Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 4011

Policy Based Management MIB

Pages: 121
Proposed Standard
Part 2 of 4 – Pages 27 to 59
First   Prev   Next

Top   ToC   RFC4011 - Page 27   prevText

6. Index Information for 'this element'

PolicyScript code needs a convenient way to get the components of the index for 'this element' so that they can perform SNMP operations on it or on related elements. Two mechanisms are provided. 1. For all OID input parameters to all SNMP Library Functions (but not OID utility functions), the token "$n" ('$' followed by an integer between 0 and 128) can be used in place of any decimal sub-identifier. This token is expanded by the agent at execution time to contain the nth subid of the index for the current element. For example, if the element is interface 7, and the objectIdentifier is "1.3.6.1.2.1.2.2.1.3.$0", it will be expanded to "1.3.6.1.2.1.2.2.1.3.7". The special token "$*" is expanded to contain all of the subidentifiers of the index of the current element, separated by '.' characters. It is an RTE if a token is specified that is beyond the length of the index for the current element. Note that the "$n" convention is only active within strings. 2. The ec() and ev() functions allow access to the components of the index for 'this element'. ec() takes no argument and returns the number of index components that exist. ev() takes an integer argument specifying which component of the index (numbered starting at 0) and returns an integer containing the value of the n'th subidentifier. Refer to the Library functions section for the complete definition of ec() and ev(). For example, if 'this element' is frCircuitDLCI.5.57 (ifIndex = 5, DLCI = 57) then ec() returns 2 ev(0) returns 5 ev(1) returns 57 This is helpful when one wishes to address a related element. Extending the previous example, to find the port speed of the port, the circuit (above) runs over: portSpeed = getVar("ifSpeed." + ev(0)); A script may check the type of 'this element' by calling the elementName() function. Although it is possible to write a script that will work with different types of elements, many scripts will
Top   ToC   RFC4011 - Page 28
      assume a particular element type and will work incorrectly if used
      on different element types.

7. Library Functions

Library functions are built-in functions available primarily to provide access to information on the local system or to manipulate this information more efficiently. A group of functions is organized into a library, the unit of conformance for function implementation. In order to claim conformance to a library, an implementation must implement all functions in a library to the specifications of the library. In order for a management station or a condition or action to understand whether a certain library of functions is implemented, each library will have a name that it registers in the role table as a characteristic of the system element ("0.0") in the default SNMP context. Thus, conformance to a library can be tested with the roleMatch library function (in the base library) with the call roleMatch ("libraryName", "0.0"). Note that in the descriptions of these functions below, the function prototype describes the type of argument expected. Even though variables are not declared with a particular type, their contents must be appropriate for each function argument. If the type is variable, the keyword 'var' will be used. If only a string is appropriate, the keyword 'string' will be used. If only an integer is appropriate, the keyword 'integer' will be used. If the argument is declared as 'string' or 'integer' and a value of a different type is passed, the argument will be coerced with ToInteger() or ToString(). Any failure of this coercion will cause an RTE (in particular for ToInteger(), which will fail if its string-valued argument is not a well-formed integer). In the function prototype, if the '&' character precedes the identifier for an argument, that argument may be modified by the function (e.g., "integer &result, ...)"). Arguments without the '&' character cannot be modified by the function. In a script, modifiable arguments don't have to be preceded by a '&'. It is an RTE if a constant is passed to a modifiable function argument (regardless of whether the function actually writes to the argument). In the function prototype, the '[' and ']' characters surround arguments that are optional. In PolicyScript code, the optional argument may only be included if all optional arguments to the left of it are included. The function may place restrictions on when an optional argument must, or must not, be included.
Top   ToC   RFC4011 - Page 29
   In the function prototype, if a type is listed before the name of the
   function, the function returns a value of that type.  If no type is
   listed, the function returns no value.

8. Base Function Library

A standard base library of functions is available to all systems that implement this specification. This library is registered with the name "pmBaseFunctionLibrary". Although the specification of this library is modularized into 4 separate sections, conformance to the library requires implementation of all functions in all sections. The sections are: - SNMP library functions - Policy library functions - Utility functions - Library Functions

8.1. SNMP Library Functions

Two sets of SNMP Library functions are available with different situations in mind: - Convenience SNMP Functions In an effort to keep simple things simple, these functions are easy to use and code that is easy to understand. These functions will suffice for the majority of situations, where a single variable is referenced and the desired error recovery is simply (and immediately) to give up (and move to the next policy-element combination). In more complex cases, the General SNMP Functions can be used at the cost of several times the code complexity. The convenience SNMP functions are getVar, exists, setVar, setRowStatus, createRow, counterRate, and searchColumn. - General SNMP Functions The General SNMP functions allow nearly any legal SNMP Message to be generated, including those with multiple varbinds, getNext operations, notifications, and messages with explicit addressing or security specifications. The general SNMP functions are writeVar, readVar, snmpSend, readError, and writeBulkParameters.
Top   ToC   RFC4011 - Page 30

8.1.1. SNMP Operations on Non-Local Systems

From time to time, a script may have to perform an operation on a different SNMP system than that on which 'this element' resides. Scripts may also have to specify the use of alternate security parameters. In order to do this, the following optional arguments are provided for the SNMP library functions: snmp-function(...[, integer mPModel, string tDomain, string tAddress, integer secModel, string secName, integer secLevel, string contextEngineID ]) For example: getVar("sysDescr.0", "", SNMPv3, "transportDomainUdpIpv4", "192.168.1.1:161", USM, "joe", NoAuthNoPriv); The use of these arguments is denoted in function definitions by the keyword 'NonLocalArgs'. The definitions of these arguments are as follows: 'mPModel' is the integer value of the SnmpMessageProcessingModel to use for this operation. 'tDomain' is a string containing an ASCII dotted-decimal object identifier representing the transport domain to use for this operation. 'tAddress' is a string containing the transport address formatted according to the 'tDomain' argument. The ASCII formats for various values of 'tDomain' are defined by the DISPLAY-HINT for a TEXTUAL-CONVENTION that represents an address of that type. The DISPLAY-HINTs used are: tDomain Source of DISPLAY-HINT [5] [11] ------- ---------------------- transportDomainUdpIpv4 TransportAddressIPv4 transportDomainUdpIpv6 TransportAddressIPv6 transportDomainUdpDns TransportAddressDns snmpCLNSDomain snmpOSIAddress snmpCONSDomain snmpOSIAddress snmpDDPDomain snmpNBPAddress snmpIPXDomain snmpIPXAddress rfc1157Domain snmpUDPAddress Other Use DISPLAY-HINT "1x:"
Top   ToC   RFC4011 - Page 31
      'secModel' is the integer value of the SnmpSecurityModel to use
      for this operation.

      'secName' is a string value representing the SnmpSecurityName to
      use for this operation.

