameter defines the position of
     chrominance samples relative to luminance samples.  It is either a
     single integer or a comma separated pair of integers.  Integer
     values range from 0 to 8, as specified in Figures 6-8 of RFC 4175.
     A single integer implies that Cb and Cr are co-sited.  A comma
     separated pair of integers designates the locations of Cb and Cr
     samples, respectively.  In its absence, a single value of zero is
     assumed for color-subsampled video (chroma-position=0).

     gamma: An OPTIONAL floating point gamma correction value.
ToP   noToC   RFC4175 - Page 13
   Encoding considerations:

     Uncompressed video is only transmitted over RTP as specified in RFC
     4175.  No file format media type has been defined to go with this
     transmission media type at this time.

   Security considerations: See section 9 of RFC 4175.

   Interoperability considerations: NONE.

   Published specification: RFC 4175.

   Applications which use this media type: Video communication.

   Additional information: None

   Person & email address to contact for further information:

     Ladan Gharai <ladan@isi.edu>
     IETF Audio/Video Transport working group.

   Intended usage: COMMON

   Author: Ladan Gharai <ladan@isi.edu>
   Change controller: IETF AVT Working Group
         delegated from the IESG

6.2. Parameter Registration

New values of the "sampling" parameter MAY be registered with the IANA provided they reference an RFC or other permanent and readily available specification (the Specification Required policy of RFC 2434 [2434]). A new registration MUST define the packing order of samples and a valid combinations of color and sub-sampling modes. New values of the "colorimetry" parameter MAY be registered with the IANA provided they reference an RFC or other permanent and readily available specification if colorimetric parameters and other applicable transfer characteristics (the Specification Required policy of RFC 2434 [2434]).

7. Mapping MIME Parameters into SDP

The information carried in the MIME media type specification has a specific mapping to fields in the Session Description Protocol (SDP) [SDP], which is commonly used to describe RTP sessions. When SDP is used to specify sessions transporting uncompressed video, the mapping is as follows:
ToP   noToC   RFC4175 - Page 14
   -  The MIME type ("video") goes in SDP "m=" as the media name.

   -  The MIME subtype (payload format name) goes in SDP "a=rtpmap" as
      the encoding name.

   -  Remaining parameters go in the SDP "a=fmtp" attribute by copying
      them directly from the MIME media type string as a semicolon-
      separated list of parameter=value pairs.

   A sample SDP mapping for uncompressed video is as follows:

     m=video 30000 RTP/AVP 112
     a=rtpmap:112 raw/90000
     a=fmtp:112 sampling=YCbCr-4:2:2; width=1280; height=720; depth=10;
                              colorimetry=BT.709-2; chroma-position=1

   In this example, a dynamic payload type 112 is used for uncompressed
   video.  The RTP sampling clock is 90 kHz.  Note that the "a=fmtp:"
   line has been wrapped to fit this page, and will be a single long
   line in the SDP file.

8. Security Considerations

RTP packets using the payload format defined in this specification are subject to the security considerations discussed in the RTP specification [RTP] and any appropriate RTP profile. This implies that confidentiality of the media streams is achieved by encryption. This payload type does not exhibit any significant non-uniformity in the receiver side computational complexity for packet processing to cause a potential denial-of-service threat. It is important to note that uncompressed video can have immense bandwidth requirements (up to 270 Mbps for standard-definition video, and approximately 1 Gbps for high-definition video). This is sufficient to cause potential for denial-of-service if transmitted onto most currently available Internet paths. Accordingly, if best-effort service is being used, users of this payload format MUST monitor packet loss to ensure that the packet loss rate is within acceptable parameters. Packet loss is considered acceptable if a TCP flow across the same network path, and experiencing the same network conditions, would achieve an average throughput, measured on a reasonable timescale, that is not less than the RTP flow is achieving. This condition can be satisfied by implementing congestion control mechanisms to adapt the transmission
ToP   noToC   RFC4175 - Page 15
   rate (or the number of layers subscribed for a layered multicast
   session), or by arranging for a receiver to leave the session if the
   loss rate is unacceptably high.

   This payload format may also be used in networks that provide
   quality-of-service guarantees.  If enhanced service is being used,
   receivers SHOULD monitor packet loss to ensure that the service that
   was requested is actually being delivered.  If it is not, then they
   SHOULD assume that they are receiving best-effort service and behave
   accordingly.

