A.15. enhancer.h
/****************************************************************** iLBC Speech Coder ANSI-C Source Code enhancer.h Copyright (C) The Internet Society (2004). All Rights Reserved.
******************************************************************/ #ifndef __ENHANCER_H #define __ENHANCER_H #include "iLBC_define.h" float xCorrCoef( float *target, /* (i) first array */ float *regressor, /* (i) second array */ int subl /* (i) dimension arrays */ ); int enhancerInterface( float *out, /* (o) the enhanced recidual signal */ float *in, /* (i) the recidual signal to enhance */ iLBC_Dec_Inst_t *iLBCdec_inst /* (i/o) the decoder state structure */ ); #endifA.16. enhancer.c
/****************************************************************** iLBC Speech Coder ANSI-C Source Code enhancer.c Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #include <math.h> #include <string.h> #include "iLBC_define.h" #include "constants.h" #include "filter.h" /*----------------------------------------------------------------* * Find index in array such that the array element with said * index is the element of said array closest to "value" * according to the squared-error criterion *---------------------------------------------------------------*/ void NearestNeighbor(
int *index, /* (o) index of array element closest to value */ float *array, /* (i) data array */ float value,/* (i) value */ int arlength/* (i) dimension of data array */ ){ int i; float bestcrit,crit; crit=array[0]-value; bestcrit=crit*crit; *index=0; for (i=1; i<arlength; i++) { crit=array[i]-value; crit=crit*crit; if (crit<bestcrit) { bestcrit=crit; *index=i; } } } /*----------------------------------------------------------------* * compute cross correlation between sequences *---------------------------------------------------------------*/ void mycorr1( float* corr, /* (o) correlation of seq1 and seq2 */ float* seq1, /* (i) first sequence */ int dim1, /* (i) dimension first seq1 */ const float *seq2, /* (i) second sequence */ int dim2 /* (i) dimension seq2 */ ){ int i,j; for (i=0; i<=dim1-dim2; i++) { corr[i]=0.0; for (j=0; j<dim2; j++) { corr[i] += seq1[i+j] * seq2[j]; } } } /*----------------------------------------------------------------* * upsample finite array assuming zeros outside bounds *---------------------------------------------------------------*/
void enh_upsample( float* useq1, /* (o) upsampled output sequence */ float* seq1,/* (i) unupsampled sequence */ int dim1, /* (i) dimension seq1 */ int hfl /* (i) polyphase filter length=2*hfl+1 */ ){ float *pu,*ps; int i,j,k,q,filterlength,hfl2; const float *polyp[ENH_UPS0]; /* pointers to polyphase columns */ const float *pp; /* define pointers for filter */ filterlength=2*hfl+1; if ( filterlength > dim1 ) { hfl2=(int) (dim1/2); for (j=0; j<ENH_UPS0; j++) { polyp[j]=polyphaserTbl+j*filterlength+hfl-hfl2; } hfl=hfl2; filterlength=2*hfl+1; } else { for (j=0; j<ENH_UPS0; j++) { polyp[j]=polyphaserTbl+j*filterlength; } } /* filtering: filter overhangs left side of sequence */ pu=useq1; for (i=hfl; i<filterlength; i++) { for (j=0; j<ENH_UPS0; j++) { *pu=0.0; pp = polyp[j]; ps = seq1+i; for (k=0; k<=i; k++) { *pu += *ps-- * *pp++; } pu++; } } /* filtering: simple convolution=inner products */ for (i=filterlength; i<dim1; i++) {
for (j=0;j<ENH_UPS0; j++){ *pu=0.0; pp = polyp[j]; ps = seq1+i; for (k=0; k<filterlength; k++) { *pu += *ps-- * *pp++; } pu++; } } /* filtering: filter overhangs right side of sequence */ for (q=1; q<=hfl; q++) { for (j=0; j<ENH_UPS0; j++) { *pu=0.0; pp = polyp[j]+q; ps = seq1+dim1-1; for (k=0; k<filterlength-q; k++) { *pu += *ps-- * *pp++; } pu++; } } } /*----------------------------------------------------------------* * find segment starting near idata+estSegPos that has highest * correlation with idata+centerStartPos through * idata+centerStartPos+ENH_BLOCKL-1 segment is found at a * resolution of ENH_UPSO times the original of the original * sampling rate *---------------------------------------------------------------*/ void refiner( float *seg, /* (o) segment array */ float *updStartPos, /* (o) updated start point */ float* idata, /* (i) original data buffer */ int idatal, /* (i) dimension of idata */ int centerStartPos, /* (i) beginning center segment */ float estSegPos,/* (i) estimated beginning other segment */ float period /* (i) estimated pitch period */ ){ int estSegPosRounded,searchSegStartPos,searchSegEndPos,corrdim; int tloc,tloc2,i,st,en,fraction; float vect[ENH_VECTL],corrVec[ENH_CORRDIM],maxv; float corrVecUps[ENH_CORRDIM*ENH_UPS0];
/* defining array bounds */ estSegPosRounded=(int)(estSegPos - 0.5); searchSegStartPos=estSegPosRounded-ENH_SLOP; if (searchSegStartPos<0) { searchSegStartPos=0; } searchSegEndPos=estSegPosRounded+ENH_SLOP; if (searchSegEndPos+ENH_BLOCKL >= idatal) { searchSegEndPos=idatal-ENH_BLOCKL-1; } corrdim=searchSegEndPos-searchSegStartPos+1; /* compute upsampled correlation (corr33) and find location of max */ mycorr1(corrVec,idata+searchSegStartPos, corrdim+ENH_BLOCKL-1,idata+centerStartPos,ENH_BLOCKL); enh_upsample(corrVecUps,corrVec,corrdim,ENH_FL0); tloc=0; maxv=corrVecUps[0]; for (i=1; i<ENH_UPS0*corrdim; i++) { if (corrVecUps[i]>maxv) { tloc=i; maxv=corrVecUps[i]; } } /* make vector can be upsampled without ever running outside bounds */ *updStartPos= (float)searchSegStartPos + (float)tloc/(float)ENH_UPS0+(float)1.0; tloc2=(int)(tloc/ENH_UPS0); if (tloc>tloc2*ENH_UPS0) { tloc2++; } st=searchSegStartPos+tloc2-ENH_FL0; if (st<0) { memset(vect,0,-st*sizeof(float)); memcpy(&vect[-st],idata, (ENH_VECTL+st)*sizeof(float)); } else {