      'secLevel' is the integer value of the SnmpSecurityLevel to use
      for this operation.

      An SNMP operation will be sent to the target system by using
      security parameters retrieved from a local configuration datastore
      based on 'secModel', 'secName', and 'secLevel'.  It is the
      responsibility of the agent to ensure that sensitive information
      in the local configuration datastore is used on behalf of the
      correct principals, as identified by the security credentials of
      the last entity to modify the pmPolicyAdminStatus for a policy.

      To illustrate how this must be configured, consider an example in
      which 'joe' installs a policy on 'PMAgent' that will periodically
      configure objects on 'TargetAgent' with the credentials of
      'Operator'.  The following conditions must be true for this policy
      to execute with the proper privileges:

      - 'Operator's security credentials for TargetAgent must be
        installed in PMAgent's local configuration datastore (e.g.,
        usmUserTable [6]) indexed by TargetAgent's engineID and
        'Operator'.
      - VACM [9] must be configured on PMAgent so that 'joe' has access
        to the above entry in the appropriate MIB for the local
        configuration datastore (e.g., usmUserTable).
      - 'joe' must be the last user to modify the pmPolicyAdminStatus
        object for the policy.

      See the Security Considerations section for more information.

      For convenience, constants for 'mPModel', 'secModel', and
      'secLevel' are defined in the "Constants" section below.

      'contextEngineID' is a string representing the contextEngineID of
      the SNMP entity targeted by this operation.  It is encoded as a
      pair of hex digits (upper- and lowercase are valid) for each octet
      of the contextEngineID.  If 'tDomain' and 'tAddress' are provided
      but 'contextEngineID' is not, then the operation will be directed
      to the SNMP entity reachable at 'tDomain' and 'tAddress'.

      In order for PolicyScript code to use any of these arguments, all
      optional arguments to the left must be included.  'mPModel',
      'tDomain', 'tAddress', 'secModel', 'secName', and 'secLevel' must
Top   ToC   RFC4011 - Page 32
      be used as a group; if one is specified, they must all be.
      'contextEngineID' may only be specified if all others are
      specified.

      Note that a function that uses NonLocalArgs must provide a
      parameter for the contextName that will be required when the
      NonLocalArgs are present.  Many functions will have the following
      logic:

      ContextName NonLocalArgs
      Supplied    Supplied

      No          No            Addressed to default context on
                                local system.
      Yes         No            Addressed to named context on
                                local system.
      Yes         Yes           Addressed to named context on
                                potentially remote system.
      No          Yes           Not allowed.

8.1.2. Form of SNMP Values

Many of the library functions have input or output parameters that may be one of the many SMI data types. The actual type is not encoded in the value but is specified elsewhere, possibly by nature of the situation in which it is used. The exact usage for input and output is as follows: Any Integer value (INTEGER, Integer32, Counter32, Counter64, Gauge32, Unsigned32, TimeTicks, Counter64): On input: An Integer or a String that can be successfully coerced to an Integer with the ToInteger() operator. It is an RTE if a string is passed that cannot be converted by ToInteger() into an integer. A string of the form enum_decimal: [ letter | digit | '-' ]* '(' decimal_constant ')' will also be accepted. In this case the sequence of characters before the parentheses and the parentheses themselves are completely ignored, and the decimal_constant inside the parentheses is converted. Thus, "frame-relay(32)" translates to the integer 32.
Top   ToC   RFC4011 - Page 33
      On output:
         An Integer containing the returned value.

   Octet String
      On input:
         Either a String or an Integer.  If an Integer, it will be
         coerced to a String with the ToString() function.  This string
         will be used as an unencoded representation of the octet string
         value.

      On output:
         A String containing the unencoded value of the octet string.

   Object Identifier
      On input and on output:
         A String containing a decimal ASCII encoded object identifier
         of the following form:

            oid:       subid [ '.' subid ]* [ '.' ]
            subid:     '0' | decimal_constant

      It is an RTE if an Object Identifier argument is not in the form
      above.  Note that a trailing '.' is acceptable and will simply be
      ignored.  (Note, however, that a trailing dot could cause a
      strncmp() comparison of two otherwise-identical OIDs to fail;
      instead, use oidncmp().)

      Note that ASCII descriptors (e.g., "ifIndex") are never used in
      these encodings "over the wire".  They are never returned from
      library functions; nor are they ever accepted by them.  NMS user
      interfaces are encouraged to allow humans to view object
      identifiers with ASCII descriptors, but they must translate those
      descriptors to dotted-decimal format before sending them in MIB
      objects to policy agents.

   Null
      On input:
         The input is ignored.

      On output:
         A zero length string.
Top   ToC   RFC4011 - Page 34

8.1.3. Convenience SNMP Functions

8.1.3.1. getVar()
The getVar() function is used to retrieve the value of an SNMP MIB object instance. string getVar(string oid [, string contextName, NonLocalArgs]) 'oid' is a string containing an ASCII dotted-decimal representation of an object identifier (e.g., "1.3.6.1.2.1.1.1.0"). The optional 'contextName' argument contains the SNMP context on which to operate. If 'contextName' is not present, the contextName of 'this element' will be used. If 'contextName' is the zero-length string, the default context is used. The optional 'NonLocalArgs' provide addressing and security information to perform an SNMP operation on a system different from that of 'this element'. It is an RTE if the queried object identifier value does not exist. This function returns a string containing the returned value, encoded according to the returned type. Note that no actual SNMP PDU has to be generated and parsed when the policy MIB agent resides on the same system as the managed elements. It is recommended that NMS user interfaces display and allow input of MIB object names by their descriptor values, followed by the index in dotted-decimal form (e.g., "ifType.7").
8.1.3.2. exists()
The exists() function is used to verify the existence of an SNMP MIB object instance. integer exists(string oid [, string contextName, NonLocalArgs]) 'oid' is a string containing an ASCII dotted-decimal representation of an object identifier (e.g., "1.3.6.1.2.1.1.1.0").
Top   ToC   RFC4011 - Page 35
         The optional 'contextName' argument contains the SNMP context
         on which to operate.  If 'contextName' is not present, the
         contextName of 'this element' will be used.  If 'contextName'
         is the zero-length string, the default context is used.

         The optional 'NonLocalArgs' provide addressing and security
         information to perform an SNMP operation on a system different
         from that of 'this element'.

         This function returns the value 1 if the SNMP instance exists
         and 0 if it doesn't exist.  Note that no actual SNMP PDU has to
         be generated and parsed when the policy MIB agent resides on
         the same system as the managed elements.

         It is recommended that NMS user interfaces display and allow
         input of MIB object names by their descriptor values, followed
         by the index in dotted-decimal form (e.g., "ifType.7").

