5. TRIP Attributes
This section provides details on the syntax and semantics of each TRIP UPDATE attribute.5.1. WithdrawnRoutes
Conditional Mandatory: False. Required Flags: Well-known. Potential Flags: Link-State Encapsulation (when flooding). TRIP Type Code: 1 The WithdrawnRoutes specifies a set of routes that are to be removed from service by the receiving LS(s). The set of routes MAY be empty, indicated by a length field of zero.
5.1.1. Syntax of WithdrawnRoutes
The WithdrawnRoutes Attribute encodes a sequence of routes in its value field. The format for individual routes is given in Section 5.1.1.1. The WithdrawnRoutes Attribute lists the individual routes sequentially with no padding as shown in Figure 11. Each route includes a length field so that the individual routes within the attribute can be delineated. +---------------------+---------------------+... | WithdrawnRoute1... | WithdrawnRoute2... |... +---------------------+---------------------+... Figure 11: WithdrawnRoutes Format5.1.1.1. Generic TRIP Route Format
The generic format for a TRIP route is given in Figure 12. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +---------------+---------------+--------------+----------------+ | Address Family | Application Protocol | +---------------+---------------+--------------+----------------+ | Length | Address (variable) ... +---------------+---------------+--------------+----------------+ Figure 12: Generic TRIP Route Format Address Family: The address family field gives the type of address for the route. Three address families are defined in this Section: Code Address Family 1 Decimal Routing Numbers 2 PentaDecimal Routing Numbers 3 E.164 Numbers This document reserves address family code 0. This document reserves address family codes 32768-65535 for vendor-specific applications (these are the codes with the first bit of the code value equal to 1). Additional address families may be defined in the future. Assignment of address family codes is controlled by IANA. See Section 13 for IANA considerations.
Application Protocol: The application protocol gives the protocol for which this routing table is maintained. The currently defined application protocols are: Code Protocol 1 SIP 2 H.323-H.225.0-Q.931 3 H.323-H.225.0-RAS 4 H.323-H.225.0-Annex-G This document reserves application protocol code 0. This document reserves application protocol codes 32768-65535 for vendor-specific applications (these are the codes with the first bit of the code value equal to 1). Additional application protocols may be defined in the future. Assignment of application protocol codes is controlled by IANA. See Section 13 for IANA considerations. Length: The length of the address field, in bytes. Address: This is an address (prefix) of the family type given by Address Family. The octet length of the address is variable and is determined by the length field of the route.5.1.1.2. Decimal Routing Numbers
The Decimal Routing Numbers address family is a super set of all E.164 numbers, national numbers, local numbers, and private numbers. It can also be used to represent the decimal routing numbers used in conjunction with Number Portability in some countries/regions. A set of telephone numbers is specified by a Decimal Routing Number prefix. Decimal Routing Number prefixes are represented by a string of digits, each digit encoded by its ASCII character representation. This routing object covers all phone numbers starting with this prefix. The syntax for the Decimal Routing Number prefix is: Decimal-routing-number = *decimal-digit decimal-digit = DECIMAL-DIGIT DECIMAL-DIGIT = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9" This DECIMAL Routing Number prefix is not bound in length. This format is similar to the format for a global telephone number as defined in SIP [8] without visual separators and without the "+" prefix for international numbers. This format facilitates efficient comparison when using TRIP to route SIP or H323, both of which use character based representations of phone numbers. The prefix length
is determined from the length field of the route. The type of Decimal Routing Number (private, local, national, or international) can be deduced from the first few digits of the prefix.5.1.1.3. PentaDecimal Routing Numbers
This address family is used to represent PentaDecimal Routing Numbers used in conjunction with Number Portability in some countries/regions. PentaDecimal Routing Number prefixes are represented by a string of digits, each digit encoded by its ASCII character representation. This routing object covers all routing numbers starting with this prefix. The syntax for the PentaDecimal Routing Number prefix is: PentaDecimal-routing-number = *pentadecimal-digit pentadecimal-routing-digit = PENTADECIMAL-DIGIT PENTADECIMAL-DIGIT = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"| "8"|"9"|"A"|"B"|"C"|"D"|"E" Note the difference in alphabets between Decimal Routing Numbers and PentaDecimal Routing Numbers. A PentaDecimal Routing Number prefix is not bound in length. Note that the address family, which suits the routing numbers of a specific country/region depends on the alphabets used for routing numbers in that country/region. For example, North American routing numbers SHOULD use the Decimal Routing Numbers address family, because their alphabet is limited to the digits "0" through "9". Another example, in most European countries routing numbers use the alphabet "0" through "9" and "A" through "E", and hence these countries SHOULD use the PentaDecimal Routing Numbers address family.5.1.1.4. E.164 Numbers
The E.164 Numbers address family is dedicated to fully qualified E.164 numbers. A set of telephone numbers is specified by a E.164 prefix. E.164 prefixes are represented by a string of digits, each digit encoded by its ASCII character representation. This routing object covers all phone numbers starting with this prefix. The syntax for the E.164 prefix is: E164-number = *e164-digit E164-digit = E164-DIGIT E164-DIGIT = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"
This format facilitates efficient comparison when using TRIP to route SIP or H323, both of which use character based representations of phone numbers. The prefix length is determined from the length field of the route. The E.164 Numbers address family and the Decimal Routing Numbers address family have the same alphabet. The E.164 Numbers address family SHOULD be used whenever possible. The Decimal Routing Numbers address family can be used in case of private numbering plans or applications that do not desire to advertise fully expanded, fully qualified telephone numbers. If Decimal Routing Numbers are used to advertise non-fully qualified prefixes, the prefixes may have to be manipulated (e.g. expanded) at the boundary between ITADs. This adds significant complexity to the ITAD-Border LS, because, it has to map the prefixes from the format used in its own ITAD to the format used in the peer ITAD.5.2. ReachableRoutes
Conditional Mandatory: False. Required Flags: Well-known. Potential Flags: Link-State Encapsulation (when flooding). TRIP Type Code: 2 The ReachableRoutes attribute specifies a set of routes that are to be added to service by the receiving LS(s). The set of routes MAY be empty, as indicated by setting the length field to zero.5.2.1. Syntax of ReachableRoutes
The ReachableRoutes Attribute has the same syntax as the WithdrawnRoutes Attribute. See Section 5.1.1.5.2.2. Route Origination and ReachableRoutes
Routes are injected into TRIP by a method outside the scope of this specification. Possible methods include a front-end protocol, an intra-domain routing protocol, or static configuration.5.2.3. Route Selection and ReachableRoutes
The routes in ReachableRoutes are necessary for route selection.5.2.4. Aggregation and ReachableRoutes
To aggregate multiple routes, the set of ReachableRoutes to be aggregated MUST combine to form a less specific set.
