Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 3449

TCP Performance Implications of Network Path Asymmetry

Pages: 41
Best Current Practice: 69
Part 3 of 3 – Pages 29 to 41
First   Prev   None

Top   ToC   RFC3449 - Page 29   prevText

6. Security Considerations

The recommendations contained in this document do not impact the integrity of TCP, introduce new security implications to the TCP protocol, or applications using TCP. Some security considerations in the context of this document arise from the implications of using IPSec by the end hosts or routers operating along the return path. Use of IPSec prevents, or complicates, some of the mitigations. For example: (i) When IPSec ESP [RFC2406] is used to encrypt the IP payload, the TCP header can neither be read nor modified by intermediate entities. This rules out header compression, ACK Filtering, ACK Reconstruction, and the ACK Compaction. (ii) The TCP header information may be visible, when some forms of network layer security are used. For example, using IPSec AH [RFC2402], the TCP header may be read, but not modified, by intermediaries. This may in future allow extensions to support ACK Filtering, but rules out the generation of new
Top   ToC   RFC3449 - Page 30
        packets by intermediaries (e.g., ACK Reconstruction).  The
        enhanced header compression scheme discussed in [RFC2507] would
        also work with IPSec AH.

   There are potential Denial-of-Service (DoS) implications when using
   Type 2 schemes.  Unless additional security mechanisms are used, a
   Reconstructor/expander could be exploited as a packet amplifier.  A
   third party may inject unauthorized Stretch ACKs into the reverse
   path, triggering the generation of additional ACKs.  These ACKs would
   consume capacity on the return path and processing resources at the
   systems along the path, including the destination host.  This
   provides a potential platform for a DoS attack.  The usual
   precautions must be taken to verify the correct tunnel end point, and
   to ensure that applications cannot falsely inject packets that expand
   to generate unwanted traffic.  Imposing a rate limit and bound on the
   delayed ACK factor(d) would also lessen the impact of any undetected
   exploitation.

7. Summary

This document considers several TCP performance constraints that arise from asymmetry in the properties of the forward and reverse paths across an IP network. Such performance constraints arise, e.g., as a result of both bandwidth (capacity) asymmetry, asymmetric shared media in the reverse direction, and interactions with Media Access Control (MAC) protocols. Asymmetric capacity may cause TCP Acknowledgments (ACKs) to be lost or become inordinately delayed (e.g., when a bottleneck link is shared between many flows, or when there is bidirectional traffic). This effect may be exacerbated with media-access delays (e.g., in certain multi-hop radio subnetworks, satellite Bandwidth on Demand access). Asymmetry, and particular high asymmetry, raises a set of TCP performance issues. A set of techniques providing performance improvement is surveyed. These include techniques to alleviate ACK Congestion and techniques that enable a TCP sender to cope with infrequent ACKs without destroying TCP self-clocking. These techniques include both end-to- end, local link-layer, and subnetwork schemes. Many of these techniques have been evaluated in detail via analysis, simulation, and/or implementation on asymmetric subnetworks forming part of the Internet. There is however as yet insufficient operational experience for some techniques, and these therefore currently remain items of on-going research and experimentation.
Top   ToC   RFC3449 - Page 31
   The following table summarizes the current recommendations.
   Mechanisms are classified as recommended (REC), not recommended (NOT
   REC) or experimental (EXP).  Experimental techniques may not be well
   specified.  These techniques will require further operational
   experience before they can be recommended for use in the public
   Internet.

   The recommendations for end-to-end host modifications are summarized
   in table 1.  This lists each technique, the section in which each
   technique is discussed, and where it is applied (S denotes the host
   sending TCP data packets in the forward direction, R denotes the host
   which receives these data packets).