8.1.3.3. setVar()
The setVar() function is used to set a MIB object instance to a certain value. The setVar() function is only valid in policyActions. setVar(string oid, var value, integer type [, string contextName, NonLocalArgs] ) 'oid' is a string containing an ASCII dotted-decimal representation of an object identifier (e.g., "1.3.6.1.2.1.1.1.0"). 'value' is a string encoded in the format appropriate to the 'type' parameter. The agent will set the variable specified by 'oid' to the value specified by 'value'. 'type' will be the type of the 'value' parameter and will be set to one of the values for DataType Constants. The optional 'contextName' argument contains the SNMP context on which to operate. If 'contextName' is not present, the contextName of 'this element' will be used. If 'contextName' is the zero length string, the default context is used. The optional 'NonLocalArgs' provide addressing and security information to perform an SNMP operation on a system different from that of 'this element'. Note that no actual SNMP PDU has to be generated and parsed when the policy MIB agent resides on the same system as the managed elements.
Top   ToC   RFC4011 - Page 36
         It is an RTE if the set encounters any error.

         It is recommended that NMS user interfaces display and allow
         input of MIB object names by their descriptor values, followed
         by the index in dotted-decimal form (e.g., "ifType.7").

8.1.3.4. searchColumn()
integer searchColumn(string columnoid, string &oid, string pattern, integer mode [, string contextName, NonLocalArgs]) searchColumn performs an SNMP walk on a portion of the MIB searching for objects with values equal to the 'pattern' parameter. 'columnoid' constrains the search to those variables that share the same OID prefix (i.e., those that are beneath it in the OID tree). A getnext request will be sent requesting the object identifier 'oid'. If 'oid' is an empty string, the value of 'columnoid' will be sent. The value returned in each response packet will be transformed to a string representation of the value of the returned variable. The string representation of the value will be formed by putting the value in the form dictated by the "Form of SNMP Values" rules, and then by performing the ToString() function on this value, forming 'SearchString'. The 'mode' value controls what type of match to perform on this 'SearchString' value. There are 6 possibilities for mode: Mode Search Action ExactMatch Case sensitive exact match of 'pattern' and 'SearchString'. ExactCaseMatch Case insensitive exact match of 'pattern' and 'SearchString'. SubstringMatch Case sensitive substring match, finding 'pattern' in 'SearchString'. SubstringCaseMatch Case insensitive substring match, finding 'pattern' in 'SearchString'. RegexpMatch Case sensitive regular expression match, searching 'SearchString' for the regular expression given in 'pattern'.
Top   ToC   RFC4011 - Page 37
           RegexpCaseMatch    Case insensitive regular expression match,
                              searching 'SearchString' for the regular
                              expression given in 'pattern'.

         Constants for the values of 'mode' are defined in the
         'Constants' section below.

         searchColumn uses the POSIX extended regular expressions
         defined in POSIX 1003.2.

         The optional 'contextName' argument contains the SNMP context
         on which to operate.  If 'contextName' is not present, the
         contextName of 'this element' will be used.  If 'contextName'
         is the zero-length string, the default context is used.

         The optional 'NonLocalArgs' provide addressing and security
         information to perform SNMP operations on a system different
         from that of 'this element'.

         If a match is found, 'oid' is set to the OID of the matched
         value, and 1 is returned.  If the search traverses beyond
         columnoid or returns an error without finding a match, zero is
         returned, and 'oid' isn't modified.

         To find the first match, the caller should set 'oid' to the
         empty string.  To find additional matches, subsequent calls to
         searchColumn should have 'oid' set to the OID of the last
         match, an operation that searchColumn performs automatically.

         For example:
             To find an ethernet interface
             oid = "";
             searchColumn("ifType", oid, "6", 0);

         This sends a getnext request for ifType and continues to walk
         the tree until a value matching 6 is found or a variable
         returns that is not in the 'ifType' subtree.

         To find the next ethernet interface, assuming that interface 3
         was discovered to be the first:

             oid = "ifType.3";
             searchColumn("ifType", oid, "6", 0);
Top   ToC   RFC4011 - Page 38
         In a loop to determine all the ethernet interfaces, this looks
         as follows:

             oid = "";
             while(searchColumn("ifType", oid, "6", 0)){
               /* Do something with oid */
             }

         Note that in the preceding examples, "ifType" is used as a
         notational convenience, and the actual code downloaded to the
         policy MIB agent must use the string "1.3.6.1.2.1.2.2.1.3" as
         there may be no MIB compiler (or MIB file) available on the
         policy MIB agent.

         Note that if the value of 'columnoid' is too short and thus
         references too much of the object identifier tree (e.g.,
         "1.3.6"), 'columnoid' could end up searching a huge number of
         variables (if the value was "1.3.6", it would search ALL
         variables on the agent).  It is the responsibility of the
         caller to make sure that 'columnoid' is set appropriately.

8.1.3.5. setRowStatus()
integer setRowStatus(string oid, integer maxTries [, integer freeOnException , integer seed , string contextName, NonLocalArgs]) setRowStatus is used to automate the process of finding an unused row in a read-create table that uses RowStatus whose index contains an arbitrary integer component for uniqueness. 'oid' is a string containing an ASCII dotted-decimal representation of an object identifier, with one of the subids replaced with a '*' character (e.g., "1.3.6.1.3.1.99.1.2.1.9.*"). 'oid' must reference an 'instance' of the RowStatus object, and the '*' must replace any integer index item that may be set to some random value. setRowStatus will come up with a number for the selected index item and will attempt to create the instance with the createAndWait state. If the attempt fails, it will retry with a different random index value. It will attempt this no more than 'maxTries' times. If the optional 'freeOnException' argument is present and equal to 1, the agent will free this row by setting RowStatus to 'destroy' if, later in the same script invocation, this script
Top   ToC   RFC4011 - Page 39
         dies with a run-time exception or by a call to fail().  Note
         that this does not apply to exceptions experienced in
         subsequent invocations of the script.

         If the optional 'seed' argument is present, the initial index
         will be set to 'seed'.  Otherwise it will be random.  'seed'
         may not be present if the 'freeOnException' argument is not
         present.

         The optional 'contextName' argument contains the SNMP context
         on which to operate.  If 'contextName' is not present, the
         contextName of 'this element' will be used.  If 'contextName'
         is the zero-length string, the default context is used.

         The optional 'NonLocalArgs' provide addressing and security
         information to perform an SNMP operation on a system different
         from that of 'this element'.

         setRowStatus returns the successful integer value for the
         index.  If it is unsuccessful after 'maxTries', or if zero or
         more than one '*' is in OID, -1 will be returned.

         The createRow function (below) can also be used when adding
         rows to tables.  Although createRow has more functionality,
         setRowStatus may be preferable in certain situations (for
         example, to have the opportunity to inspect default values
         created by the agent).