en=st+ENH_VECTL; if (en>idatal) { memcpy(vect, &idata[st], (ENH_VECTL-(en-idatal))*sizeof(float)); memset(&vect[ENH_VECTL-(en-idatal)], 0, (en-idatal)*sizeof(float)); } else { memcpy(vect, &idata[st], ENH_VECTL*sizeof(float)); } } fraction=tloc2*ENH_UPS0-tloc; /* compute the segment (this is actually a convolution) */ mycorr1(seg,vect,ENH_VECTL,polyphaserTbl+(2*ENH_FL0+1)*fraction, 2*ENH_FL0+1); } /*----------------------------------------------------------------* * find the smoothed output data *---------------------------------------------------------------*/ void smath( float *odata, /* (o) smoothed output */ float *sseq,/* (i) said second sequence of waveforms */ int hl, /* (i) 2*hl+1 is sseq dimension */ float alpha0/* (i) max smoothing energy fraction */ ){ int i,k; float w00,w10,w11,A,B,C,*psseq,err,errs; float surround[BLOCKL_MAX]; /* shape contributed by other than current */ float wt[2*ENH_HL+1]; /* waveform weighting to get surround shape */ float denom; /* create shape of contribution from all waveforms except the current one */ for (i=1; i<=2*hl+1; i++) { wt[i-1] = (float)0.5*(1 - (float)cos(2*PI*i/(2*hl+2))); } wt[hl]=0.0; /* for clarity, not used */ for (i=0; i<ENH_BLOCKL; i++) { surround[i]=sseq[i]*wt[0]; }
for (k=1; k<hl; k++) { psseq=sseq+k*ENH_BLOCKL; for(i=0;i<ENH_BLOCKL; i++) { surround[i]+=psseq[i]*wt[k]; } } for (k=hl+1; k<=2*hl; k++) { psseq=sseq+k*ENH_BLOCKL; for(i=0;i<ENH_BLOCKL; i++) { surround[i]+=psseq[i]*wt[k]; } } /* compute some inner products */ w00 = w10 = w11 = 0.0; psseq=sseq+hl*ENH_BLOCKL; /* current block */ for (i=0; i<ENH_BLOCKL;i++) { w00+=psseq[i]*psseq[i]; w11+=surround[i]*surround[i]; w10+=surround[i]*psseq[i]; } if (fabs(w11) < 1.0) { w11=1.0; } C = (float)sqrt( w00/w11); /* first try enhancement without power-constraint */ errs=0.0; psseq=sseq+hl*ENH_BLOCKL; for (i=0; i<ENH_BLOCKL; i++) { odata[i]=C*surround[i]; err=psseq[i]-odata[i]; errs+=err*err; } /* if constraint violated by first try, add constraint */ if (errs > alpha0 * w00) { if ( w00 < 1) { w00=1; } denom = (w11*w00-w10*w10)/(w00*w00); if (denom > 0.0001) { /* eliminates numerical problems for if smooth */
A = (float)sqrt( (alpha0- alpha0*alpha0/4)/denom); B = -alpha0/2 - A * w10/w00; B = B+1; } else { /* essentially no difference between cycles; smoothing not needed */ A= 0.0; B= 1.0; } /* create smoothed sequence */ psseq=sseq+hl*ENH_BLOCKL; for (i=0; i<ENH_BLOCKL; i++) { odata[i]=A*surround[i]+B*psseq[i]; } } } /*----------------------------------------------------------------* * get the pitch-synchronous sample sequence *---------------------------------------------------------------*/ void getsseq( float *sseq, /* (o) the pitch-synchronous sequence */ float *idata, /* (i) original data */ int idatal, /* (i) dimension of data */ int centerStartPos, /* (i) where current block starts */ float *period, /* (i) rough-pitch-period array */ float *plocs, /* (i) where periods of period array are taken */ int periodl, /* (i) dimension period array */ int hl /* (i) 2*hl+1 is the number of sequences */ ){ int i,centerEndPos,q; float blockStartPos[2*ENH_HL+1]; int lagBlock[2*ENH_HL+1]; float plocs2[ENH_PLOCSL]; float *psseq; centerEndPos=centerStartPos+ENH_BLOCKL-1; /* present */ NearestNeighbor(lagBlock+hl,plocs, (float)0.5*(centerStartPos+centerEndPos),periodl); blockStartPos[hl]=(float)centerStartPos;
psseq=sseq+ENH_BLOCKL*hl; memcpy(psseq, idata+centerStartPos, ENH_BLOCKL*sizeof(float)); /* past */ for (q=hl-1; q>=0; q--) { blockStartPos[q]=blockStartPos[q+1]-period[lagBlock[q+1]]; NearestNeighbor(lagBlock+q,plocs, blockStartPos[q]+ ENH_BLOCKL_HALF-period[lagBlock[q+1]], periodl); if (blockStartPos[q]-ENH_OVERHANG>=0) { refiner(sseq+q*ENH_BLOCKL, blockStartPos+q, idata, idatal, centerStartPos, blockStartPos[q], period[lagBlock[q+1]]); } else { psseq=sseq+q*ENH_BLOCKL; memset(psseq, 0, ENH_BLOCKL*sizeof(float)); } } /* future */ for (i=0; i<periodl; i++) { plocs2[i]=plocs[i]-period[i]; } for (q=hl+1; q<=2*hl; q++) { NearestNeighbor(lagBlock+q,plocs2, blockStartPos[q-1]+ENH_BLOCKL_HALF,periodl); blockStartPos[q]=blockStartPos[q-1]+period[lagBlock[q]]; if (blockStartPos[q]+ENH_BLOCKL+ENH_OVERHANG<idatal) { refiner(sseq+ENH_BLOCKL*q, blockStartPos+q, idata, idatal, centerStartPos, blockStartPos[q], period[lagBlock[q]]); } else { psseq=sseq+q*ENH_BLOCKL; memset(psseq, 0, ENH_BLOCKL*sizeof(float)); } } } /*----------------------------------------------------------------* * perform enhancement on idata+centerStartPos through * idata+centerStartPos+ENH_BLOCKL-1 *---------------------------------------------------------------*/
void enhancer( float *odata, /* (o) smoothed block, dimension blockl */ float *idata, /* (i) data buffer used for enhancing */ int idatal, /* (i) dimension idata */ int centerStartPos, /* (i) first sample current block within idata */ float alpha0, /* (i) max correction-energy-fraction (in [0,1]) */ float *period, /* (i) pitch period array */ float *plocs, /* (i) locations where period array values valid */ int periodl /* (i) dimension of period and plocs */ ){ float sseq[(2*ENH_HL+1)*ENH_BLOCKL]; /* get said second sequence of segments */ getsseq(sseq,idata,idatal,centerStartPos,period, plocs,periodl,ENH_HL); /* compute the smoothed output from said second sequence */ smath(odata,sseq,ENH_HL,alpha0); } /*----------------------------------------------------------------* * cross correlation *---------------------------------------------------------------*/ float xCorrCoef( float *target, /* (i) first array */ float *regressor, /* (i) second array */ int subl /* (i) dimension arrays */ ){ int i; float ftmp1, ftmp2; ftmp1 = 0.0; ftmp2 = 0.0; for (i=0; i<subl; i++) { ftmp1 += target[i]*regressor[i]; ftmp2 += regressor[i]*regressor[i]; } if (ftmp1 > 0.0) { return (float)(ftmp1*ftmp1/ftmp2); }
