Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 3862

Common Presence and Instant Messaging (CPIM): Message Format

Pages: 30
Proposed Standard
Errata

Top   ToC   RFC3862 - Page 1
Network Working Group                                           G. Klyne
Request for Comments: 3862                                  Nine by Nine
Category: Standards Track                                      D. Atkins
                                                        IHTFP Consulting
                                                             August 2004


      Common Presence and Instant Messaging (CPIM): Message Format

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2004).

Abstract

This memo defines the MIME content type 'Message/CPIM', a message format for protocols that conform to the Common Profile for Instant Messaging (CPIM) specification.
Top   ToC   RFC3862 - Page 2

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Background . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Goals . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4. Terminology and Conventions . . . . . . . . . . . . . . 5 2. Overall Message Structure . . . . . . . . . . . . . . . . . . 5 2.1. Message/CPIM MIME Headers . . . . . . . . . . . . . . . 6 2.2. Message Headers . . . . . . . . . . . . . . . . . . . . 6 2.3. Character Escape Mechanism . . . . . . . . . . . . . . . 8 2.3.1. Escape Mechanism Usage . . . . . . . . . . . . . 8 2.4. Message Content . . . . . . . . . . . . . . . . . . . . 9 3. Message Header Syntax . . . . . . . . . . . . . . . . . . . . 10 3.1. Header Names . . . . . . . . . . . . . . . . . . . . . . 10 3.2. Header Value . . . . . . . . . . . . . . . . . . . . . . 10 3.3. Language tagging . . . . . . . . . . . . . . . . . . . . 10 3.4. Namespaces for Header Name Extensibility . . . . . . . . 11 3.5. Mandatory-to-Recognize Features . . . . . . . . . . . . 13 3.6. Collected Message Header Syntax . . . . . . . . . . . . 14 4. Header Definitions . . . . . . . . . . . . . . . . . . . . . . 16 4.1. The 'From' Header . . . . . . . . . . . . . . . . . . . 16 4.2. The 'To' Header . . . . . . . . . . . . . . . . . . . . 17 4.3. The 'cc' Header . . . . . . . . . . . . . . . . . . . . 18 4.4. The 'DateTime' Header . . . . . . . . . . . . . . . . . 18 4.5. The 'Subject' Header . . . . . . . . . . . . . . . . . . 19 4.6. The 'NS' Header . . . . . . . . . . . . . . . . . . . . 20 4.7. The 'Require' Header . . . . . . . . . . . . . . . . . . 20 5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1. An Example Message/CPIM Message . . . . . . . . . . . . 21 5.2. An Example Esing MIME multipart/signed . . . . . . . . . 22 6. Application Design Considerations . . . . . . . . . . . . . . 22 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 23 7.1. Registration for Message/CPIM Content Type . . . . . . . 24 7.2. Registration for urn:ietf:params:cpim-headers . . . . . 25 8. Internationalization Considerations . . . . . . . . . . . . . 26 9. Security Considerations . . . . . . . . . . . . . . . . . . . 26 10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 26 11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 26 11.1. Normative References. . . . . . . . . . . . . . . . . . 26 11.2. Informative References. . . . . . . . . . . . . . . . . 27 12. Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 29 13. Full Copyright Statement . . . . . . . . . . . . . . . . . . . 30
Top   ToC   RFC3862 - Page 3

1. Introduction

This memo defines the MIME content type 'Message/CPIM', a message format for protocols that conform to the Common Profile for Instant Messaging (CPIM) specification. This is a common message format for CPIM-compliant messaging protocols [26]. While being prepared for CPIM, this format is quite general and may be reused by other applications with similar requirements. Application specifications that adopt this as a base format should address the questions raised in section 6 of this document.

1.1. Motivation

The Common Profile for Instant Messaging (CPIM) [26] specification defines a number of operations to be supported and criteria to be satisfied for interworking between diverse instant messaging protocols. The intent is to allow a variety of different protocols interworking through gateways to support cross-protocol messaging that meets the requirements of RFC 2779 [20]. To adequately meet the security requirements of RFC 2779, a common message format is needed so that end-to-end signatures and encryption may be applied. This document describes a common canonical message format that must be used by any CPIM-compliant message transfer protocol, whereby signatures are calculated for end-to-end security. The design of this message format is intended to enable security to be applied, while itself remaining agnostic about the specific security mechanisms that may be appropriate for a given application. For CPIM instant messaging and presence, specific security protocols are specified by the CPIM instant messaging [26] and CPIM presence [27] specifications. Also note that the message format described here is not itself a MIME data format, although it may be contained within a MIME object, and may contain MIME objects. See section 2 for more details.