8.1.3.6. createRow()
integer createRow(integer reqPDU, integer reqNumVarbinds, integer statusColumn, integer maxTries, integer indexRange, integer &respPDU, integer &respNumVarbinds, integer &index [, integer freeOnException, string contextName, NonLocalArgs]) createRow is used to automate the process of creating a row in a read-create table whose index contains an arbitrary integer component for uniqueness. In particular, it encapsulates the algorithm behind either the createAndWait or createAndGo mechanism and the algorithm for finding an unused row in the table. createRow is not useful for creating rows in tables whose indexes don't contain an arbitrary integer component. createRow will perform the operation by sending 'reqPDU' and returning the results in 'respPDU'. Both 'reqPDU' and
Top   ToC   RFC4011 - Page 40
         'respPDU' must previously have been allocated with newPDU.
         'reqPDU' and 'respPDU' may both contain the same PDU handle, in
         which case the 'reqPDU' is sent and then replaced with the
         contents of the received PDU.

         'reqNumVarbinds' is an integer greater than zero that specifies
         which varbinds in the PDU will be used in this operation.  The
         first 'reqNumVarbinds' in the PDU are used.  Each such varbind
         must be of a special form in which the object name must have
         one of its subids replaced with a '*' character (e.g.,
         "1.3.6.1.3.1.99.1.2.1.9.*").  The subid selected to be replaced
         will be an integer index item that may be set to some random
         value.  The same subid should be selected in each varbind in
         the PDU.

         'respNumVarbinds' will be modified to contain the number of
         varbinds received in the last response PDU.

         'statusColumn' identifies which varbind in 'pdu' should be
         treated as the RowStatus column, where 0 identifies the 1st
         varbind.

         createRow will come up with a random integer index value and
         will substitute that value in place of the '*' subid in each
         varbind.  It will then set the value of the RowStatus column to
         select the 'createAndGo' mechanism and execute the set.  If the
         attempt fails due to the unavailability of the 'createAndGo'
         mechanism, it will retry with the 'createAndWait' mechanism
         selected.  If the attempt fails because the chosen index value
         is already in use, the operation will be retried with a
         different random index value.  It will continue to retry
         different index values until it succeeds, until it has made
         'maxTries' attempts, or until it encounters an error.  The
         value of 'maxTries' should be chosen to be high enough to
         minimize the chance that as the table fills up an attempt to
         create a new entry will 'collide' too often and fail.

         All random index values must be between 1 and 'indexRange',
         inclusive.  This is so that values are not attempted for an
         index that fall outside of that index's restricted range (e.g.,
         1..65535).

         If the optional 'freeOnException' argument is present and equal
         to 1, the agent will free this row by setting RowStatus to
         'destroy' if, later in the same script invocation, this script
         dies with a run-time exception or by a call to fail().  Note
         that this does not apply to exceptions experienced in
         subsequent invocations of the script.
Top   ToC   RFC4011 - Page 41
         The optional 'contextName' argument contains the SNMP context
         on which to operate.  If 'contextName' is not present, the
         contextName of 'this element' will be used.  If 'contextName'
         is the zero-length string, the default context is used.

         The optional 'NonLocalArgs' provide addressing and security
         information to perform an SNMP operation on a system different
         from that of 'this element'.

         Note that no actual SNMP PDU has to be generated and parsed
         when the policy MIB agent resides on the same system as the
         managed elements.  If no PDU is generated, the agent must
         correctly simulate the behavior of the SNMP Response PDU,
         particularly in case of an error.

         This function returns zero unless an error occurs, in which
         case it returns the proper SNMP Error Constant.  If an error
         occurred, respPDU will contain the last response PDU as
         received from the agent unless no response PDU was received, in
         which case respNumVarbinds will be 0.  In any event, readError
         may be called on the PDU to determine error information for the
         transaction.

         The 'index' parameter returns the chosen index.  If successful,
         'index' will be set to the successful integer index.  If no
         SNMP error occurs but the operation does not succeed due to the
         following reasons, 'index' will be set to -1:

            1) Unsuccessful after 'maxTries'.
            2) An object name had no '*' in it.
            3) An object name had more than one '*' in it.

         For example, createRow() might be used as follows:

         var index, pdu = newPDU(), nVars = 0;

         writeVar(pdu, nVars++, "hlHostControlDataSource.*",
                  "ifIndex." + ev(0), Oid);
         writeVar(pdu, nVars++, "hlHostControlNlMaxDesiredEntries.*",
                  1000, Integer);
         writeVar(pdu, nVars++, "hlHostControlAlMaxDesiredEntries.*",
                  1000, Integer);
         writeVar(pdu, nVars++, "hlHostControlOwner.*", "policy",
                  String);
         writeVar(pdu, nVars++, "hlHostControlStatus.*", "active(1)",
                  Integer);
         if (createRow(pdu, nVars, 4, 20, 65535,
                       pdu, nVars, index) != 0
Top   ToC   RFC4011 - Page 42
             || index == -1)
             return;
         // index now contains index of new row

8.1.3.7. counterRate()
When a policy wishes to make a decision based on the rate of a counter, it faces a couple of problems: 1. It may have to run every X minutes but have to make decisions on rates calculated over at least Y minutes, where Y > X. This would require the complexity of managing a queue of old counter values. 2. The policy script has no control over exactly when it will run. The counterRate() function is designed to surmount these problems easily. integer counterRate(string oid, integer minInterval [, integer 64bit, string discOid, integer discMethod, string contextName, NonLocalArgs]) 'counterRate' retrieves the variable specified by oid once per invocation. It keeps track of timestamped values retrieved on previous invocations by this execution context so that it can calculate a rate over a period longer than that since the last invocation. 'oid' is the object identifier of the counter value that will be retrieved. The most recent previously saved value of the same object identifier that is at least 'minInterval' seconds old will be subtracted from the newly retrieved value, yielding a delta. If 'minInterval' is zero, this delta will be returned. Otherwise, this delta will be divided by the number of seconds elapsed between the two retrievals, and the integer-valued result will be returned (rounding down when necessary). If there was no previously saved retrieval older than 'minInterval' seconds, then -1 will be returned. It is an RTE if the query returns noSuchName, noSuchInstance, or noSuchObject or an object that is not of type Counter32 or Counter64.
Top   ToC   RFC4011 - Page 43
         The delta calculation will allow for 32-bit counter semantics
         if it encounters rollover between the two retrievals, unless
         the optional argument '64bit' is present and equal to 1, in
         which case it will allow for 64-bit counter semantics.

         'discOid' and 'discMethod' may only be present together.
         'discOid' contains an object identifier of a discontinuity
         indicator value that will be retrieved simultaneously with each
         counter value:

            1. If 'discMethod' is equal to 1 and the discontinuity
               indicator is less than the last one retrieved, then a
               discontinuity is indicated.
            2. If 'discMethod' is equal to 2 and the discontinuity
               indicated is different from the last one retrieved, then
               a discontinuity is indicated.