else { return (float)0.0; } } /*----------------------------------------------------------------* * interface for enhancer *---------------------------------------------------------------*/ int enhancerInterface( float *out, /* (o) enhanced signal */ float *in, /* (i) unenhanced signal */ iLBC_Dec_Inst_t *iLBCdec_inst /* (i) buffers etc */ ){ float *enh_buf, *enh_period; int iblock, isample; int lag=0, ilag, i, ioffset; float cc, maxcc; float ftmp1, ftmp2; float *inPtr, *enh_bufPtr1, *enh_bufPtr2; float plc_pred[ENH_BLOCKL]; float lpState[6], downsampled[(ENH_NBLOCKS*ENH_BLOCKL+120)/2]; int inLen=ENH_NBLOCKS*ENH_BLOCKL+120; int start, plc_blockl, inlag; enh_buf=iLBCdec_inst->enh_buf; enh_period=iLBCdec_inst->enh_period; memmove(enh_buf, &enh_buf[iLBCdec_inst->blockl], (ENH_BUFL-iLBCdec_inst->blockl)*sizeof(float)); memcpy(&enh_buf[ENH_BUFL-iLBCdec_inst->blockl], in, iLBCdec_inst->blockl*sizeof(float)); if (iLBCdec_inst->mode==30) plc_blockl=ENH_BLOCKL; else plc_blockl=40; /* when 20 ms frame, move processing one block */ ioffset=0; if (iLBCdec_inst->mode==20) ioffset=1; i=3-ioffset; memmove(enh_period, &enh_period[i], (ENH_NBLOCKS_TOT-i)*sizeof(float));
/* Set state information to the 6 samples right before the samples to be downsampled. */ memcpy(lpState, enh_buf+(ENH_NBLOCKS_EXTRA+ioffset)*ENH_BLOCKL-126, 6*sizeof(float)); /* Down sample a factor 2 to save computations */ DownSample(enh_buf+(ENH_NBLOCKS_EXTRA+ioffset)*ENH_BLOCKL-120, lpFilt_coefsTbl, inLen-ioffset*ENH_BLOCKL, lpState, downsampled); /* Estimate the pitch in the down sampled domain. */ for (iblock = 0; iblock<ENH_NBLOCKS-ioffset; iblock++) { lag = 10; maxcc = xCorrCoef(downsampled+60+iblock* ENH_BLOCKL_HALF, downsampled+60+iblock* ENH_BLOCKL_HALF-lag, ENH_BLOCKL_HALF); for (ilag=11; ilag<60; ilag++) { cc = xCorrCoef(downsampled+60+iblock* ENH_BLOCKL_HALF, downsampled+60+iblock* ENH_BLOCKL_HALF-ilag, ENH_BLOCKL_HALF); if (cc > maxcc) { maxcc = cc; lag = ilag; } } /* Store the estimated lag in the non-downsampled domain */ enh_period[iblock+ENH_NBLOCKS_EXTRA+ioffset] = (float)lag*2; } /* PLC was performed on the previous packet */ if (iLBCdec_inst->prev_enh_pl==1) { inlag=(int)enh_period[ENH_NBLOCKS_EXTRA+ioffset]; lag = inlag-1; maxcc = xCorrCoef(in, in+lag, plc_blockl); for (ilag=inlag; ilag<=inlag+1; ilag++) { cc = xCorrCoef(in, in+ilag, plc_blockl);
if (cc > maxcc) { maxcc = cc; lag = ilag; } } enh_period[ENH_NBLOCKS_EXTRA+ioffset-1]=(float)lag; /* compute new concealed residual for the old lookahead, mix the forward PLC with a backward PLC from the new frame */ inPtr=&in[lag-1]; enh_bufPtr1=&plc_pred[plc_blockl-1]; if (lag>plc_blockl) { start=plc_blockl; } else { start=lag; } for (isample = start; isample>0; isample--) { *enh_bufPtr1-- = *inPtr--; } enh_bufPtr2=&enh_buf[ENH_BUFL-1-iLBCdec_inst->blockl]; for (isample = (plc_blockl-1-lag); isample>=0; isample--) { *enh_bufPtr1-- = *enh_bufPtr2--; } /* limit energy change */ ftmp2=0.0; ftmp1=0.0; for (i=0;i<plc_blockl;i++) { ftmp2+=enh_buf[ENH_BUFL-1-iLBCdec_inst->blockl-i]* enh_buf[ENH_BUFL-1-iLBCdec_inst->blockl-i]; ftmp1+=plc_pred[i]*plc_pred[i]; } ftmp1=(float)sqrt(ftmp1/(float)plc_blockl); ftmp2=(float)sqrt(ftmp2/(float)plc_blockl); if (ftmp1>(float)2.0*ftmp2 && ftmp1>0.0) { for (i=0;i<plc_blockl-10;i++) { plc_pred[i]*=(float)2.0*ftmp2/ftmp1; } for (i=plc_blockl-10;i<plc_blockl;i++) { plc_pred[i]*=(float)(i-plc_blockl+10)* ((float)1.0-(float)2.0*ftmp2/ftmp1)/(float)(10)+
(float)2.0*ftmp2/ftmp1; } } enh_bufPtr1=&enh_buf[ENH_BUFL-1-iLBCdec_inst->blockl]; for (i=0; i<plc_blockl; i++) { ftmp1 = (float) (i+1) / (float) (plc_blockl+1); *enh_bufPtr1 *= ftmp1; *enh_bufPtr1 += ((float)1.0-ftmp1)* plc_pred[plc_blockl-1-i]; enh_bufPtr1--; } } if (iLBCdec_inst->mode==20) { /* Enhancer with 40 samples delay */ for (iblock = 0; iblock<2; iblock++) { enhancer(out+iblock*ENH_BLOCKL, enh_buf, ENH_BUFL, (5+iblock)*ENH_BLOCKL+40, ENH_ALPHA0, enh_period, enh_plocsTbl, ENH_NBLOCKS_TOT); } } else if (iLBCdec_inst->mode==30) { /* Enhancer with 80 samples delay */ for (iblock = 0; iblock<3; iblock++) { enhancer(out+iblock*ENH_BLOCKL, enh_buf, ENH_BUFL, (4+iblock)*ENH_BLOCKL, ENH_ALPHA0, enh_period, enh_plocsTbl, ENH_NBLOCKS_TOT); } } return (lag*2); }A.17. filter.h
/****************************************************************** iLBC Speech Coder ANSI-C Source Code filter.h Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/
#ifndef __iLBC_FILTER_H #define __iLBC_FILTER_H void AllPoleFilter( float *InOut, /* (i/o) on entrance InOut[-orderCoef] to InOut[-1] contain the state of the filter (delayed samples). InOut[0] to InOut[lengthInOut-1] contain the filter input, on en exit InOut[-orderCoef] to InOut[-1] is unchanged and InOut[0] to InOut[lengthInOut-1] contain filtered samples */ float *Coef,/* (i) filter coefficients, Coef[0] is assumed to be 1.0 */ int lengthInOut,/* (i) number of input/output samples */ int orderCoef /* (i) number of filter coefficients */ ); void AllZeroFilter( float *In, /* (i) In[0] to In[lengthInOut-1] contain filter input samples */ float *Coef,/* (i) filter coefficients (Coef[0] is assumed to be 1.0) */ int lengthInOut,/* (i) number of input/output samples */ int orderCoef, /* (i) number of filter coefficients */ float *Out /* (i/o) on entrance Out[-orderCoef] to Out[-1] contain the filter state, on exit Out[0] to Out[lengthInOut-1] contain filtered samples */ ); void ZeroPoleFilter( float *In, /* (i) In[0] to In[lengthInOut-1] contain filter input samples In[-orderCoef] to In[-1] contain state of all-zero section */ float *ZeroCoef,/* (i) filter coefficients for all-zero section (ZeroCoef[0] is assumed to be 1.0) */ float *PoleCoef,/* (i) filter coefficients for all-pole section (ZeroCoef[0] is assumed to be 1.0) */ int lengthInOut,/* (i) number of input/output samples */ int orderCoef, /* (i) number of filter coefficients */ float *Out /* (i/o) on entrance Out[-orderCoef] to Out[-1] contain state of all-pole section. On exit Out[0] to Out[lengthInOut-1] contain filtered samples */ );