     +------------------------+-------------+------------+--------+
     | Technique              |  Use        | Section    | Where  |
     +------------------------+-------------+------------+--------+
     | Modified Delayed ACKs  | NOT REC     | 4.1        | TCP R  |
     | Large MSS  & NO FRAG   | REC         | 4.2        | TCP SR |
     | Large MSS  & IP FRAG   | NOT REC     | 4.2        | TCP SR |
     | ACK Congestion Control | EXP         | 4.3        | TCP SR |
     | Window Pred. Mech (WPM)| NOT REC     | 4.4        | TCP R  |
     | Window Cwnd. Est. (ACE)| NOT REC     | 4.5        | TCP R  |
     | TCP Sender Pacing      | EXP *1      | 4.6        | TCP S  |
     | Byte Counting          | NOT REC *2  | 4.7        | TCP S  |
     | Backpressure           | EXP *1      | 4.8        | TCP R  |
     +------------------------+-------------+------------+--------+

         Table 1: Recommendations concerning host modifications.

   *1 Implementation of the technique may require changes to the
      internal design of the protocol stack in end hosts.
   *2 Dependent on a scheme for preventing excessive TCP transmission
      burst.

   The recommendations for techniques that do not require the TCP sender
   and receiver to be aware of their existence (i.e., transparent
   techniques) are summarized in table 2.  Each technique is listed
   along with the section in which each mechanism is discussed, and
   where the technique is applied (S denotes the sending interface prior
   to the upstream bottleneck link, R denotes receiving interface
   following the upstream bottleneck link).
Top   ToC   RFC3449 - Page 32
     +------------------------+-------------+------------+--------+
     | Mechanism              |  Use        | Section    | Type   |
     +------------------------+-------------+------------+--------+
     | Header Compr. (V-J)    | REC *1      | 5.1.1      | 0 SR   |
     | Header Compr. (ROHC)   | REC *1 *2   | 5.1.2      | 0 SR   |
     +------------------------+-------------+------------+--------+
     | ACK Filtering (AF)     | EXP *3      | 5.2.1      | 1 S    |
     | ACK Decimation         | EXP *3      | 5.2.2      | 1 S    |
     +------------------------+-------------+------------+--------+
     | ACK Reconstruction (AR)| NOT REC     | 5.3.1      | 2   *4 |
     | ACK Compaction/Compand.| EXP         | 5.3.2      | 2 S *4 |
     | Gen. Traff. Shap. (GTS)| REC         | 5.3.3      | 2   *5 |
     +------------------------+-------------+------------+--------+
     | Fair Queueing (FQ)     | REC         | 5.4.1      | 3 S    |
     | ACKs-First Scheduling  | NOT REC     | 5.4.2      | 3 S    |
     +------------------------+-------------+------------+--------+

      Table 2: Recommendations concerning transparent modifications.

   *1 At high asymmetry these schemes may degrade TCP performance, but
      are not considered harmful to the Internet.
   *2 Standardisation of new TCP compression protocols is the subject of
      ongoing work within the ROHC WG, refer to other IETF RFCs on the
      use of these techniques.
   *3 Use in the Internet is dependent on a scheme for preventing
      excessive TCP transmission burst.
   *4 Performed at a point along the reverse path after the upstream
      bottleneck link.
   *5 Performed at a point along the forward path.

8. Acknowledgments

This document has benefited from comments from the members of the Performance Implications of Links (PILC) Working Group. In particular, the authors would like to thank John Border, Spencer Dawkins, Aaron Falk, Dan Grossman, Randy Katz, Jeff Mandin, Rod Ragland, Ramon Segura, Joe Touch, and Lloyd Wood for their useful comments. They also acknowledge the data provided by Metricom Inc., concerning operation of their packet data network.

9. References

References of the form RFCnnnn are Internet Request for Comments (RFC) documents available online at http://www.rfc-editor.org/.
Top   ToC   RFC3449 - Page 33

9.1 Normative References

[RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981. [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts - Communication Layers", STD 3, RFC 1122, October 1989. [RFC1144] Jacobson, V., "Compressing TCP/IP Headers for Low-Speed Serial Links", RFC 1144, February 1990. [RFC1191] Mogul, J. and S. Deering, "Path MTU Discovery", RFC 1191, November 1990. [RFC2581] Allman, M., Paxson, V. and W. Stevens, "TCP Congestion Control", RFC 2581, April 1999. [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D. and P. Traina, "Generic Routing Encapsulation (GRE)", RFC 2784, March 2000. [RFC3135] Border, J., Kojo, M., Griner, J., Montenegro, G. and Z. Shelby, "Performance Enhancing Proxies Intended to Mitigate Link-Related Degradations", RFC 3135, June 2001.