         If this value indicates a discontinuity, this counter value
         (and its timestamp) will be stored, but all previously stored
         counter values will be invalidated and -1 will be returned.

         The implementation will have to store a number of timestamped
         counter values.  The implementation must keep all values that
         are newer than minInterval seconds, plus the newest value that
         is older than minInterval seconds.  Other than this one value
         that is older than minInterval seconds, the implementation
         should discard any older values.

         For example:
           Policy that executes every 60 seconds:
               rate = counterRate("ifInOctets.$*", 300);
               if (rate > 1000000)
                   ...

         Another example, with a discontinuity indicator:

           Policy that executes every 60 seconds:
               rate = counterRate("ifInOctets.$*", 300, 0,
                                  "sysUpTime.0", 1);
               if (rate > 1000000)
                   ...

         Another example, with zero minInterval:
           Policy that executes every 60 seconds:
               delta = counterRate("ifInErrors.$*", 0);
               if (delta > 100)
                   ...
Top   ToC   RFC4011 - Page 44
         The optional 'contextName' argument contains the SNMP context
         on which to operate.  If 'contextName' is not present, the
         contextName of 'this element' will be used.  If 'contextName'
         is the zero-length string, the default context is used.

8.1.4. General SNMP Functions

It is desirable that a general SNMP interface have the ability to perform SNMP operations on multiple variables at once and that it allow multiple varbind lists to exist at once. The newPdu, readVar, and writeVar functions exist to provide these facilities in a language without pointers, arrays, and memory allocators. newPDU is called to allocate a PDU and return an integer handle to it. As PDUs are automatically freed when the script exits and can be reused during execution, there is no freePDU(). readVar and writeVar access a variable length varbind list for a PDU. The PDU handle and the index of the variable within that PDU are specified in every readVar and writeVar operation. Once a PDU has been fully specified by one or more calls to writeVar, it is passed to snmpSend (by referencing the PDU handle) and the number of varbinds to be included in the operation. When a response is returned, the contents of the response are returned in another PDU and may be read by one or more calls to readVar. Error information may be read from the PDU with the readError function. Because GetBulk PDUs send additional information in the SNMP header, the writeBulkParameters function is provided to configure these parameters. Varbinds in this data store are created automatically whenever they are written by any writeVar or snmpSend operation. For example: var pdu = newPDU(); var nVars = 0, oid, type, value; writeVar(pdu, nVars++, "sysDescr.0", "", Null); writeVar(pdu, nVars++, "sysOID.0", "", Null); writeVar(pdu, nVars++, "ifNumber.0", "", Null); if (snmpSend(pdu, nVars, Get, pdu, nVars)) return; readVar(pdu, 0, oid, value, type); readVar(pdu, 1, oid, value, type); readVar(pdu, 2, oid, value, type); ...
Top   ToC   RFC4011 - Page 45
   or,
     var pdu = newPDU();
     var nVars = 0, oid1, oid2;

     writeVar(pdu, nVars++, "ifIndex", "", Null);
     writeVar(pdu, nVars++, "ifType", "", Null);
     while(!done){
       if (snmpSend(pdu, nVars, Getnext, pdu, nVars))
           continue;
       readVar(pdu, 0, oid1, value, type);
       readVar(pdu, 1, oid2, value, type);
       /* leave OIDs alone, now PDU #0 is set up for next step
          in table walk. */
       if (oidncmp(oid1, "ifIndex", oidlen("ifIndex")))
         done = 0;
       ...
     }

   Note that in the preceding examples, descriptors such as ifType and
   sysDescr are used in object identifiers solely as a notational
   convenience.  The actual code downloaded to the policy MIB agent must
   use a dotted decimal notation only, as there may be no MIB compiler
   (or MIB file) available on the policy MIB agent.

   To conform to this specification, implementations must allow each
   policy script invocation to allocate at least 5 PDUs with at least 64
   varbinds per list.  It is suggested that implementations limit the
   total number of PDUs per invocation to protect other script
   invocations from a malfunctioning script (e.g., a script that calls
   newPDU() in a loop).

8.1.4.1. newPDU()
integer newPDU() newPDU will allocate a new PDU and return a handle to the PDU. If no PDU could be allocated, -1 will be returned. The PDU's initial values of nonRepeaters and maxRepetitions will be zero.
8.1.4.2. writeVar()
writeVar(integer pdu, integer varBindIndex, string oid, var value, integer type) writeVar will store 'oid', 'value', and 'type' in the specified varbind. 'pdu' is the handle to a PDU allocated by newPDU().
Top   ToC   RFC4011 - Page 46
         'varBindIndex' is a non-negative integer that identifies the
         varbind within the specified PDU modified by this call.  The
         first varbind is number 0.

         'oid' is a string containing an ASCII dotted-decimal
         representation of an object identifier (e.g.,
         "1.3.6.1.2.1.1.1.0").

         'value' is the value to be stored, of a type appropriate to the
         'type' parameter.

         'type' will be the type of the value parameter and will be set
         to one of the values for DataType Constants.

         It is an RTE if any of the parameters don't conform to the
         rules above.

8.1.4.3. readVar()
readVar(integer pdu, integer varBindIndex, string &oid, var &value, integer &type) readVar will retrieve the oid, the value, and its type from the specified varbind. 'pdu' is the handle to a PDU allocated by newPDU(). 'varBindIndex' is a non-negative integer that identifies the varbind within the specified PDU read by this call. The first varbind is number 0. The object identifier value of the referenced varbind will be copied into the 'oid' parameter, formatted in an ASCII dotted- decimal representation (e.g., "1.3.6.1.2.1.1.1.0"). 'value' is the value retrieved, of a type appropriate to the 'type' parameter. 'type' is the type of the value parameter and will be set to one of the values for DataType Constants. It is an RTE if 'pdu' doesn't reference a valid PDU or 'varBindIndex' doesn't reference a valid varbind.
Top   ToC   RFC4011 - Page 47
8.1.4.4. snmpSend()
integer snmpSend(integer reqPDU, integer reqNumVarbinds, integer opcode, integer &respPDU, integer &respNumVarbinds, [, string contextName , NonLocalArgs] ) snmpSend will perform an SNMP operation by sending 'reqPDU' and returning the results in 'respPDU'. Both 'reqPDU' and 'respPDU' must previously have been allocated with newPDU. 'reqPDU' and 'respPDU' may both contain the same PDU handle, in which case the 'reqPDU' is sent and then replaced with the contents of the received PDU. If the opcode specifies a Trap or V2trap, 'respPDU' will not be modified. 'reqNumVarbinds' is an integer greater than zero that specifies which varbinds in the PDU will be used in this operation. The first 'reqNumVarbinds' in the PDU are used. 'respNumVarbinds' will be modified to contain the number of varbinds received in the response PDU, which, in the case of GetBulk or an error, may be substantially different from reqNumVarbinds. 'opcode' is the type of SNMP operation to perform and must be one of the values for SNMP Operation Constants listed in the 'Constants' section below. The optional 'contextName' argument contains the SNMP context on which to operate. If 'contextName' is not present, the contextName of 'this element' will be used. If 'contextName' is the zero-length string, the default context is used. Note that no actual SNMP PDU has to be generated and parsed when the policy MIB agent resides on the same system as the managed elements. If no PDU is generated, the agent must correctly simulate the behavior of the SNMP Response PDU, particularly in case of an error. This function returns zero unless an error occurs, in which case it returns the proper SNMP Error Constant. If an error occurred, respPDU will contain the response PDU as received from the agent, unless no response PDU was received, in which case respNumVarbinds will be 0. In any event, readError may be called on the PDU to determine error information for the transaction. If an SNMP Version 1 trap is requested (the opcode is Trap(4)), then SNMP Version 2 trap parameters are supplied and converted according to the rules of RFC 3584 [8], section 3.2. The first
Top   ToC   RFC4011 - Page 48
         variable binding must be sysUpTime.0, and the second must be
         snmpTrapOID.0, as per RFC 3416 [7], section 4.2.6.  Subsequent
         variable bindings are copied to the SNMP Version 1 trap PDU in
         the usual fashion.