void DownSample ( float *In, /* (i) input samples */ float *Coef, /* (i) filter coefficients */ int lengthIn, /* (i) number of input samples */ float *state, /* (i) filter state */ float *Out /* (o) downsampled output */ ); #endifA.18. filter.c
/****************************************************************** iLBC Speech Coder ANSI-C Source Code filter.c Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #include "iLBC_define.h" /*----------------------------------------------------------------* * all-pole filter *---------------------------------------------------------------*/ void AllPoleFilter( float *InOut, /* (i/o) on entrance InOut[-orderCoef] to InOut[-1] contain the state of the filter (delayed samples). InOut[0] to InOut[lengthInOut-1] contain the filter input, on en exit InOut[-orderCoef] to InOut[-1] is unchanged and InOut[0] to InOut[lengthInOut-1] contain filtered samples */ float *Coef,/* (i) filter coefficients, Coef[0] is assumed to be 1.0 */ int lengthInOut,/* (i) number of input/output samples */ int orderCoef /* (i) number of filter coefficients */ ){ int n,k; for(n=0;n<lengthInOut;n++){ for(k=1;k<=orderCoef;k++){ *InOut -= Coef[k]*InOut[-k];
} InOut++; } } /*----------------------------------------------------------------* * all-zero filter *---------------------------------------------------------------*/ void AllZeroFilter( float *In, /* (i) In[0] to In[lengthInOut-1] contain filter input samples */ float *Coef,/* (i) filter coefficients (Coef[0] is assumed to be 1.0) */ int lengthInOut,/* (i) number of input/output samples */ int orderCoef, /* (i) number of filter coefficients */ float *Out /* (i/o) on entrance Out[-orderCoef] to Out[-1] contain the filter state, on exit Out[0] to Out[lengthInOut-1] contain filtered samples */ ){ int n,k; for(n=0;n<lengthInOut;n++){ *Out = Coef[0]*In[0]; for(k=1;k<=orderCoef;k++){ *Out += Coef[k]*In[-k]; } Out++; In++; } } /*----------------------------------------------------------------* * pole-zero filter *---------------------------------------------------------------*/ void ZeroPoleFilter( float *In, /* (i) In[0] to In[lengthInOut-1] contain filter input samples In[-orderCoef] to In[-1] contain state of all-zero section */ float *ZeroCoef,/* (i) filter coefficients for all-zero section (ZeroCoef[0] is assumed to be 1.0) */ float *PoleCoef,/* (i) filter coefficients for all-pole section (ZeroCoef[0] is assumed to be 1.0) */ int lengthInOut,/* (i) number of input/output samples */
int orderCoef, /* (i) number of filter coefficients */ float *Out /* (i/o) on entrance Out[-orderCoef] to Out[-1] contain state of all-pole section. On exit Out[0] to Out[lengthInOut-1] contain filtered samples */ ){ AllZeroFilter(In,ZeroCoef,lengthInOut,orderCoef,Out); AllPoleFilter(Out,PoleCoef,lengthInOut,orderCoef); } /*----------------------------------------------------------------* * downsample (LP filter and decimation) *---------------------------------------------------------------*/ void DownSample ( float *In, /* (i) input samples */ float *Coef, /* (i) filter coefficients */ int lengthIn, /* (i) number of input samples */ float *state, /* (i) filter state */ float *Out /* (o) downsampled output */ ){ float o; float *Out_ptr = Out; float *Coef_ptr, *In_ptr; float *state_ptr; int i, j, stop; /* LP filter and decimate at the same time */ for (i = DELAY_DS; i < lengthIn; i+=FACTOR_DS) { Coef_ptr = &Coef[0]; In_ptr = &In[i]; state_ptr = &state[FILTERORDER_DS-2]; o = (float)0.0; stop = (i < FILTERORDER_DS) ? i + 1 : FILTERORDER_DS; for (j = 0; j < stop; j++) { o += *Coef_ptr++ * (*In_ptr--); } for (j = i + 1; j < FILTERORDER_DS; j++) { o += *Coef_ptr++ * (*state_ptr--); }
*Out_ptr++ = o; } /* Get the last part (use zeros as input for the future) */ for (i=(lengthIn+FACTOR_DS); i<(lengthIn+DELAY_DS); i+=FACTOR_DS) { o=(float)0.0; if (i<lengthIn) { Coef_ptr = &Coef[0]; In_ptr = &In[i]; for (j=0; j<FILTERORDER_DS; j++) { o += *Coef_ptr++ * (*Out_ptr--); } } else { Coef_ptr = &Coef[i-lengthIn]; In_ptr = &In[lengthIn-1]; for (j=0; j<FILTERORDER_DS-(i-lengthIn); j++) { o += *Coef_ptr++ * (*In_ptr--); } } *Out_ptr++ = o; } }A.19. FrameClassify.h
/****************************************************************** iLBC Speech Coder ANSI-C Source Code FrameClassify.h Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #ifndef __iLBC_FRAMECLASSIFY_H #define __iLBC_FRAMECLASSIFY_H int FrameClassify( /* index to the max-energy sub-frame */ iLBC_Enc_Inst_t *iLBCenc_inst, /* (i/o) the encoder state structure */ float *residual /* (i) lpc residual signal */ );
#endifA.20. FrameClassify.c
/****************************************************************** iLBC Speech Coder ANSI-C Source Code FrameClassify.c Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #include "iLBC_define.h" /*---------------------------------------------------------------* * Classification of subframes to localize start state *--------------------------------------------------------------*/ int FrameClassify( /* index to the max-energy sub-frame */ iLBC_Enc_Inst_t *iLBCenc_inst, /* (i/o) the encoder state structure */ float *residual /* (i) lpc residual signal */ ) { float max_ssqEn, fssqEn[NSUB_MAX], bssqEn[NSUB_MAX], *pp; int n, l, max_ssqEn_n; const float ssqEn_win[NSUB_MAX-1]={(float)0.8,(float)0.9, (float)1.0,(float)0.9,(float)0.8}; const float sampEn_win[5]={(float)1.0/(float)6.0, (float)2.0/(float)6.0, (float)3.0/(float)6.0, (float)4.0/(float)6.0, (float)5.0/(float)6.0}; /* init the front and back energies to zero */ memset(fssqEn, 0, NSUB_MAX*sizeof(float)); memset(bssqEn, 0, NSUB_MAX*sizeof(float)); /* Calculate front of first seqence */ n=0; pp=residual; for (l=0; l<5; l++) { fssqEn[n] += sampEn_win[l] * (*pp) * (*pp); pp++; } for (l=5; l<SUBL; l++) {