1.2. Background

RFC 2779 requires that an instant message can carry a MIME payload [1][2]; thus some level of support for MIME will be a common element of any CPIM compliant protocol. Therefore it seems reasonable that a common message format should use a RFC2822/MIME-like syntax [9], as protocol implementations must already contain code to parse this. Unfortunately, using pure RFC2822/MIME can be problematic:
Top   ToC   RFC3862 - Page 4
   o  Irregular lexical structure -- RFC2822/MIME allows a number of
      optional encodings and multiple ways to encode a particular value.
      For example, RFC2822/MIME comments may be encoded in multiple
      ways.  For security purposes, a single encoding method must be
      defined as a basis for computing message digest values.  Protocols
      that transmit data in a different format would otherwise lose
      information needed to verify a signature.

   o  Weak internationalization -- RFC2822/MIME requires header values
      to use 7-bit ASCII, which is problematic for encoding
      international character sets.  Mechanisms for language tagging in
      RFC2822/MIME headers [16] are awkward to use and have limited
      applicability.

   o  Mutability -- addition, modification or removal of header
      information.  Because it is not explicitly forbidden, many
      applications that process MIME content (e.g., MIME gateways)
      rebuild or restructure messages in transit.  This obliterates most
      attempts at achieving security (e.g., signatures), leaving
      receiving applications unable to verify the data received.

   o  Message and payload separation -- there is not a clear syntactic
      distinction between message metadata and message content.

   o  Limited extensibility.  (X-headers are problematic because they
      may not be standardized; this leads to situations where a header
      starts out as experimental but then finds widespread application,
      resulting in a common usage that cannot be standardized.)

   o  No support for structured information (text string values only).

   o  Some processors impose line length limitations.

   The message format defined by this memo overcomes some of these
   difficulties by having a simplified syntax that is generally
   compatible with the format accepted by RFC2822/MIME parsers and
   having a stricter syntax.  It also defines mechanisms to support some
   desired features not covered by the RFC2822/MIME format
   specifications.

1.3. Goals

This specification aims to satisfy the following goals: o a securable end-to-end format for a message (a canonical message format to serve as a basis for signature calculation, rather than specified security mechanisms).
Top   ToC   RFC3862 - Page 5
   o  independence of any specific application

   o  capability of conveying a range of different address types

   o  assumption of an 8-bit clean message-transfer protocol

   o  evolvable:  extensible by multiple parties

   o  a clear separation of message metadata from message content

   o  a simple, regular, easily parsed syntax

   o  a compact, low-overhead format for simple messages

1.4. Terminology and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [4]. NOTE: Comments like this provide additional nonessential information about the rationale behind this document. Such information is not needed for building a conformant implementation, but may help those who wish to understand the design in greater depth.

2. Overall Message Structure

The CPIM message format encapsulates arbitrary MIME message content, together with message- and content-related metadata. This can optionally be signed or encrypted using MIME security multiparts in conjunction with an appropriate security scheme. A Message/CPIM object is a two-part entity, where the first part contains the message metadata and the second part is the message content. The two parts are separated from the enclosing MIME header fields and also from each other by blank lines. The message metadata header information obeys more stringent syntax rules than the MIME message content headers that may be carried within the message. A complete message looks something like this: m: Content-type: Message/CPIM s: h: (message-metadata-headers) s: e: (encapsulated MIME message-body)
Top   ToC   RFC3862 - Page 6
   The end of the message body is defined by the framing mechanism of
   the protocol used.  The tags 'm:', 's:', 'h:', 'e:', and 'x:' are not
   part of the message format and are used here to indicate the
   different parts of the message, thus:

      m:  MIME headers for the overall message
      s:  a blank separator line
      h:  message headers
      e:  encapsulated MIME object containing the message content
      x:  MIME security multipart message wrapper

2.1. Message/CPIM MIME Headers

The message MIME headers identify the message as a CPIM-formatted message. The only required MIME header is: Content-type: Message/CPIM Other MIME headers may be used as appropriate for the message transfer environment.

2.2. Message Headers

Message headers carry information relevant to the end-to-end transfer of the message from sender to receiver. Message headers MUST NOT be modified, reformatted or reordered in transit, but in some circumstances they MAY be examined by a CPIM message transfer protocol. The message headers serve a similar purpose to RFC 2822 message headers in email [9], and have a similar but restricted allowable syntax. The basic header syntax is: Key: Value where "Key" is a header name and "Value" is the corresponding header value. The following considerations apply: o The entire header MUST be contained on a single line. The line terminator is not considered part of the header value.
Top   ToC   RFC3862 - Page 7
   o  Only one header per line.  Multiple headers MUST NOT be included
      on a single line.

   o  Processors SHOULD NOT impose any line-length limitations.

   o  There MUST NOT be any whitespace at the beginning or end of a
      line.

   o  UTF-8 character encoding [13] MUST be used throughout.

   o  The character sequence CR,LF (13,10) MUST be used to terminate
      each line.

   o  The header name contains only US-ASCII characters (see section 3.1
      and section 3.6 for the specific syntax).

   o  The header MUST NOT contain any control characters (0-31).  If a
      header value needs to represent control characters then the escape
      mechanism described below MUST be used.

   o  There MUST be a single space character (32) following the header
      name and colon.

   o  Multiple headers using the same key (header name) are allowed.
      (Specific header semantics may dictate only one occurrence of any
      particular header.)

   o  Header names MUST match exactly (i.e., "From:" and "from:" are
      different headers).

   o  If a header name is not recognized or not understood, the header
      should be ignored.  But see also the "Require:" header (section
      4.7).

   o  Interpretation (e.g., equivalence) of header values is dependent
      on the particular header definition.  Message processors MUST
      preserve all octets of all headers (both name and value) exactly.

   o  Message processors MUST NOT change the order of message headers.