9.2 Informative References

[abc-ID] Allman, M., "TCP Congestion Control with Appropriate Byte Counting", Work in Progress. [All97b] Allman, M., "Fixing Two BSD TCP Bugs", Technical Report CR-204151, NASA Lewis Research Center, October 1997. [ANS01] ANSI Standard T1.413, "Network to Customer Installation Interfaces - Asymmetric Digital Subscriber Lines (ADSL) Metallic Interface", November 1998. [ASB96] Arora, V., Suphasindhu, N., Baras, J.S. and D. Dillon, "Asymmetric Internet Access over Satellite-Terrestrial Networks", Proc. AIAA: 16th International Communications Satellite Systems Conference and Exhibit, Part 1, Washington, D.C., February 25-29, 1996, pp.476-482. [AST00] Aggarwal, A., Savage, S., and T. Anderson, "Understanding the Performance of TCP Pacing", Proc. IEEE INFOCOM, Tel- Aviv, Israel, V.3, March 2000, pp. 1157-1165.
Top   ToC   RFC3449 - Page 34
   [Bal98]   Balakrishnan, H., "Challenges to Reliable Data Transport
             over Heterogeneous Wireless Networks", Ph.D. Thesis,
             University of California at Berkeley, USA, August 1998.
             http://nms.lcs.mit.edu/papers/hari-phd/

   [BPK99]   Balakrishnan, H., Padmanabhan, V. N., and R. H. Katz, "The
             Effects of Asymmetry on TCP Performance", ACM Mobile
             Networks and Applications (MONET), Vol.4, No.3, 1999, pp.
             219-241. An expanded version of a paper published at Proc.
             ACM/IEEE Mobile Communications Conference (MOBICOM), 1997.

   [BPS00]   Bennett, J. C., Partridge, C., and N. Schectman, "Packet
             Reordering is Not Pathological Network Behaviour", IEEE/ACM
             Transactions on Networking, Vol. 7, Issue. 6, 2000,
             pp.789-798.

   [Cla88]   Clark, D.D, "The Design Philosophy of the DARPA Internet
             Protocols", ACM Computer Communications Review (CCR), Vol.
             18, Issue 4, 1988, pp.106-114.

   [CLC99]   Clausen, H., Linder, H., and B. Collini-Nocker, "Internet
             over Broadcast Satellites", IEEE Communications Magazine,
             Vol. 37, Issue. 6, 1999, pp.146-151.

   [CLP98]   Calveras, A., Linares, J., and J. Paradells, "Window
             Prediction Mechanism for Improving TCP in Wireless
             Asymmetric Links". Proc. IEEE Global Communications
             Conference (GLOBECOM), Sydney Australia, November 1998,
             pp.533-538.

   [CR98]    Cohen, R., and Ramanathan, S., "Tuning TCP for High
             Performance in Hybrid Fiber Coaxial Broad-Band Access
             Networks", IEEE/ACM Transactions on Networking, Vol.6,
             No.1, 1998, pp.15-29.

   [DS00]    Cable Television Laboratories, Inc., Data-Over-Cable
             Service Interface Specifications---Radio Frequency
             Interface Specification SP-RFIv1.1-I04-00407, 2000

   [DS01]    Data-Over-Cable Service Interface Specifications, Radio
             Frequency Interface Specification 1.0, SP-RFI-I05-991105,
             Cable Television Laboratories, Inc., November 1999.

   [DMT96]   Durst, R., Miller, G., and E. Travis, "TCP Extensions for
             Space Communications", ACM/IEEE Mobile Communications
             Conference (MOBICOM), New York, USA, November 1996, pp.15-
             26.
Top   ToC   RFC3449 - Page 35
   [EN97]    "Digital Video Broadcasting (DVB); DVB Specification for
             Data Broadcasting", European Standard (Telecommunications
             series) EN 301 192, 1997.