fssqEn[n] += (*pp) * (*pp); pp++; } /* Calculate front and back of all middle sequences */ for (n=1; n<iLBCenc_inst->nsub-1; n++) { pp=residual+n*SUBL; for (l=0; l<5; l++) { fssqEn[n] += sampEn_win[l] * (*pp) * (*pp); bssqEn[n] += (*pp) * (*pp); pp++; } for (l=5; l<SUBL-5; l++) { fssqEn[n] += (*pp) * (*pp); bssqEn[n] += (*pp) * (*pp); pp++; } for (l=SUBL-5; l<SUBL; l++) { fssqEn[n] += (*pp) * (*pp); bssqEn[n] += sampEn_win[SUBL-l-1] * (*pp) * (*pp); pp++; } } /* Calculate back of last seqence */ n=iLBCenc_inst->nsub-1; pp=residual+n*SUBL; for (l=0; l<SUBL-5; l++) { bssqEn[n] += (*pp) * (*pp); pp++; } for (l=SUBL-5; l<SUBL; l++) { bssqEn[n] += sampEn_win[SUBL-l-1] * (*pp) * (*pp); pp++; } /* find the index to the weighted 80 sample with most energy */ if (iLBCenc_inst->mode==20) l=1; else l=0; max_ssqEn=(fssqEn[0]+bssqEn[1])*ssqEn_win[l]; max_ssqEn_n=1; for (n=2; n<iLBCenc_inst->nsub; n++) {
l++; if ((fssqEn[n-1]+bssqEn[n])*ssqEn_win[l] > max_ssqEn) { max_ssqEn=(fssqEn[n-1]+bssqEn[n]) * ssqEn_win[l]; max_ssqEn_n=n; } } return max_ssqEn_n; }A.21. gainquant.h
/****************************************************************** iLBC Speech Coder ANSI-C Source Code gainquant.h Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #ifndef __iLBC_GAINQUANT_H #define __iLBC_GAINQUANT_H float gainquant(/* (o) quantized gain value */ float in, /* (i) gain value */ float maxIn,/* (i) maximum of gain value */ int cblen, /* (i) number of quantization indices */ int *index /* (o) quantization index */ ); float gaindequant( /* (o) quantized gain value */ int index, /* (i) quantization index */ float maxIn,/* (i) maximum of unquantized gain */ int cblen /* (i) number of quantization indices */ ); #endifA.22. gainquant.c
/****************************************************************** iLBC Speech Coder ANSI-C Source Code
gainquant.c Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #include <string.h> #include <math.h> #include "constants.h" #include "filter.h" /*----------------------------------------------------------------* * quantizer for the gain in the gain-shape coding of residual *---------------------------------------------------------------*/ float gainquant(/* (o) quantized gain value */ float in, /* (i) gain value */ float maxIn,/* (i) maximum of gain value */ int cblen, /* (i) number of quantization indices */ int *index /* (o) quantization index */ ){ int i, tindex; float minmeasure,measure, *cb, scale; /* ensure a lower bound on the scaling factor */ scale=maxIn; if (scale<0.1) { scale=(float)0.1; } /* select the quantization table */ if (cblen == 8) { cb = gain_sq3Tbl; } else if (cblen == 16) { cb = gain_sq4Tbl; } else { cb = gain_sq5Tbl; } /* select the best index in the quantization table */ minmeasure=10000000.0; tindex=0; for (i=0; i<cblen; i++) {
measure=(in-scale*cb[i])*(in-scale*cb[i]); if (measure<minmeasure) { tindex=i; minmeasure=measure; } } *index=tindex; /* return the quantized value */ return scale*cb[tindex]; } /*----------------------------------------------------------------* * decoder for quantized gains in the gain-shape coding of * residual *---------------------------------------------------------------*/ float gaindequant( /* (o) quantized gain value */ int index, /* (i) quantization index */ float maxIn,/* (i) maximum of unquantized gain */ int cblen /* (i) number of quantization indices */ ){ float scale; /* obtain correct scale factor */ scale=(float)fabs(maxIn); if (scale<0.1) { scale=(float)0.1; } /* select the quantization table and return the decoded value */ if (cblen==8) { return scale*gain_sq3Tbl[index]; } else if (cblen==16) { return scale*gain_sq4Tbl[index]; } else if (cblen==32) { return scale*gain_sq5Tbl[index]; } return 0.0; }
A.23. getCBvec.h
/****************************************************************** iLBC Speech Coder ANSI-C Source Code getCBvec.h Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #ifndef __iLBC_GETCBVEC_H #define __iLBC_GETCBVEC_H void getCBvec( float *cbvec, /* (o) Constructed codebook vector */ float *mem, /* (i) Codebook buffer */ int index, /* (i) Codebook index */ int lMem, /* (i) Length of codebook buffer */ int cbveclen/* (i) Codebook vector length */ ); #endifA.24. getCBvec.c
/****************************************************************** iLBC Speech Coder ANSI-C Source Code getCBvec.c Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #include "iLBC_define.h" #include "constants.h" #include <string.h> /*----------------------------------------------------------------* * Construct codebook vector for given index. *---------------------------------------------------------------*/ void getCBvec(
float *cbvec, /* (o) Constructed codebook vector */ float *mem, /* (i) Codebook buffer */ int index, /* (i) Codebook index */ int lMem, /* (i) Length of codebook buffer */ int cbveclen/* (i) Codebook vector length */ ){ int j, k, n, memInd, sFilt; float tmpbuf[CB_MEML]; int base_size; int ilow, ihigh; float alfa, alfa1; /* Determine size of codebook sections */ base_size=lMem-cbveclen+1; if (cbveclen==SUBL) { base_size+=cbveclen/2; } /* No filter -> First codebook section */ if (index<lMem-cbveclen+1) { /* first non-interpolated vectors */ k=index+cbveclen; /* get vector */ memcpy(cbvec, mem+lMem-k, cbveclen*sizeof(float)); } else if (index < base_size) { k=2*(index-(lMem-cbveclen+1))+cbveclen; ihigh=k/2; ilow=ihigh-5; /* Copy first noninterpolated part */ memcpy(cbvec, mem+lMem-k/2, ilow*sizeof(float)); /* interpolation */ alfa1=(float)0.2; alfa=0.0; for (j=ilow; j<ihigh; j++) { cbvec[j]=((float)1.0-alfa)*mem[lMem-k/2+j]+ alfa*mem[lMem-k+j];