8.1.4.5. readError()
readError(integer pdu, integer numVarbinds, integer &errorStatus, integer &errorIndex, integer &hasException) Returns the error information in a PDU. 'errorStatus' contains the error-status field from the response PDU or a local error constant if the error was generated locally. If no error was experienced or no PDU was ever copied into this PDU, this value will be 0. 'errorIndex' contains the error-index field from the response PDU. If no PDU was ever copied into this PDU, this value will be 0. 'hasException' will be 1 if any of the first 'numVarbinds' varbinds in the PDU contain an exception (Nosuchobject, Nosuchinstance, Endofmibview); otherwise it will be 0. It is an RTE if 'pdu' does not reference a valid PDU or if 'numVarbinds' references varbinds that aren't valid.
8.1.4.6. writeBulkParameters()
writeBulkParameters(integer pdu, integer nonRepeaters, integer maxRepetitions) Modifies the parameters in a PDU in any subsequent GetBulk operation sent by the PDU. 'nonRepeaters' will be copied into the PDU's non-repeaters field, and 'maxRepetitions' into the max-repetitions field. This function may be called before or after writeVar is called to add varbinds to the PDU, but it must be called before the PDU is sent; otherwise, it will have no effect. A new PDU is initialized with nonRepeaters set to zero and maxRepetitions set to zero. If a Bulk PDU is sent before writeBulkParameters is called, these default values will be used. If writeBulkParameters is called to modify a PDU, it is acceptable if this PDU is later sent as a type other than bulk. The writeBulkParameters call will only affect subsequent sends of Bulk PDUs. If a PDU is used to receive the contents of a
Top   ToC   RFC4011 - Page 49
         response, the values of nonRepeaters and maxRepetitions are
         never modified.

8.1.5. Constants for SNMP Library Functions

The following constants are defined for use with all SNMP Library Functions. Policy code will be executed in an environment where the following constants are declared. (Note that the constant declarations below will not be visible in the policyCondition or policyAction code.) These constants are reserved words and cannot be used for any variable or function name. Although these declarations are expressed here as C 'const's, the 'const' construct itself is not available to be used in policy code. // Datatype Constants // From RFC 2578 [2] const integer Integer = 2; const integer Integer32 = 2; const integer String = 4; const integer Bits = 4; const integer Null = 5; const integer Oid = 6; const integer IpAddress = 64; const integer Counter32 = 65; const integer Gauge32 = 66; const integer Unsigned32 = 66; const integer TimeTicks = 67; const integer Opaque = 68; const integer Counter64 = 70; // SNMP Exceptions from RFC 3416 [7] const integer NoSuchObject = 128; const integer NoSuchInstance = 129; const integer EndOfMibView = 130; // SNMP Error Constants from RFC 3416 [7] const integer NoError = 0; const integer TooBig = 1; const integer NoSuchName = 2; const integer BadValue = 3; const integer ReadOnly = 4; const integer GenErr = 5; const integer NoAccess = 6; const integer WrongType = 7; const integer WrongLength = 8; const integer WrongEncoding = 9;
Top   ToC   RFC4011 - Page 50
   const integer WrongValue           = 10;
   const integer NoCreation           = 11;
   const integer InconsistentValue    = 12;
   const integer ResourceUnavailable  = 13;
   const integer CommitFailed         = 14;
   const integer UndoFailed           = 15;
   const integer AuthorizationError   = 16;
   const integer NotWritable          = 17;
   const integer InconsistentName     = 18;

   // "Local" Errors
   // These are also possible choices for errorStatus returns
   // For example: unknown PDU, maxVarbinds is bigger than number
   // written with writeVar, unknown opcode, etc.
   const integer BadParameter         = 1000;

   // Request would have created a PDU larger than local limitations
   const integer TooLong              = 1001;

   // A response to the request was received but errors were encountered
   // when parsing it.
   const integer ParseError           = 1002;

   // Local system has complained of an authentication failure
   const integer AuthFailure          = 1003;

   // No valid response was received in a timely fashion
   const integer TimedOut             = 1004;

   // General local failure including lack of resources
   const integer GeneralFailure       = 1005;

   // SNMP Operation Constants from RFC 3416 [7]
   const integer Get                  = 0;
   const integer Getnext              = 1;
   const integer Set                  = 3;
   const integer Trap                 = 4;
   const integer Getbulk              = 5;
   const integer Inform               = 6;
   const integer V2trap               = 7;

   // Constants from RFC 3411 [1] for SnmpMessageProcessingModel
   const integer SNMPv1              = 0;
   const integer SNMPv2c             = 1;
   const integer SNMPv3              = 3;
Top   ToC   RFC4011 - Page 51
   // Constants from RFC 3411 [1] for SnmpSecurityModel
   const integer SNMPv1              = 1;
   const integer SNMPv2c             = 2;
   const integer USM                 = 3;

   // SnmpSecurityLevel Constants from RFC 3411 [1]
   const integer NoAuthNoPriv        = 1;
   const integer AuthNoPriv          = 2;
   const integer AuthPriv            = 3;

   // Constants for use with searchColumn
   const integer ExactMatch          = 0;
   const integer ExactCaseMatch      = 1;
   const integer SubstringMatch      = 2;
   const integer SubstringCaseMatch  = 3;
   const integer RegexpMatch         = 4;
   const integer RegexpCaseMatch     = 5;

8.2. Policy Library Functions

Policy Library Functions provide access to information specifically related to the execution of policies.