9. Relation to RFC 2431

In comparison with RFC 2431, this memo specifies support for a wider variety of uncompressed video, in terms of frame size, color sub- sampling and sample sizes. Although [BT656] can transport up to 4096 scan lines and 2048 pixels per line, our payload type can support up to 32768 scan lines and pixels per line. Also, RFC 2431 only address 4:2:2 YCbCr data, while this memo covers YCbCr, RGB, RGBA, BGR, BGRA, and most common color sub-sampling schemes. Given the variety of video types that we cover, this memo also assumes out-of-band signaling for sample size and data types (RFC 2431 uses in band signaling).

10. Relation to RFC 3497

RFC 3497 [292RTP] specifies a RTP payload format for encapsulating SMPTE 292M video. The SMPTE 292M standard defines a bit-serial digital interface for local area High-Definition Television (HDTV) transport. As a transport medium, SMPTE 292M utilizes 10-bit words and a fixed 1.485 Gbps (and 1.485/1.001 Gbps) data rate. SMPTE 292M is typically used in the broadcast industry for the transport of other video formats such as SMPTE 260M, SMPTE 295M, SMPTE 274M, and SMPTE 296M. RFC 3497 defines a circuit emulation for the transport of SMPTE 292M over RTP. It is very specific to SMPTE 292 and has been designed to be interoperable with existing broadcast equipment with a constant rate of 1.485 Gbps. This memo defines a flexible native packetization scheme that can packetize any uncompressed video, at varying data rates. In addition, unlike RFC 3497, this memo only transports active video pixels (i.e., horizontal and vertical blanking are not transported).
ToP   noToC   RFC4175 - Page 16

11. Acknowledgements

The authors are grateful to Philippe Gentric, Chuck Harrison, Stephan Wenger, and Dave Singer for their feedback. This memo is based upon work supported by the U.S. National Science Foundation (NSF) under Grant No. 0230738. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

Normative References

[RTP] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", STD 64, RFC 3550, July 2003. [2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998. [601] International Telecommunication Union, "Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios", Recommendation BT.601, October 1995. [709] International Telecommunication Union, "Parameter Values for HDTV Standards for Production and International Programme Exchange", Recommendation BT.709-2 [240] Society of Motion Picture and Television Engineers, "Television - Signal Parameters - 1125-Line High-Definition Production", SMPTE 240M-1999.

Informative References

[274] Society of Motion Picture and Television Engineers, "1920x1080 Scanning and Analog and Parallel Digital Interfaces for Multiple Picture Rates", SMPTE 274M-1998. [296] Society of Motion Picture and Television Engineers, "1280x720 Scanning, Analog and Digital Representation and Analog Interfaces", SMPTE 296M-1998.
ToP   noToC   RFC4175 - Page 17
   [372]    Society of Motion Picture and Television Engineers, "Dual
            Link 292M Interface for 1920 x 1080 Picture Raster", SMPTE
            372M-2002.

   [ALF]    Clark, D. D., and Tennenhouse, D. L., "Architectural
            Considerations for a New Generation of Protocols", In
            Proceedings of SIGCOMM '90 (Philadelphia, PA, Sept. 1990),
            ACM.

   [SDP]    Handley, M. and V. Jacobson, "SDP: Session Description
            Protocol", RFC 2327, April 1998.

   [BT656]  Tynan, D., "RTP Payload Format for BT.656 Video Encoding",
            RFC 2431, October 1998.

   [292RTP] Gharai, L., Perkins, C., Goncher, G., and A. Mankin, "RTP
            Payload Format for Society of Motion Picture and Television
            Engineers (SMPTE) 292M Video", RFC 3497, March 2003.

   [656]    International Telecommunication Union, "Interfaces for
            Digital Component Video Signals in 525-line and 625-line
            Television Systems Operating at the 4:2:2 Level of
            Recommendation ITU-R BT.601 (Part A)", Recommendation
            BT.656, April 1998.

Authors' Addresses

Ladan Gharai USC Information Sciences Institute 3811 N. Fairfax Drive, #200 Arlington, VA 22203 USA EMail: ladan@isi.edu Colin Perkins University of Glasgow Department of Computing Science 17 Lilybank Gardens Glasgow G12 8QQ United Kingdom EMail: csp@csperkins.org
ToP   noToC   RFC4175 - Page 18
Full Copyright Statement

   Copyright (C) The Internet Society (2005).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.