alfa+=alfa1; } /* Copy second noninterpolated part */ memcpy(cbvec+ihigh, mem+lMem-k+ihigh, (cbveclen-ihigh)*sizeof(float)); } /* Higher codebook section based on filtering */ else { /* first non-interpolated vectors */ if (index-base_size<lMem-cbveclen+1) { float tempbuff2[CB_MEML+CB_FILTERLEN+1]; float *pos; float *pp, *pp1; memset(tempbuff2, 0, CB_HALFFILTERLEN*sizeof(float)); memcpy(&tempbuff2[CB_HALFFILTERLEN], mem, lMem*sizeof(float)); memset(&tempbuff2[lMem+CB_HALFFILTERLEN], 0, (CB_HALFFILTERLEN+1)*sizeof(float)); k=index-base_size+cbveclen; sFilt=lMem-k; memInd=sFilt+1-CB_HALFFILTERLEN; /* do filtering */ pos=cbvec; memset(pos, 0, cbveclen*sizeof(float)); for (n=0; n<cbveclen; n++) { pp=&tempbuff2[memInd+n+CB_HALFFILTERLEN]; pp1=&cbfiltersTbl[CB_FILTERLEN-1]; for (j=0; j<CB_FILTERLEN; j++) { (*pos)+=(*pp++)*(*pp1--); } pos++; } } /* interpolated vectors */ else {
float tempbuff2[CB_MEML+CB_FILTERLEN+1]; float *pos; float *pp, *pp1; int i; memset(tempbuff2, 0, CB_HALFFILTERLEN*sizeof(float)); memcpy(&tempbuff2[CB_HALFFILTERLEN], mem, lMem*sizeof(float)); memset(&tempbuff2[lMem+CB_HALFFILTERLEN], 0, (CB_HALFFILTERLEN+1)*sizeof(float)); k=2*(index-base_size- (lMem-cbveclen+1))+cbveclen; sFilt=lMem-k; memInd=sFilt+1-CB_HALFFILTERLEN; /* do filtering */ pos=&tmpbuf[sFilt]; memset(pos, 0, k*sizeof(float)); for (i=0; i<k; i++) { pp=&tempbuff2[memInd+i+CB_HALFFILTERLEN]; pp1=&cbfiltersTbl[CB_FILTERLEN-1]; for (j=0; j<CB_FILTERLEN; j++) { (*pos)+=(*pp++)*(*pp1--); } pos++; } ihigh=k/2; ilow=ihigh-5; /* Copy first noninterpolated part */ memcpy(cbvec, tmpbuf+lMem-k/2, ilow*sizeof(float)); /* interpolation */ alfa1=(float)0.2; alfa=0.0; for (j=ilow; j<ihigh; j++) { cbvec[j]=((float)1.0-alfa)* tmpbuf[lMem-k/2+j]+alfa*tmpbuf[lMem-k+j]; alfa+=alfa1; }
/* Copy second noninterpolated part */ memcpy(cbvec+ihigh, tmpbuf+lMem-k+ihigh, (cbveclen-ihigh)*sizeof(float)); } } }A.25. helpfun.h
/****************************************************************** iLBC Speech Coder ANSI-C Source Code helpfun.h Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #ifndef __iLBC_HELPFUN_H #define __iLBC_HELPFUN_H void autocorr( float *r, /* (o) autocorrelation vector */ const float *x, /* (i) data vector */ int N, /* (i) length of data vector */ int order /* largest lag for calculated autocorrelations */ ); void window( float *z, /* (o) the windowed data */ const float *x, /* (i) the original data vector */ const float *y, /* (i) the window */ int N /* (i) length of all vectors */ ); void levdurb( float *a, /* (o) lpc coefficient vector starting with 1.0 */ float *k, /* (o) reflection coefficients */ float *r, /* (i) autocorrelation vector */ int order /* (i) order of lpc filter */ ); void interpolate(
float *out, /* (o) the interpolated vector */ float *in1, /* (i) the first vector for the interpolation */ float *in2, /* (i) the second vector for the interpolation */ float coef, /* (i) interpolation weights */ int length /* (i) length of all vectors */ ); void bwexpand( float *out, /* (o) the bandwidth expanded lpc coefficients */ float *in, /* (i) the lpc coefficients before bandwidth expansion */ float coef, /* (i) the bandwidth expansion factor */ int length /* (i) the length of lpc coefficient vectors */ ); void vq( float *Xq, /* (o) the quantized vector */ int *index, /* (o) the quantization index */ const float *CB,/* (i) the vector quantization codebook */ float *X, /* (i) the vector to quantize */ int n_cb, /* (i) the number of vectors in the codebook */ int dim /* (i) the dimension of all vectors */ ); void SplitVQ( float *qX, /* (o) the quantized vector */ int *index, /* (o) a vector of indexes for all vector codebooks in the split */ float *X, /* (i) the vector to quantize */ const float *CB,/* (i) the quantizer codebook */ int nsplit, /* the number of vector splits */ const int *dim, /* the dimension of X and qX */ const int *cbsize /* the number of vectors in the codebook */ ); void sort_sq( float *xq, /* (o) the quantized value */ int *index, /* (o) the quantization index */ float x, /* (i) the value to quantize */ const float *cb,/* (i) the quantization codebook */ int cb_size /* (i) the size of the quantization codebook */ ); int LSF_check( /* (o) 1 for stable lsf vectors and 0 for
nonstable ones */ float *lsf, /* (i) a table of lsf vectors */ int dim, /* (i) the dimension of each lsf vector */ int NoAn /* (i) the number of lsf vectors in the table */ ); #endifA.26. helpfun.c
/****************************************************************** iLBC Speech Coder ANSI-C Source Code helpfun.c Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #include <math.h> #include "iLBC_define.h" #include "constants.h" /*----------------------------------------------------------------* * calculation of auto correlation *---------------------------------------------------------------*/ void autocorr( float *r, /* (o) autocorrelation vector */ const float *x, /* (i) data vector */ int N, /* (i) length of data vector */ int order /* largest lag for calculated autocorrelations */ ){ int lag, n; float sum; for (lag = 0; lag <= order; lag++) { sum = 0; for (n = 0; n < N - lag; n++) { sum += x[n] * x[n+lag]; } r[lag] = sum; }