   Examples:

      To: Pooh Bear <im:pooh@100akerwood.com>
      From: <im:piglet@100akerwood.com>
      DateTime: 2001-02-02T10:48:54-05:00
Top   ToC   RFC3862 - Page 8

2.3. Character Escape Mechanism

This mechanism MUST be used to code control characters in a header, having Unicode code points in the range U+0000 to U+001f or U+007f. (Rather than invent something completely new, the escape mechanism has been adopted from that used by the Java programming language.) Note that the escape mechanism is applied to a UCS-2 character, NOT to the octets of its UTF-8 coding. Mapping from/to UTF-8 coding is performed without regard for escape sequences or character coding. (The header syntax is defined so that octets corresponding to control characters other than CR and LF do not appear in the output.) An arbitrary UCS-2 character is escaped using the form: \uxxxx where: \ is U+005c (backslash) u is U+0075 (lower case letter U) xxxx is a sequence of exactly four hexadecimal digits (0-9, a-f or A-F) or (U+0030-U+0039, U+0041-U+0046, or U+0061-0066) The hexadecimal number 'xxxx' is the UCS code-point value of the escaped character. Further, the following special sequences introduced by "\" are used: \\ for \ (backslash, U+005c) \" for " (double quote, U+0022) \' for ' (single quote, U+0027) \b for backspace (U+0008) \t for tab (U+0009) \n for linefeed (U+000a) \r for carriage return (U+000d)

2.3.1. Escape Mechanism Usage

When generating messages conformant with this specification: o The special sequences listed above MUST be used to encode any occurrence of the following characters that appear anywhere in a header: backslash (U+005c), backspace (U+0008), tab (U+0009), linefeed (U+000a) or carriage return (U+000d).
Top   ToC   RFC3862 - Page 9
   o  The special sequence \" MUST be used for any occurrence of a
      double quote (U+0022) that appears within a string delimited by
      double quotes.

   o  The special sequence \' MUST be used for any occurrence of a
      single quote (U+0027) that appears within a string delimited by
      single quotes.

   o  Single- or double-quote characters that delimit a string value
      MUST NOT be escaped.

   o  The general escape sequence \uxxxx MUST be used for any other
      control character (U+0000 to U+0007, U+000b to U+000c, U+000e to
      U+001f or u+007f) that appears anywhere in a header.

   o  All other characters MUST NOT be represented using an escape
      sequence.

   When processing a message based on this specification, the escape
   sequence usage described above MUST be recognized.

   Further, any other occurrence of an escape sequence described above
   SHOULD be recognized and treated as an occurrence of the
   corresponding Unicode character.

   Any backslash ('\') character SHOULD be interpreted as introducing an
   escape sequence.  Any unrecognized escape sequence SHOULD be treated
   as an instance of the character following the backslash character.
   An isolated backslash that is the last character of a header SHOULD
   be ignored.

2.4. Message Content

The final section of a Message/CPIM is the MIME-encapsulated message content, which follows standard MIME formatting rules [1][2]. The MIME content headers MUST include at least a Content-Type header. The content may be any MIME type. Example: e: Content-Type: text/plain; charset=utf-8 e: Content-ID: <1234567890@foo.com> e: e: This is my encapsulated text message content
Top   ToC   RFC3862 - Page 10

3. Message Header Syntax

A header contains two parts, a name and a value, separated by a colon character (':') and single space (32). It is terminated by the sequence CR,LF (13,10). Headers use UTF-8 character encoding throughout, per RFC 3629 [13]. NOTE: in the descriptions that follow, header field names and other specified text values MUST be used exactly as given, using exactly the indicated upper- and lower- case letters. In this respect, the ABNF usage differs from RFC 2234 [6].

3.1. Header Names

The header name is a sequence of US-ASCII characters, excluding control, SPACE or separator characters. Use of the character "." in a header name is reserved for a namespace prefix separator. Separator characters are: SEPARATORS = "(" / ")" / "<" / ">" / "@" / "," / ";" / ":" / "\" / DQUOTE / "/" / "[" / "]" / "?" / "=" / "{" / "}" / SP NOTE: The range of allowed characters was determined by examination of HTTP and RFC 2822 header name formats and choosing the more restricted. The intent is to allow CPIM headers to follow a syntax that is compatible with the allowed syntax for both RFC 2822 [9] and HTTP [18] (including HTTP-derived protocols such as SIP [21]).

3.2. Header Value

A header value has a structure defined by the corresponding header specification. Implementations that use a particular header must adhere to the format and usage rules thus defined when creating or processing a message containing that header. The other general constraints on header formats MUST also be followed (one line, UTF-8 character encoding, no control characters, etc.)

3.3. Language tagging

Full internationalization of a protocol requires that a language can be indicated for any human-readable text [15][7].
Top   ToC   RFC3862 - Page 11
   A message header may indicate a language for its value by including
   ';lang=tag' after the header name and colon, where 'tag' is a
   language identifying token per RFC 3066 [10].

   Example:

      Subject:;lang=fr Objet de message

   If the language parameter is not applied a header, any human-readable
   text is assumed to use the language identified as 'i-default' [7].