8.2.1. elementName()

The elementName() function is used to determine what the current element is and can be used to provide information about the type of element and how it is indexed. string elementName() elementName returns a string containing an ASCII dotted-decimal representation of an object identifier (e.g., 1.3.6.1.2.1.1.1.0). This object identifier identifies an instance of a MIB object that is an attribute of 'this element'.

8.2.2. elementAddress()

elementAddress(&tDomain, &tAddress) elementAddress finds a domain/address pair that can be used to access 'this element' and returns the values in 'tDomain' and 'tAddress'.
Top   ToC   RFC4011 - Page 52

8.2.3. elementContext()

string elementContext() elementContext() returns a string containing the SNMP contextName of 'this element'.

8.2.4. ec()

The ec() (element count) and ev() (element value) functions provide convenient access to the components of the index for 'this element'. Typical uses will be in creating the index to other, related elements. integer ec() ec() returns an integer count of the number of index subidentifiers that exist in the index for 'this element'.

8.2.5. ev()

integer ev(integer n) ev() returns the value of the nth subidentifier in the index for 'this element'. The first subidentifier is indexed at 0. It is an RTE if n specifies a subidentifier beyond the last subidentifier.

8.2.6. roleMatch()

The roleMatch() function is used to check whether an element has been assigned a particular role. integer roleMatch(string roleString [, string element, string contextName, string contextEngineID]) 'roleString' is a string. The optional argument 'element' contains the OID name of an element, defaulting to the current element if 'element' is not supplied. If roleString exactly matches (content and length) any role assigned to the specified element, the function returns 1. If no roles match, the function returns 0. The optional 'contextName' argument contains the SNMP context on which to operate. If 'contextName' is not present, the contextName of 'this element' will be used. If 'contextName' is the zero-length string, the default context is used.
Top   ToC   RFC4011 - Page 53
         'contextEngineID' contains the contextEngineID of the remote
         system on which 'element' resides.  It is encoded as a pair of
         hex digits (upper- and lowercase are valid) for each octet of
         the contextEngineID.  If 'contextEngineID' is not present, the
         contextEngineID of 'this element' will be used.
         'contextEngineID' may only be present if the 'element' and
         'context' arguments are present.

8.2.7. Scratchpad Functions

Every maxLatency time period, every policy runs once for each element. When the setScratchpad function executes, it stores a value named by a string that can be retrieved with getScratchpad() even after this policy execution code exits. This allows sharing of data between a condition and an action, two conditions executing on different elements, or even different policies altogether. The value of 'scope' controls which policy/element combinations can retrieve this 'varName'/'value' pair. The following are options for 'scope': Global The 'varName'/'value' combination will be available in the condition or action of any policy while it is executing on any element. Note that any information placed here will be visible to all other scripts on this system regardless of their authority. Sensitive information should not be placed in global scratchpad variables. Policy The 'varName'/'value' combination will be available in any future execution of the condition or action of the current policy (regardless of what element the policy is executing on). If a policy is ever deleted, or if its condition or action code is modified, all values in its 'Policy' scope will be deleted. PolicyElement The 'varName'/'value' combination will be available in future executions of the condition or action of the current policy, but only when the policy is executing on the current element. If a policy is ever deleted, or if its condition or action code is modified, all values in its 'PolicyElement' scope will be deleted. The agent may also periodically delete values in a 'PolicyElement' scope if the corresponding element does not exist (in other words, if an element disappears for a period and reappears, values in its 'PolicyElement' scope may or may not be deleted).
Top   ToC   RFC4011 - Page 54
   setScratchpad's 'storageType' argument allows the script to control
   the lifetime of a variable stored in the scratchpad.  If the
   storageType is equal to the constant 'volatile', then this variable
   must be deleted on a reboot.  If it is equal to 'nonVolatile', then
   this variable should be stored in non-volatile storage, where it will
   be available after a reboot.  If the 'storageType' argument is not
   present, the variable will be volatile and will be erased on reboot.

   If the optional 'freeOnException' argument is present and equal to 1,
   the agent will free this variable if, later in the same script
   invocation, this script dies with a run-time exception or by a call
   to fail().  (Note that this does not apply to exceptions experienced
   in subsequent invocations of the script.)

   Note that there may be implementation-specific limits on the number
   of scratchpad variables that can be allocated.  The limit of unique
   scratchpad variables may be different for each scope or storageType.
   It is suggested that implementations limit the total number of
   scratchpad variables per script to protect other scripts from a
   malfunctioning script.  In addition, compliant implementations must
   support at least 50 Global variables, 5 Policy variables per policy,
   and 5 PolicyElement variables per policy-element pair.

   Scratchpad Usage Examples

   Policy  Element    Action
   A       ifIndex.1  setScratchpad(Global, "foo", "55")
   A       ifIndex.1  getScratchpad(Global, "foo", val) --> 55
   A       ifIndex.2  getScratchpad(Global, "foo", val) --> 55
   B       ifIndex.2  getScratchpad(Global, "foo", val) --> 55
   B       ifIndex.2  setScratchpad(Global, "foo", "16")
   A       ifIndex.1  getScratchpad(Global, "foo", val) --> 16

   Policy  Element    Action
   A       ifIndex.1  setScratchpad(Policy, "bar", "75")
   A       ifIndex.1  getScratchpad(Policy, "bar", val) --> 75
   A       ifIndex.2  getScratchpad(Policy, "bar", val) --> 75
   B       ifIndex.1  getScratchpad(Policy, "bar", val) not found
   B       ifIndex.1  setScratchpad(Policy, "bar", "20")
   A       ifIndex.2  getScratchpad(Policy, "bar", val) --> 75
   B       ifIndex.2  getScratchpad(Policy, "bar", val) --> 20

   Policy  Element    Action
   A       ifIndex.1  setScratchpad(PolicyElement, "baz", "43")
   A       ifIndex.1  getScratchpad(PolicyElement, "baz", val) --> 43
   A       ifIndex.2  getScratchpad(PolicyElement, "baz", val) not found
   B       ifIndex.1  getScratchpad(PolicyElement, "baz", val) not found
   A       ifIndex.2  setScratchpad(PolicyElement, "baz", "54")
Top   ToC   RFC4011 - Page 55
   B       ifIndex.1  setScratchpad(PolicyElement, "baz", "65")
   A       ifIndex.1  getScratchpad(PolicyElement, "baz", val) --> 43
   A       ifIndex.2  getScratchpad(PolicyElement, "baz", val) --> 54
   B       ifIndex.1  getScratchpad(PolicyElement, "baz", val) --> 65

   Policy  Element    Action
   A       ifIndex.1  setScratchpad(PolicyElement, "foo", "11")
   A       ifIndex.1  setScratchpad(Global,        "foo", "22")
   A       ifIndex.1  getScratchpad(PolicyElement, "foo", val) --> 11
   A       ifIndex.1  getScratchpad(Global,        "foo", val) --> 22

   Constants

   The following constants are defined for use with the scratchpad
   functions.  Policy code will be executed in an environment where the
   following constants are declared.  (Note that these constant
   declarations will not be visible in the policyCondition or
   policyAction MIB objects.)