   [EN00]    "Digital Video Broadcasting (DVB); Interaction Channel for
             Satellite Distribution Systems", Draft European Standard
             (Telecommunications series) ETSI, Draft EN 301 790, v.1.2.1

   [FJ93]    Floyd, S., and V. Jacobson, "Random Early Detection
             gateways for Congestion Avoidance", IEEE/ACM Transactions
             on Networking, Vol.1, No.4, 1993, pp.397-413.

   [FSS01]   Fairhurst, G., Samaraweera, N.K.G, Sooriyabandara, M.,
             Harun, H., Hodson, K., and R. Donardio, "Performance Issues
             in Asymmetric Service Provision using Broadband Satellite",
             IEE Proceedings on Communication, Vol.148, No.2, 2001,
             pp.95-99.

   [ITU01]   ITU-T Recommendation E.681, "Traffic Engineering Methods
             For IP Access Networks Based on Hybrid Fiber/Coax System",
             September 2001.

   [ITU02]   ITU-T Recommendation G.992.1, "Asymmetrical Digital
             Subscriber Line (ADSL) Transceivers", July 1999.

   [Jac88]   Jacobson, V., "Congestion Avoidance and Control", Proc. ACM
             SIGCOMM, Stanford, CA, ACM Computer Communications Review
             (CCR), Vol.18, No.4, 1988, pp.314-329.

   [Ken87]   Kent C.A., and J. C. Mogul, "Fragmentation Considered
             Harmful", Proc. ACM SIGCOMM, USA, ACM Computer
             Communications Review (CCR), Vol.17, No.5, 1988, pp.390-
             401.

   [KSG98]   Krout, T., Solsman, M., and J. Goldstein, "The Effects of
             Asymmetric Satellite Networks on Protocols", Proc. IEEE
             Military Communications Conference (MILCOM), Bradford, MA,
             USA, Vol.3, 1998, pp.1072-1076.

   [KVR98]   Kalampoukas, L., Varma, A., and Ramakrishnan, K.K.,
             "Improving TCP Throughput over Two-Way Asymmetric Links:
             Analysis and Solutions", Proc. ACM SIGMETRICS, Medison,
             USA, 1998, pp.78-89.

   [LM97]    Lin, D., and R. Morris, "Dynamics of Random Early
             Detection", Proc. ACM SIGCOMM, Cannes, France, ACM Computer
             Communications Review (CCR), Vol.27, No.4, 1997, pp.78-89.
Top   ToC   RFC3449 - Page 36
   [LMS97]   Lakshman, T.V., Madhow, U., and B. Suter, "Window-based
             Error Recovery and Flow Control with a Slow Acknowledgement
             Channel: A Study of TCP/IP Performance", Proc. IEEE
             INFOCOM, Vol.3, Kobe, Japan, 1997, pp.1199-1209.

   [MJW00]   Ming-Chit, I.T., Jinsong, D., and W. Wang,"Improving TCP
             Performance Over Asymmetric Networks", ACM SIGCOMM, ACM
             Computer Communications Review (CCR), Vol.30, No.3, 2000.

   [Pad98]   Padmanabhan, V.N., "Addressing the Challenges of Web Data
             Transport", Ph.D. Thesis, University of California at
             Berkeley, USA, September 1998 (also Tech Report UCB/CSD-
             98-1016). http://www.cs.berkeley.edu/~padmanab/phd-
             thesis.html

   [RFC1323] Jacobson, V., Braden, R. and D. Borman, "TCP Extensions for
             High Performance", RFC 1323, May 1992.

   [RFC2018] Mathis, B., Mahdavi, J., Floyd, S. and A. Romanow, "TCP
             Selective Acknowledgment Options", RFC 2018, October 1996.

   [RFC2402] Kent, S. and R. Atkinson, "IP Authentication Header", RFC
             2402, November 1998.

   [RFC2406] Kent, S. and R. Atkinson, "IP Encapsulating Security
             Payload (ESP)", RFC 2406, November 1998.