3.4. Namespaces for Header Name Extensibility

NOTE: This section defines a framework for header extensibility whose use is optional. If no header extensions are allowed by an application then these structures may never be used. An application that uses this message format is expected to define the set of headers that are required and allowed for that application. This section defines a header extensibility framework that can be used with any application. The extensibility framework is based on that provided for XML [22] by XML namespaces [23]. All headers are associated with a "namespace", which is in turn associated with a globally unique URI. Within a particular message instance, header names are associated with a particular namespace through the presence or absence of a namespace prefix, which is a leading part of the header name followed by a period ("."); e.g., prefix.header-name: header-value Here, 'prefix' is the header name prefix, 'header-name' is the header name within the namespace associated with 'prefix', and 'header- value' is the value for this header. header-name: header-value In this case, the header name prefix is absent, and the given 'header-name' is associated with a default namespace. The Message/CPIM media type registration designates a default namespace for any headers that are not more explicitly associated with any namespace. In most cases, this default namespace is all that is needed.
Top   ToC   RFC3862 - Page 12
   A namespace is identified by a URI.  In this usage, the URI is used
   simply as a globally unique identifier, and there is no requirement
   that it can be used for any other purpose.  Any legal globally unique
   URI MAY be used to identify a namespace.  (By "globally unique", we
   mean constructed according to some set of rules so that it is
   reasonable to expect that nobody else will use the same URI for a
   different purpose.)  A URI used as an identifier MUST be a full
   absolute-URI, per RFC 2396 [8].  (Relative URIs and URI-references
   containing fragment identifiers MUST NOT be used for this purpose.)

   Within a specific message, an 'NS' header is used to declare a
   namespace prefix and associate it with a URI that identifies a
   namespace.  Following that declaration, within the scope of that
   message, the combination of namespace prefix and header name
   indicates a globally unique identifier for the header (consisting of
   the namespace URI and header name).

   For example:

      NS: MyFeatures <mid:MessageFeatures@id.foo.com>
      MyFeatures.WackyMessageOption: Use-silly-font

   This defines a namespace prefix 'MyFeatures' associated with the
   namespace identifier 'mid:MessageFeatures@id.foo.com'.  Subsequently,
   the prefix indicates that the WackyMessageOption header name
   referenced is associated with the identified namespace.

   A namespace prefix declaration MUST precede any use of that prefix.

   With the exception of any application-specific predefined namespace
   prefixes (see section 6), a namespace prefix is strictly local to the
   message in which it occurs.  The actual prefix used has no global
   significance.  This means that the headers:

      xxx.name: value
      yyy.name: value

   in two different messages may have exactly the same effect if
   namespace prefixes 'xxx' and 'yyy' are associated with the same
   namespace URI.  Thus the following have exactly the same meaning:

      NS: acme <http://id.acme.widgets/wily-headers/>
      acme.runner-trap: set

   and

      NS: widget <http://id.acme.widgets/wily-headers/>
      widget.runner-trap: set
Top   ToC   RFC3862 - Page 13
   A 'NS' header without a header prefix name specifies a default
   namespace for subsequent headers; that is a namespace that is
   associated with header names not having a prefix.  For example:

      NS: <http://id.acme.widgets/wily-headers/>
      runner-trap: set

   has the same meaning as the previous examples.

   This framework allows different implementers to create extension
   headers without the worry of header name duplication; each defines
   headers within their own namespace.

3.5. Mandatory-to-Recognize Features

Sometimes it is necessary for the sender of a message to insist that some functionality is understood by the recipient. By using the mandatory-to-recognize indicator, a sender is notifying the recipient that it MUST understand the named header or feature in order to properly understand the message. A header or feature is indicated as being mandatory-to-recognize by a 'Require:' header. For example: Require: MyFeatures.VitalMessageOption MyFeatures.VitalMessageOption: Confirmation-requested Multiple required header names may be listed in a single 'Require' header, separated by commas. NOTE: Indiscriminate use of 'Require:' headers could harm interoperability. It is suggested that any implementer who defines required headers also publish the header specifications so other implementations can successfully interoperate. The 'Require:' header MAY also be used to indicate that some non- header semantics must be implemented by the recipient, even when it does not appear as a header. For example: Require: Locale.MustRenderKanji might be used to indicate that message content includes characters from the Kanji repertoire, which must be rendered for proper understanding of the message. In this case, the header name is just a token (using header name syntax and namespace association) that indicates some desired behaviour.
Top   ToC   RFC3862 - Page 14

3.6. Collected Message Header Syntax

The following description of message header syntax uses ABNF, per RFC 2234 [6]. Most of this syntax can be interpreted as defining UCS character sequences or UTF-8 octet sequences. Alternate productions at the end allow for either interpretation. NOTE: Specified text values MUST be used as given, using exactly the indicated upper- and lower-case letters. In this respect, the ABNF usage here differs from RFC 2234 [6]. Collected syntax: Header = Header-name ":" *( ";" Parameter ) SP Header-value CRLF Header-name = [ Name-prefix "." ] Name Name-prefix = Name Parameter = Lang-param / Ext-param Lang-param = "lang=" Language-tag Ext-param = Param-name "=" Param-value Param-name = Name Param-value = Token / Number / String Header-value = *HEADERCHAR Name = 1*NAMECHAR Token = 1*TOKENCHAR Number = 1*DIGIT String = DQUOTE *( Str-char / Escape ) DQUOTE Str-char = %x20-21 / %x23-5B / %x5D-7E / UCS-high Escape = "\" ( "u" 4(HEXDIG) ; UCS codepoint / "b" ; Backspace / "t" ; Tab / "n" ; Linefeed / "r" ; Return / DQUOTE ; Double quote / "'" ; Single quote / "\" ) ; Backslash Formal-name = 1*( Token SP ) / String URI = <defined as absolute-URI by RFC 2396> Language-tag = <defined by RFC 3066> ; Any UCS character except CTLs, or escape HEADERCHAR = UCS-no-CTL / Escape
Top   ToC   RFC3862 - Page 15
                ; Any US-ASCII char except ".", CTLs or SEPARATORS:
   NAMECHAR     = %x21 / %x23-27 / %x2a-2b / %x2d
                / %x5e-60 / %x7c / %x7e
                / ALPHA / DIGIT