} /*----------------------------------------------------------------* * window multiplication *---------------------------------------------------------------*/ void window( float *z, /* (o) the windowed data */ const float *x, /* (i) the original data vector */ const float *y, /* (i) the window */ int N /* (i) length of all vectors */ ){ int i; for (i = 0; i < N; i++) { z[i] = x[i] * y[i]; } } /*----------------------------------------------------------------* * levinson-durbin solution for lpc coefficients *---------------------------------------------------------------*/ void levdurb( float *a, /* (o) lpc coefficient vector starting with 1.0 */ float *k, /* (o) reflection coefficients */ float *r, /* (i) autocorrelation vector */ int order /* (i) order of lpc filter */ ){ float sum, alpha; int m, m_h, i; a[0] = 1.0; if (r[0] < EPS) { /* if r[0] <= 0, set LPC coeff. to zero */ for (i = 0; i < order; i++) { k[i] = 0; a[i+1] = 0; } } else { a[1] = k[0] = -r[1]/r[0]; alpha = r[0] + r[1] * k[0]; for (m = 1; m < order; m++){ sum = r[m + 1]; for (i = 0; i < m; i++){ sum += a[i+1] * r[m - i]; }
k[m] = -sum / alpha; alpha += k[m] * sum; m_h = (m + 1) >> 1; for (i = 0; i < m_h; i++){ sum = a[i+1] + k[m] * a[m - i]; a[m - i] += k[m] * a[i+1]; a[i+1] = sum; } a[m+1] = k[m]; } } } /*----------------------------------------------------------------* * interpolation between vectors *---------------------------------------------------------------*/ void interpolate( float *out, /* (o) the interpolated vector */ float *in1, /* (i) the first vector for the interpolation */ float *in2, /* (i) the second vector for the interpolation */ float coef, /* (i) interpolation weights */ int length /* (i) length of all vectors */ ){ int i; float invcoef; invcoef = (float)1.0 - coef; for (i = 0; i < length; i++) { out[i] = coef * in1[i] + invcoef * in2[i]; } } /*----------------------------------------------------------------* * lpc bandwidth expansion *---------------------------------------------------------------*/ void bwexpand( float *out, /* (o) the bandwidth expanded lpc coefficients */ float *in, /* (i) the lpc coefficients before bandwidth expansion */ float coef, /* (i) the bandwidth expansion factor */ int length /* (i) the length of lpc coefficient vectors */ ){ int i;
float chirp; chirp = coef; out[0] = in[0]; for (i = 1; i < length; i++) { out[i] = chirp * in[i]; chirp *= coef; } } /*----------------------------------------------------------------* * vector quantization *---------------------------------------------------------------*/ void vq( float *Xq, /* (o) the quantized vector */ int *index, /* (o) the quantization index */ const float *CB,/* (i) the vector quantization codebook */ float *X, /* (i) the vector to quantize */ int n_cb, /* (i) the number of vectors in the codebook */ int dim /* (i) the dimension of all vectors */ ){ int i, j; int pos, minindex; float dist, tmp, mindist; pos = 0; mindist = FLOAT_MAX; minindex = 0; for (j = 0; j < n_cb; j++) { dist = X[0] - CB[pos]; dist *= dist; for (i = 1; i < dim; i++) { tmp = X[i] - CB[pos + i]; dist += tmp*tmp; } if (dist < mindist) { mindist = dist; minindex = j; } pos += dim; } for (i = 0; i < dim; i++) { Xq[i] = CB[minindex*dim + i]; } *index = minindex;
} /*----------------------------------------------------------------* * split vector quantization *---------------------------------------------------------------*/ void SplitVQ( float *qX, /* (o) the quantized vector */ int *index, /* (o) a vector of indexes for all vector codebooks in the split */ float *X, /* (i) the vector to quantize */ const float *CB,/* (i) the quantizer codebook */ int nsplit, /* the number of vector splits */ const int *dim, /* the dimension of X and qX */ const int *cbsize /* the number of vectors in the codebook */ ){ int cb_pos, X_pos, i; cb_pos = 0; X_pos= 0; for (i = 0; i < nsplit; i++) { vq(qX + X_pos, index + i, CB + cb_pos, X + X_pos, cbsize[i], dim[i]); X_pos += dim[i]; cb_pos += dim[i] * cbsize[i]; } } /*----------------------------------------------------------------* * scalar quantization *---------------------------------------------------------------*/ void sort_sq( float *xq, /* (o) the quantized value */ int *index, /* (o) the quantization index */ float x, /* (i) the value to quantize */ const float *cb,/* (i) the quantization codebook */ int cb_size /* (i) the size of the quantization codebook */ ){ int i; if (x <= cb[0]) { *index = 0; *xq = cb[0]; } else { i = 0; while ((x > cb[i]) && i < cb_size - 1) { i++;
} if (x > ((cb[i] + cb[i - 1])/2)) { *index = i; *xq = cb[i]; } else { *index = i - 1; *xq = cb[i - 1]; } } } /*----------------------------------------------------------------* * check for stability of lsf coefficients *---------------------------------------------------------------*/ int LSF_check( /* (o) 1 for stable lsf vectors and 0 for nonstable ones */ float *lsf, /* (i) a table of lsf vectors */ int dim, /* (i) the dimension of each lsf vector */ int NoAn /* (i) the number of lsf vectors in the table */ ){ int k,n,m, Nit=2, change=0,pos; float tmp; static float eps=(float)0.039; /* 50 Hz */ static float eps2=(float)0.0195; static float maxlsf=(float)3.14; /* 4000 Hz */ static float minlsf=(float)0.01; /* 0 Hz */ /* LSF separation check*/ for (n=0; n<Nit; n++) { /* Run through a couple of times */ for (m=0; m<NoAn; m++) { /* Number of analyses per frame */ for (k=0; k<(dim-1); k++) { pos=m*dim+k; if ((lsf[pos+1]-lsf[pos])<eps) { if (lsf[pos+1]<lsf[pos]) { tmp=lsf[pos+1]; lsf[pos+1]= lsf[pos]+eps2; lsf[pos]= lsf[pos+1]-eps2; } else { lsf[pos]-=eps2; lsf[pos+1]+=eps2; } change=1;
} if (lsf[pos]<minlsf) { lsf[pos]=minlsf; change=1; } if (lsf[pos]>maxlsf) { lsf[pos]=maxlsf; change=1; } } } } return change; }A.27. hpInput.h