   [RFC2507] Degermark, M., Nordgren, B. and S. Pink, "IP Header
             Compression", RFC 2507, February 1999.

   [RFC2525] Paxson, V., Allman, M., Dawson, S., Heavens, I. and B.
             Volz, "Known TCP Implementation Problems", RFC 2525, March
             1999.

   [RFC2686] Bormann, C., "The Multi-Class Extension to Multi-Link PPP",
             RFC 2686, September 1999.

   [RFC2760] Allman, M., Dawkins, S., Glover, D., Griner, J., Henderson,
             T., Heidemann, J., Kruse, H., Ostermann, S., Scott, K.,
             Semke, J., Touch, J. and D. Tran, "Ongoing TCP Research
             Related to Satellites", RFC 2760, February 2000.

   [RFC2988] Paxson, V. and M. Allman, "Computing TCP's Retransmission
             Timer", RFC 2988, November 2000.

   [RFC3077] Duros, E., Dabbous, W., Izumiyama, H., Fujii, N. and Y.
             Zhang, "A link Layer tunneling mechanism for unidirectional
             links", RFC 3077, March 2001.
Top   ToC   RFC3449 - Page 37
   [RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
             Hannu, H., Jonsson, E., Hakenberg, R., Koren, T., Le, K.,
             Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K., Wiebke,
             T., Yoshimura, T. and H. Zheng, "RObust Header Compression
             (ROHC): Framework and four profiles: RTP, UDP ESP and
             uncompressed", RFC 3095, July 2001.

   [RFC3150] Dawkins, S., Montenegro, G., Kojo, M. and V. Magret, "End-
             to-end Performance Implications of Slow Links", BCP 48, RFC
             3150, July 2001.

   [RFC3168] Ramakrishnan K., Floyd, S. and D. Black, "A Proposal to add
             Explicit Congestion Notification (ECN) to IP", RFC 3168,
             September 2001.

   [Sam99]   Samaraweera, N.K.G, "Return Link Optimization for Internet
             Service Provision Using DVB-S Networks", ACM Computer
             Communications Review (CCR), Vol.29, No.3, 1999, pp.4-19.

   [Seg00]   Segura R., "Asymmetric Networking Techniques For Hybrid
             Satellite Communications", NC3A, The Hague, Netherlands,
             NATO Technical Note 810, August 2000, pp.32-37.

   [SF98]    Samaraweera, N.K.G., and G. Fairhurst. "High Speed Internet
             Access using Satellite-based DVB Networks", Proc. IEEE
             International Networks Conference (INC98), Plymouth, UK,
             1998, pp.23-28.

   [ZSC91]   Zhang, L., Shenker, S., and D. D. Clark, "Observations and
             Dynamics of a Congestion Control Algorithm: The Effects of
             Two-Way Traffic", Proc. ACM SIGCOMM, ACM Computer
             Communications Review (CCR), Vol 21, No 4, 1991, pp.133-
             147.

10. IANA Considerations

There are no IANA considerations associated with this document.
Top   ToC   RFC3449 - Page 38