                ; Any UCS char except CTLs or SEPARATORS:
   TOKENCHAR    = NAMECHAR / "." / UCS-high

   SEPARATORS   = "(" / ")" / "<" / ">" / "@"    ; 28/29/3c/3e/40
                / "," / ";" / ":" / "\" / DQUOTE ; 2c/3b/3a/5c/22
                / "/" / "[" / "]" / "?" / "="    ; 2f/5b/5d/3f/3d
                / "{" / "}" / SP                 ; 7b/7d/20
   CTL          = <Defined by RFC 2234 -- %x0-%x1f, %x7f>
   CRLF         = <Defined by RFC 2234 -- CR, LF>
   SP           = <defined by RFC 2234 -- %x20>
   DIGIT        = <defined by RFC 2234 -- '0'-'9'>
   HEXDIG       = <defined by RFC 2234 -- '0'-'9', 'A'-'F', 'a'-'f'>
   ALPHA        = <defined by RFC 2234 -- 'A'-'Z', 'a'-'z'>
   DQUOTE       = <defined by RFC 2234 -- %x22>

   To interpret the syntax in a general UCS character environment, use
   the following productions:

   UCS-no-CTL   = %x20-7e / UCS-high
   UCS-high     = %x80-7fffffff

   To interpret the syntax as defining UTF-8 coded octet sequences, use
   the following productions:

   UCS-no-CTL   = UTF8-no-CTL
   UCS-high     = UTF8-multi
   UTF8-no-CTL  = %x20-7e / UTF8-multi
   UTF8-multi   = %xC0-DF %x80-BF
                / %xE0-EF %x80-BF %x80-BF
                / %xF0-F7 %x80-BF %x80-BF %x80-BF
                / %xF8-FB %x80-BF %x80-BF %x80-BF %x80-BF
                / %xFC-FD %x80-BF %x80-BF %x80-BF %x80-BF %x80-BF

   NOTE: the above syntax comes from an older version of UTF-8, and is
   included for compatibility with UTF-8 software based on the earlier
   specifications.  Applications generating this message format SHOULD
   generate UTF-8 that matches the more restricted specification in RFC
   3629 [13].
Top   ToC   RFC3862 - Page 16

4. Header Definitions

This specification defines a core set of headers that are available for use by applications: an application specification must indicate the headers that may be used, those that must be recognized and those that must appear in any message (see section 6). The header definitions that follow fall into two categories: a) those that are part of the CPIM format extensibility framework, and b) those that have been based on similar headers in RFC 2822 [9], specified here with corresponding semantics. Header names and syntax are described without a namespace qualification, and the associated namespace URI is listed as part of the header specification. Any of the namespace associations already mentioned (implied default namespace, explicit default namespace or implied namespace prefix or explicit namespace prefix declaration) may be used to identify the namespace. all headers defined here are associated with the namespace uri <urn:ietf:params:cpim-headers:>, which is defined according to [12]. NOTE: Header names and other text MUST be used as given, using exactly the indicated upper- and lower-case letters. In this respect, the ABNF usage here differs from RFC 2234 [6].

4.1. The 'From' Header

Indicates the sender of a message. Header name: From Namespace URI: <urn:ietf:params:cpim-headers:> Syntax: (see also section 3.6) From-header = "From" ": " [ Formal-name ] "<" URI ">" ; "From" is case-sensitive Description: Indicates the sender or originator of a message.
Top   ToC   RFC3862 - Page 17
      If present, the 'Formal-name' identifies the person or "real
      world" name for the originator.

      The URI indicates an address for the originator.

   Examples:

      From: Winnie the Pooh <im:pooh@100akerwood.com>

      From: <im:tigger@100akerwood.com>

4.2. The 'To' Header

Specifies an intended recipient of a message. Header name: To Namespace URI: <urn:ietf:params:cpim-headers:> Syntax: (see also section 3.6) To-header = "To" ": " [ Formal-name ] "<" URI ">" ; "To" is case-sensitive Description: Indicates the recipient of a message. If present, the 'Formal-name' identifies the person or "real world" name for the recipient. The URI indicates an address for the recipient. Multiple recipients may be indicated by including multiple 'To' headers. Examples: To: Winnie the Pooh <im:pooh@100akerwood.com> To: <im:tigger@100akerwood.com>
Top   ToC   RFC3862 - Page 18

4.3. The 'cc' Header

Specifies a non-primary recipient ("courtesy copy") for a message. Header name: cc Namespace URI: <urn:ietf:params:cpim-headers:> Syntax: (see also section 3.6) Cc-header = "cc" ": " [ Formal-name ] "<" URI ">" ; "cc" is case-sensitive Description: Indicates a courtesy copy recipient of a message. If present, the 'Formal-name' identifies the person or "real world" name for the recipient. The URI indicates an address for the recipient. Multiple courtesy copy recipients may be indicated by including multiple 'cc' headers. Examples: cc: Winnie the Pooh <im:pooh@100akerwood.com> cc: <im:tigger@100akerwood.com>

4.4. The 'DateTime' Header

Specifies the date and time a message was sent. Header name: DateTime Namespace URI: <urn:ietf:params:cpim-headers:> Syntax: (see also section 3.6) DateTime-header = "DateTime" ": " date-time ; "DateTime" is case-sensitive
Top   ToC   RFC3862 - Page 19
      (where the syntax of 'date-time' is a profile of ISO8601 [24]
      defined in "Date and Time on the Internet" [11])

   Description:
      The 'DateTime' header supplies the date and time at which the
      sender sent the message.