/****************************************************************** iLBC Speech Coder ANSI-C Source Code hpInput.h Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #ifndef __iLBC_HPINPUT_H #define __iLBC_HPINPUT_H void hpInput( float *In, /* (i) vector to filter */ int len, /* (i) length of vector to filter */ float *Out, /* (o) the resulting filtered vector */ float *mem /* (i/o) the filter state */ ); #endifA.28. hpInput.c
/****************************************************************** iLBC Speech Coder ANSI-C Source Code
hpInput.c Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #include "constants.h" /*----------------------------------------------------------------* * Input high-pass filter *---------------------------------------------------------------*/ void hpInput( float *In, /* (i) vector to filter */ int len, /* (i) length of vector to filter */ float *Out, /* (o) the resulting filtered vector */ float *mem /* (i/o) the filter state */ ){ int i; float *pi, *po; /* all-zero section*/ pi = &In[0]; po = &Out[0]; for (i=0; i<len; i++) { *po = hpi_zero_coefsTbl[0] * (*pi); *po += hpi_zero_coefsTbl[1] * mem[0]; *po += hpi_zero_coefsTbl[2] * mem[1]; mem[1] = mem[0]; mem[0] = *pi; po++; pi++; } /* all-pole section*/ po = &Out[0]; for (i=0; i<len; i++) { *po -= hpi_pole_coefsTbl[1] * mem[2]; *po -= hpi_pole_coefsTbl[2] * mem[3]; mem[3] = mem[2]; mem[2] = *po; po++;
} }A.29. hpOutput.h
/****************************************************************** iLBC Speech Coder ANSI-C Source Code hpOutput.h Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #ifndef __iLBC_HPOUTPUT_H #define __iLBC_HPOUTPUT_H void hpOutput( float *In, /* (i) vector to filter */ int len,/* (i) length of vector to filter */ float *Out, /* (o) the resulting filtered vector */ float *mem /* (i/o) the filter state */ ); #endifA.30. hpOutput.c
/****************************************************************** iLBC Speech Coder ANSI-C Source Code hpOutput.c Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #include "constants.h" /*----------------------------------------------------------------* * Output high-pass filter *---------------------------------------------------------------*/ void hpOutput(
float *In, /* (i) vector to filter */ int len,/* (i) length of vector to filter */ float *Out, /* (o) the resulting filtered vector */ float *mem /* (i/o) the filter state */ ){ int i; float *pi, *po; /* all-zero section*/ pi = &In[0]; po = &Out[0]; for (i=0; i<len; i++) { *po = hpo_zero_coefsTbl[0] * (*pi); *po += hpo_zero_coefsTbl[1] * mem[0]; *po += hpo_zero_coefsTbl[2] * mem[1]; mem[1] = mem[0]; mem[0] = *pi; po++; pi++; } /* all-pole section*/ po = &Out[0]; for (i=0; i<len; i++) { *po -= hpo_pole_coefsTbl[1] * mem[2]; *po -= hpo_pole_coefsTbl[2] * mem[3]; mem[3] = mem[2]; mem[2] = *po; po++; } }A.31. iCBConstruct.h
/****************************************************************** iLBC Speech Coder ANSI-C Source Code iCBConstruct.h Copyright (C) The Internet Society (2004). All Rights Reserved.
******************************************************************/ #ifndef __iLBC_ICBCONSTRUCT_H #define __iLBC_ICBCONSTRUCT_H void index_conv_enc( int *index /* (i/o) Codebook indexes */ ); void index_conv_dec( int *index /* (i/o) Codebook indexes */ ); void iCBConstruct( float *decvector, /* (o) Decoded vector */ int *index, /* (i) Codebook indices */ int *gain_index,/* (i) Gain quantization indices */ float *mem, /* (i) Buffer for codevector construction */ int lMem, /* (i) Length of buffer */ int veclen, /* (i) Length of vector */ int nStages /* (i) Number of codebook stages */ ); #endifA.32. iCBConstruct.c
/****************************************************************** iLBC Speech Coder ANSI-C Source Code iCBConstruct.c Copyright (C) The Internet Society (2004). All Rights Reserved. ******************************************************************/ #include <math.h> #include "iLBC_define.h" #include "gainquant.h" #include "getCBvec.h" /*----------------------------------------------------------------* * Convert the codebook indexes to make the search easier *---------------------------------------------------------------*/
void index_conv_enc( int *index /* (i/o) Codebook indexes */ ){ int k; for (k=1; k<CB_NSTAGES; k++) { if ((index[k]>=108)&&(index[k]<172)) { index[k]-=64; } else if (index[k]>=236) { index[k]-=128; } else { /* ERROR */ } } } void index_conv_dec( int *index /* (i/o) Codebook indexes */ ){ int k; for (k=1; k<CB_NSTAGES; k++) { if ((index[k]>=44)&&(index[k]<108)) { index[k]+=64; } else if ((index[k]>=108)&&(index[k]<128)) { index[k]+=128; } else { /* ERROR */ } } } /*----------------------------------------------------------------* * Construct decoded vector from codebook and gains. *---------------------------------------------------------------*/ void iCBConstruct( float *decvector, /* (o) Decoded vector */ int *index, /* (i) Codebook indices */ int *gain_index,/* (i) Gain quantization indices */ float *mem, /* (i) Buffer for codevector construction */ int lMem, /* (i) Length of buffer */ int veclen, /* (i) Length of vector */ int nStages /* (i) Number of codebook stages */ ){ int j,k;
float gain[CB_NSTAGES]; float cbvec[SUBL]; /* gain de-quantization */ gain[0] = gaindequant(gain_index[0], 1.0, 32); if (nStages > 1) { gain[1] = gaindequant(gain_index[1], (float)fabs(gain[0]), 16); } if (nStages > 2) { gain[2] = gaindequant(gain_index[2], (float)fabs(gain[1]), 8); } /* codebook vector construction and construction of total vector */ getCBvec(cbvec, mem, index[0], lMem, veclen); for (j=0;j<veclen;j++){ decvector[j] = gain[0]*cbvec[j]; } if (nStages > 1) { for (k=1; k<nStages; k++) { getCBvec(cbvec, mem, index[k], lMem, veclen); for (j=0;j<veclen;j++) { decvector[j] += gain[k]*cbvec[j]; } } } }