Appendix A. Examples of Subnetworks Exhibiting Network Path Asymmetry

This appendix provides a list of some subnetworks which are known to experience network path asymmetry. The asymmetry in capacity of these network paths can require mitigations to provide acceptable overall performance. Examples include the following: - IP service over some wide area and local area wireless networks. In such networks, the predominant network path asymmetry arises from the hub-and-spokes architecture of the network (e.g., a single base station that communicates with multiple mobile stations), this requires a Ready To Send / Clear To Send (RTS/CTS) protocol and a Medium Access Control (MAC) protocol which needs to accommodate the significant turn-around time for the radios. A high per-packet transmission overhead may lead to significant network path asymmetry. - IP service over a forward satellite link utilizing Digital Video Broadcast (DVB) transmission [EN97] (e.g., 38-45 Mbps), and a slower upstream link using terrestrial network technology (e.g., dial-up modem, line of sight microwave, cellular radio) [CLC99]. Network path asymmetry arises from a difference in the upstream and downstream link capacities. - Certain military networks [KSG98] providing Internet access to in-transit or isolated hosts [Seg00] using a high capacity downstream satellite link (e.g., 2-3 Mbps) with a narrowband upstream link (e.g., 2.4-9.6 kbps) using either Demand Assigned Multiple Access (DAMA) or fixed rate satellite links. The main factor contributing to network path asymmetry is the difference in the upstream and downstream link capacities. Some differences between forward and reverse paths may arise from the way in which upstream link capacity is allocated. - Most data over cable TV networks (e.g., DOCSIS [ITU01, DS00]), where the analogue channels assigned for upstream communication (i.e., in the reverse direction) are narrower and may be more noisy than those assigned for the downstream link. As a consequence, the upstream and downstream links differ in their transmission rate. For example, in DOCSIS 1.0 [DS00], the downstream transmission rate is either 27 or 52 Mbps. Upstream transmission rates may be dynamically selected to be one of a series of rates which range between 166 kbps to 9 Mbps. Operators may assign multiple upstream channels per downstream channel. Physical layer (PHY) overhead (which accompanies upstream transmissions, but is not present in the downstream link) can also increase the network path asymmetry. The Best Effort service, which is typically used to carry TCP, uses a
Top   ToC   RFC3449 - Page 39
      contention/reservation MAC protocol.  A cable modem (CM) sending
      an isolated packet (such as a TCP ACK) on the upstream link must
      contend with other CMs to request capacity from the central cable
      modem termination system (CMTS).  The CMTS then grants timeslots
      to a CM for the upstream transmission.  The CM may "piggyback"
      subsequent requests onto upstream packets, avoiding contention
      cycles; as a result, spacing of TCP ACKs can be dramatically
      altered due to minor variations in load of the cable data network
      and inter-arrival times of TCP DATA packets.  Numerous other
      complexities may add to, or mitigate, the asymmetry in rate and
      access latency experienced by packets sent on the upstream link
      relative to downstream packets in DOCSIS.  The asymmetry
      experienced by end hosts may also change dynamically (e.g., with
      network load), and when best effort services share capacity with
      services that have symmetric reserved capacity (e.g., IP telephony
      over the Unsolicited Grant service) [ITU01].

   -  Asymmetric Digital Subscriber Line (ADSL), by definition, offers a
      downstream link transmission rate that is higher than that of the
      upstream link.  The available rates depend upon channel quality
      and system configuration.  For example, one widely deployed ADSL
      technology [ITU02, ANS01] operates at rates that are multiples of
      32 kbps (up to 6.144 Mbps) in the downstream link, and up to 640
      kbps for the upstream link.  The network path asymmetry
      experienced by end hosts may be further increased when best effort
      services, e.g., Internet access over ADSL, share the available
      upstream capacity with reserved services (e.g., constant bit rate
      voice telephony).
Top   ToC   RFC3449 - Page 40

Authors' Addresses

Hari Balakrishnan Laboratory for Computer Science 200 Technology Square Massachusetts Institute of Technology Cambridge, MA 02139 USA Phone: +1-617-253-8713 EMail: hari@lcs.mit.edu Web: http://nms.lcs.mit.edu/~hari/ Venkata N. Padmanabhan Microsoft Research One Microsoft Way Redmond, WA 98052 USA Phone: +1-425-705-2790 EMail: padmanab@microsoft.com Web: http://www.research.microsoft.com/~padmanab/ Godred Fairhurst Department of Engineering Fraser Noble Building University of Aberdeen Aberdeen AB24 3UE UK EMail: gorry@erg.abdn.ac.uk Web: http://www.erg.abdn.ac.uk/users/gorry Mahesh Sooriyabandara Department of Engineering Fraser Noble Building University of Aberdeen Aberdeen AB24 3UE UK EMail: mahesh@erg.abdn.ac.uk Web: http://www.erg.abdn.ac.uk/users/mahesh
Top   ToC   RFC3449 - Page 41
Full Copyright Statement

   Copyright (C) The Internet Society (2002).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.