      One purpose of the this header is to provide for protection
      against a replay attack, by allowing the recipient to know when
      the message was intended to be sent.  The value of the date header
      is the senders's current time when the message was transmitted,
      using ISO 8601 [24] date and time format as profiled in "Date and
      Time on the Internet: Timestamps" [11].

   Example:

      DateTime: 2001-02-01T12:16:49-05:00

4.5. The 'Subject' Header

Contains a description of the topic of the message. Header name: Subject Namespace URI: <urn:ietf:params:cpim-headers:> Syntax: (see also section 3.6) Subject-header = "Subject" ":" [ ";" Lang-param ] SP *HEADERCHAR ; "Subject" is case-sensitive Description: The 'Subject' header supplies the sender's description of the topic or content of the message. The sending agent should specify the language parameter if it has any reasonable knowledge of the language used by the sender to indicate the message subject. Example: Subject:;lang=en Eeyore's feeling very depressed today
Top   ToC   RFC3862 - Page 20

4.6. The 'NS' Header

Declare a local namespace prefix. Header name: NS Namespace URI: <urn:ietf:params:cpim-headers:> Syntax: (see also section 3.6) NS-header = "NS" ": " [ Name-prefix ] "<" URI ">" ; "NS" is case-sensitive Description: Declares a namespace prefix that may be used in subsequent header names. See section 3.4 for more details. Example: NS: MyAlias <mid:MessageFeatures@id.foo.com> MyAlias.MyHeader: private-extension-data

4.7. The 'Require' Header

Specify a header or feature that must be implemented by the receiver for correct message processing. Header name: Require Namespace URI: <urn:ietf:params:cpim-headers:> Syntax: (see also section 3.6) Require-header = "Require" ": " Header-name *( "," Header-name ) ; "Require" is case-sensitive Description: Indicates a header or feature that must be implemented or understood by the receiver for correct message processing. See section 3.5 for more details.
Top   ToC   RFC3862 - Page 21
      Note that the required header or feature does not have to be used
      in the message, but for brevity it is recommended that an
      implementation does not issue the 'Required' header for unused
      features.

   Example:

      Require: MyAlias.VitalHeader

5. Examples

The examples in the following sections use the per-line tags below to indicate different parts of the overall message format: m: MIME headers for the overall message s: a blank separator line h: message headers e: encapsulated MIME object containing the message content x: MIME security multipart message wrapper The following examples also assume <urn:ietf:params:cpim-headers:> is the implied default namespace for the application.

5.1. An Example Message/CPIM Message

The following example shows a Message/CPIM message: m: Content-type: Message/CPIM s: h: From: MR SANDERS <im:piglet@100akerwood.com> h: To: Depressed Donkey <im:eeyore@100akerwood.com> h: DateTime: 2000-12-13T13:40:00-08:00 h: Subject: the weather will be fine today h: Subject:;lang=fr beau temps prevu pour aujourd'hui h: NS: MyFeatures <mid:MessageFeatures@id.foo.com> h: Require: MyFeatures.VitalMessageOption h: MyFeatures.VitalMessageOption: Confirmation-requested h: MyFeatures.WackyMessageOption: Use-silly-font s: e: Content-type: text/xml; charset=utf-8 e: Content-ID: <1234567890@foo.com> e: e: <body> e: Here is the text of my message. e: </body>
Top   ToC   RFC3862 - Page 22

5.2. An Example Esing MIME multipart/signed

In order to secure a Message/CPIM, an application or implementation may use RFC 1847 [14], and some appropriate security protocols (e.g., S/MIME [19] or openPGP [17]), and cryptographic scheme. Using S/MIME [19] and pkcs7, the above message would look like this: x: Content-Type: multipart/signed; boundary=next; micalg=sha1; protocol=application/pkcs7-signature x: x: --next m: Content-Type: Message/CPIM s: h: From: MR SANDERS <im:piglet@100akerwood.com> h: To: Dopey Donkey <im:eeyore@100akerwood.com> h: DateTime: 2000-12-13T13:40:00-08:00 h: Subject: the weather will be fine today h: Subject:;lang=fr beau temps prevu pour aujourd'hui h: NS: MyFeatures <mid:MessageFeatures@id.foo.com> h: Require: MyFeatures.VitalMessageOption h: MyFeatures.VitalMessageOption: Confirmation-requested h: MyFeatures.WackyMessageOption: Use-silly-font s: e: Content-type: text/xml; charset=utf-8 e: Content-ID: <1234567890@foo.com> e: e: <body> e: Here is the text of my message. e: </body> x: --next x: Content-Type: application/pkcs7-signature x: x: (signature stuff) : x: --next--