   Although these declarations are expressed here as C 'const's, the
   'const' construct itself is not available to be used inside of policy
   code.

   // Scratchpad Constants

   // Values of scope
   const integer Global           = 0;
   const integer Policy           = 1;
   const integer PolicyElement    = 2;

   // Values of storageType
   const integer Volatile         = 0;
   const integer NonVolatile      = 1;

8.2.8. setScratchpad()

setScratchpad(integer scope, string varName [, string value, integer storageType, integer freeOnException ]) The setScratchpad function stores a value that can be retrieved even after this policy execution code exits. The value of 'scope' controls which policy/element combinations can retrieve this 'varName'/'value' pair. The options for 'scope' are Global, Policy, and PolicyElement.
Top   ToC   RFC4011 - Page 56
         'varName' is a string used to identify the value.  Subsequent
         retrievals of the same 'varName' in the proper scope will
         return the value stored.  Note that the namespace for 'varName'
         is distinct for each scope.  'varName' is case sensitive.

         'value' is a string containing the value to be stored.
         ToString(value) is called on 'value' to convert it to a string
         before storage.

         If the 'value' argument is missing, the 'varName' in scope
         'scope' will be deleted if it exists.

         If the optional 'storageType' argument is present and is equal
         to the constant 'Volatile', then this variable must be deleted
         on a reboot.  If it is equal to 'NonVolatile', then this
         variable should be stored in non-volatile storage, where it
         will be available after a reboot.  If the 'storageType'
         argument is not present, the variable will be volatile and will
         be erased on reboot.  'storageType' may not be present if the
         'value' argument is not present.  If the variable already
         existed, its previous storageType is updated according to the
         current 'storageType' argument.

         If the optional 'freeOnException' argument is present and equal
         to 1, the agent will free this variable if, later in the same
         script invocation, this script dies with a run-time exception
         or by a call to fail().  (Note that this does not apply to
         exceptions experienced in subsequent invocations of the
         script.)

8.2.9. getScratchpad()

integer getScratchpad(integer scope, string varName, string &value) The getScratchpad function allows the retrieval of values that were stored previously in this execution context or in other execution contexts. The value of 'scope' controls which execution contexts can pass a value to this execution context. The options for 'scope' are Global, Policy, and PolicyElement. 'varName' is a string used to identify the value. Subsequent retrievals of the same 'varName' in the proper scope will return the value stored. Note that the namespace for varName is distinct for each scope. As a result, getScratchpad cannot force access to a variable in an inaccessible scope; it can only retrieve variables by referencing the proper scope in which they were set. 'varName' is case sensitive.
Top   ToC   RFC4011 - Page 57
         On successful return, 'value' will be set to the value that was
         previously stored; otherwise, 'value' will not be modified.

         This function returns 1 if a value was previously stored and 0
         otherwise.

8.2.10. signalError()

The signalError() function is used by the script to indicate to a management station that it is experiencing abnormal behavior. signalError() turns on the conditionUserSignal(3) or actionUserSignal(5) bit in the associated pmTrackingPEInfo object (subsequent calls to signalError() have no additional effect). This bit is initially cleared at the beginning of each execution. If, upon a subsequent execution, the script finishes without calling signalError, the bit will be cleared. signalError() The signalException function takes no arguments and returns no value.

8.2.11. defer()

Precedence groups enforce the rule that for each element, of the ready policies that match the condition, only the one with the highest precedence value will be active. Unfortunately, once the winning policy has been selected and the action begins running, situations can occur in which the policy script determines that it cannot complete its task. In many such cases, it is desirable that the next runner-up ready policy be executed. In the previous example, it would be desirable that at least bronze behavior be configured if gold is appropriate but gold isn't possible. When a policy defers, it exits, and the ready, condition-matching policy with the next-highest precedence is immediately run. Because this might also defer, the execution environment must remember where it is in the precedence chain so that it can continue going down the chain until an action completes without deferring, or until no policies are left in the precedence group. Once a policy finishes successfully, the next iteration will begin at the top of the precedence chain. There are two ways to defer. A script can exit by calling fail() and specify that it should defer immediately. Alternately, a script can instruct the execution environment to defer automatically in the event of a run-time exception.
Top   ToC   RFC4011 - Page 58
      defer(integer deferOnRTE)

         The defer function changes the run-time exception behavior of a
         script.  By default, a script will not defer when it encounters
         an RTE.  If defer(1) is called, the exit behavior is changed so
         that the script will defer when it is terminated due to an RTE.
         If defer(0) is called, the script is reset to its default
         behavior and will not defer.

         Note that calling defer doesn't cause the script to exit.
         Defer only changes the default behavior if an RTE occurs later
         in this invocation.

8.2.12. fail()

fail(integer defer, integer free [, string message] ) The fail function causes the script to optionally perform certain functions and then exit. If 'defer' is 1, this script will defer to the next lower precedence ready policy in the same precedence group whose condition matches. If 'defer' isn't 1, it will not defer. Note that if a condition defers, it is functionally equivalent to the condition returning false. If 'free' is 1, certain registered resources will be freed. If, earlier in this script invocation, any rows were created by createRow with the 'freeOnException' option, the execution environment will set the RowStatus of each row to 'destroy' to delete the row. Further, if earlier in this script invocation any scratchpad variables were created or modified with the 'freeOnException' option, they will be deleted. If the optional 'message' argument is present, it will be logged to the debugging table if pmPolicyDebugging is turned on for this policy. This function does not return. Instead, the script will terminate.

8.2.13. getParameters()

From time to time, policy scripts may be parameterized so that they are supplied with one or more parameters (e.g., site-specific constants). These parameters may be installed in the pmPolicyParameters object and are accessible to the script via the getParameters() function. If it is necessary for multiple parameters
Top   ToC   RFC4011 - Page 59
   to be passed to the script, the script can choose whatever
   encoding/delimiting mechanism is most appropriate so that the
   multiple parameters can be stored in the associated instance of
   pmPolicyParameters.

      string getParameters()

         The getParameters function takes no arguments.  It returns a
         string containing the value of the pmPolicyParameters object
         for the running policy.

   For example, if a policy is to apply to "slow speed interfaces" and
   the cutoff point for slow speed should be parameterized, the policy
   filter should be:

      getVar("ifSpeed.$*") == getParameters()

   In this example, one can store the string "128000" in the policy's
   pmPolicyParameters object to cause this policy to act on all 128 Kbps
   interfaces.



(page 59 continued on part 3)

Next Section