6. Application Design Considerations

As defined, the 'Message/CPIM' content type uses a default namespace URI 'urn:ietf:params-cpim-headers:', and does not define any other implicit namespace prefixes. Applications that have different requirements should define and register a different MIME media type, specify the required default namespace URI and define any implied namespace prefixes as part of the media type specification.
Top   ToC   RFC3862 - Page 23
   Applications using this specification must also specify:

   o  all headers that must be recognized by implementations of the
      application

   o  any headers that must be present in all messages created by that
      application.

   o  any headers that may appear more than once in a message, and how
      they are to be interpreted (e.g., how to interpret multiple
      'Subject:' headers with different language parameter values).

   o  Security mechanisms and crytography schemes to be used with the
      application, including any mandatory-to-implement security
      provisions.

   The goal of providing a definitive message format to which security
   mechanisms can be applied places some constraints on the design of
   applications that use this message format:

   o  Within a network of message transfer agents, an intermediate
      gateway MUST NOT change the Message/CPIM content in any way.  This
      implies that headers cannot be changed or reordered, transfer
      encoding cannot be changed, languages cannot be changed, etc.

   o  Because Message/CPIM messages are immutable, any transfer agent
      that wants to modify the message should create a new Message/CPIM
      message with the modified header and with the original message as
      its content.  (This approach is similar to real-world bill-of-
      lading handling, where each person in the chain attaches a new
      sheet to the message.  Then anyone can validate the original
      message and see what has changed and who changed it by following
      the trail of amendments.  Another metaphor is including the old
      message in a new envelope.)

   In chosing security mechanisms for an applications, the following IAB
   survey documents may be helpful:

   o  Security Mechanisms for the Internet [28]

   o  A Survey of Authentication Mechanisms [29].

7. IANA Considerations

This memo calls for two new IANA registrations: o A new MIME content-type value, Message/CPIM, per RFC 2048 [3]. The registration template can be found in section 7.1 below.
Top   ToC   RFC3862 - Page 24
   o  A new IANA URN sub-namespace, urn:ietf:params:cpim-headers:, per
      RFC 3553 [12].  The registration template can be found in section
      7.2 below.

7.1. Registration for Message/CPIM Content Type

To: ietf-types@iana.org Subject: Registration of MIME media type Message/CPIM MIME media type name: message MIME subtype name: CPIM Required parameters: (None) Optional parameters: (None) Encoding considerations: Intended to be used in 8-bit clean environments, with non- transformative encoding (8-bit or binary, according to the content contained within the message; the CPIM message headers can be handled in an 8-bit text environment). This content type could be used with a 7-bit transfer environment if appropriate transfer encoding is used. NOTE that for this purpose, enclosed MIME content MUST BE treated as opaque data and encoded accordingly. Any encoding must be reversed before any enclosed MIME content can be accessed. Security considerations: The content may contain signed data, so any transfer encoding MUST BE exactly reversed before the content is processed. See also the security considerations for email messages (RFC 2822 [9]). Interoperability considerations: This content format is intended to be used to exchange possibly- secured messages between different instant messaging protocols. Very strict adherence to the message format (including whitespace usage) may be needed to achieve interoperability. Published specification: RFC 3862 Applications which use this media type: Instant messaging
Top   ToC   RFC3862 - Page 25
   Additional information:
      The default namespace URI associated with this content-type is
      'urn:ietf:params:cpim-headers:'.  (See RFC 3862 for further
      details.)

      See also the Common Profile for Instant Messaging (CPIM) [26].

   Person & email address to contact for further information:
      G. Klyne, <GK-IETF@ninebynine.org>

   Intended usage: LIMITED USE

   Author/Change controller: IETF

7.2. Registration for urn:ietf:params:cpim-headers

Registry name: cpim-headers Specification: RFC 3862. Additional values may be defined by standards track RFCs that update or obsolete RFC 3862. Repository: http://www.iana.org/assignments/cpim-headers Index value: The index value is a CPIM message header name, which may consist of a sequence from a restricted set of US-ASCII characters, as defined above. URN Formation: The URI for a header is formed from its name by: a) replacing any non-URN characters (as defined by RFC 2141 [5]) with the corresponding '%hh' escape sequence (per RFC 2396 [8]); and b) prepending the resulting string with 'urn:ietf:params:cpim- headers:'. Thus, the URI corresponding to the CPIM message header 'From:' would be 'urn:ietf:params:cpim-headers:From'. The URI corresponding to the (putative) CPIM message header 'Top&Tail' would be 'urn:ietf:params:cpim-headers:Top%26Tail'.
Top   ToC   RFC3862 - Page 26

8. Internationalization Considerations

Message headers use UTF-8 character encoding throughout; hence, they can convey the full UCS-4 (Unicode [30], ISO/IEC 10646 [25]) character repertoire. Language tagging is provided for message headers using the "Lang" parameter (section 3.3). Message content is any MIME-encapsulated content, and normal MIME content internationalization considerations apply.

9. Security Considerations

The Message/CPIM format is designed with security in mind. In particular it is designed to be used with MIME security multiparts for signatures and encryption. To this end, Message/CPIM messages must be considered immutable once created. Because Message/CPIM messages are binary messages (due to UTF-8 encoding), if they are transmitted across non-8-bit-clean transports then the transfer agent must tunnel the entire message. Changing the message data encoding is not an option. This implies that the Message/CPIM must be encapsulated by the message transfer system and unencapsulated at the receiving end of the tunnel. The resulting message must not have data loss due to the encoding and unencoding of the message. For example, an application may choose to apply the MIME base64 content-transfer-encoding to the Message/CPIM object to meet this requirement.

10. Acknowledgements

The authors thank the following for their helpful comments: Harald Alvestrand, Walter Houser, Leslie Daigle, Mark Day, Brian Raymor.

11. References

11.1. Normative References

[1] Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies", RFC 2045, November 1996. [2] Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types", RFC 2046, November 1996.
Top   ToC   RFC3862 - Page 27
   [3]  Freed, N., Klensin, J., and J. Postel, "Multipurpose Internet
        Mail Extensions (MIME) Part Four: Registration Procedures", BCP
        13, RFC 2048, November 1996.

   [4]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

   [5]  Moats, R., "URN Syntax", RFC 2141, May 1997.

   [6]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
        Specifications: ABNF", RFC 2234, November 1997.

   [7]  Alvestrand, H., "IETF Policy on Character Sets and Languages",
        BCP 18, RFC 2277, January 1998.

   [8]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
        Resource Identifiers (URI): Generic Syntax", RFC 2396, August
        1998.

   [9]  Resnick, P., "Internet Message Format", RFC 2822, April 2001.

   [10] Alvestrand, H., "Tags for the Identification of Languages", BCP
        47, RFC 3066, January 2001.

   [11] Klyne, G. and C. Newman, "Date and Time on the Internet:
        Timestamps", RFC 3339, July 2002.

   [12] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An IETF
        URN Sub-namespace for Registered Protocol Parameters", BCP 73,
        RFC 3553, June 2003.

   [13] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD
        63, RFC 3629, November 2003.

11.2. Informative References

[14] Galvin, J., Murphy, S., Crocker, S., and N. Freed, "Security Multiparts for MIME: Multipart/Signed and Multipart/Encrypted", RFC 1847, October 1995. [15] Weider, C., Preston, C., Simonsen, K., Alvestrand, H., Atkinson, R., Crispin, M., and P. Svanberg, "The Report of the IAB Character Set Workshop held 29 February - 1 March, 1996", RFC 2130, April 1997. [16] Freed, N. and K. Moore, "MIME Parameter Value and Encoded Word Extensions: Character Sets, Languages, and Continuations", RFC 2231, November 1997.
Top   ToC   RFC3862 - Page 28
   [17] Callas, J., Donnerhacke, L., Finney, H., and R. Thayer, "OpenPGP
        Message Format", RFC 2440, November 1998.

   [18] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
        Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
        HTTP/1.1", RFC 2616, June 1999.

   [19] Ramsdell, B., Ed., "S/MIME Version 3 Message Specification", RFC
        2633, June 1999.

   [20] Day, M., Aggarwal, S., Mohr, G., and J. Vincent, "Instant
        Messaging / Presence Protocol Requirements", RFC 2779, February
        2000.

   [21] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
        Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
        Session Initiation Protocol", RFC 3261, June 2002.

   [22] Bray, T., Paoli, J., Sperberg-McQueen, C., and E. Maler,
        "Extensible Markup Language (XML) 1.0 (2nd ed)", W3C
        Recommendation xml, October 2000,
        <http://www.w3.org/TR/2000/REC-xml-20001006>.

   [23] Bray, T., Hollander, D., and A. Layman, "Namespaces in XML", W3C
        Recommendation xml-names, January 1999,
        <http://www.w3.org/TR/REC-xml-names>.

   [24] International Organization for Standardization, "Data elements
        and interchange formats - Information interchange -
        Representation of dates and times", ISO Standard 8601, June
        1988.

   [25] International Organization for Standardization, "Information
        Technology - Universal Multiple-octet coded Character Set (UCS)
        - Part 1: Architecture and Basic Multilingual Plane", ISO
        Standard 10646-1, May 1993.

   [26] Peterson, J., "Common Profile for Instant Messaging (CPIM)", RFC
        3860, August 2004.

   [27] Peterson, J., "Common Profile for Presence (CPP)", RFC 3859,
        August 2004.

   [28] Bellovin, S., Kaufman, C., and J. Schiller, "Security Mechanisms
        for the Internet", RFC 3631, December 2003.

   [29] Rescorla, E., "A Survey of Authentication Mechanisms", Work in
        Progress, March 2004.
Top   ToC   RFC3862 - Page 29
   [30] The Unicode Consortium, "The Unicode Standard, Version 4.0",
        Addison-Wesley, Boston, MA. ISBN 0-321-18578-1, April 2003,
        <http://www.unicode.org/unicode/standard/versions/
        enumeratedversions.html#Unicode_4_0_0>.

12. Authors' Addresses

Graham Klyne Nine by Nine EMail: GK-IETF@ninebynine.org URI: http://www.ninebynine.net/ Derek Atkins IHTFP Consulting 6 Farragut Ave Somerville, MA 02144 USA Phone: +1 617 623 3745 EMail: derek@ihtfp.com, warlord@alum.mit.edu
Top   ToC   RFC3862 - Page 30

13. Full Copyright Statement

Copyright (C) The Internet Society (2004). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assignees. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.