There is no mechanism within TRIP to communicate that a particular address prefix is not used and thus that these addresses could be skipped during aggregation. LSs MAY use methods outside of TRIP to learn of invalid prefixes that may be ignored during aggregation. If an LS advertises an aggregated route, it MUST include the AtomicAggregate attribute.5.2.5. Route Dissemination and ReachableRoutes
The ReachableRoutes attribute is recomputed at each LS except where flooding is being used (e.g., within a domain). It is therefore possible for an LS to change the Application Protocol field of a route before advertising that route to an external peer. If an LS changes the Application Protocol of a route it advertises, it MUST include the ConvertedRoute attribute in the UPDATE message.5.2.6. Aggregation Specifics for Decimal Routing Numbers, E.164 Numbers, and PentaDecimal Routing Numbers
An LS that has routes to all valid numbers in a specific prefix SHOULD advertise that prefix as the ReachableRoutes, even if there are more specific prefixes that do not actually exist on the PSTN. Generally, it takes 10 Decimal Routing/E.164 prefixes, or 15 PentaDecimal Routing prefixes, of length n to aggregate into a prefix of length n-1. However, if an LS is aware that a prefix is an invalid Decimal Routing/E.164 prefix, or PentaDecimal Routing prefix, then the LS MAY aggregate by skipping this prefix. For example, if the Decimal Routing prefix 19191 is known not to exist, then an LS can aggregate to 1919 without 19191. A prefix representing an invalid set of PSTN destinations is sometimes referred to as a "black-hole." The method by which an LS is aware of black-holes is not within the scope of TRIP, but if an LS has such knowledge, it can use the knowledge when aggregating.5.3. NextHopServer
Conditional Mandatory: True (if ReachableRoutes and/or WithdrawnRoutes attribute is present). Required Flags: Well-known. Potential Flags: None. TRIP Type Code: 3.
Given a route with application protocol A and destinations D, the NextHopServer indicates to the next-hop that messages of protocol A destined for D should be sent to it. This may or may not represent the ultimate destination of those messages.5.3.1. NextHopServer Syntax
For generality, the address of the next-hop server may be of various types (domain name, IPv4, IPv6, etc). The NextHopServer attribute includes the ITAD number of next-hop server, a length field, and a next-hop name or address. The syntax for the NextHopServer is given in Figure 13. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +---------------+---------------+--------------+----------------+ | Next Hop ITAD | +---------------+---------------+--------------+----------------+ | Length | Server (variable) ... +---------------+---------------+--------------+----------------+ Figure 13: NextHopServer Syntax The Next-Hop ITAD indicates the domain of the next-hop. Length field gives the number of octets in the Server field, and the Server field contains the name or address of the next-hop server. The server field is represented as a string of ASCII characters. It is defined as follows: Server = host [":" port ] host = < A legal Internet host domain name or an IPv4 address using the textual representation defined in Section 2.1 of RFC 1123 [9] or an IPv6 address using the textual representation defined in Section 2.2 of RFC 2373 [10]. The IPv6 address MUST be enclosed in "[" and "]" characters.> port = *DIGIT If the port is empty or not given, the default port is assumed (e.g., port 5060 if the application protocol is SIP).5.3.2. Route Origination and NextHopServer
When an LS originates a routing object into TRIP, it MUST include a NextHopServer within its domain. The NextHopServer could be an address of the egress gateway or of a signaling proxy.
5.3.3. Route Selection and NextHopServer
LS policy may prefer certain next-hops or next-hop domains over others.5.3.4. Aggregation and NextHopServer
When aggregating multiple routing objects into a single routing object, an LS MUST insert a new signaling server from within its domain as the new NextHopServer unless all of the routes being aggregated have the same next-hop.5.3.5. Route Dissemination and NextHopServer
When propagating routing objects to peers, an LS may choose to insert a signaling proxy within its domain as the new next-hop, or it may leave the next-hop unchanged. Inserting a new next-hop will cause the signaling messages to be sent to that address, and will provide finer control over the signaling path. Leaving the next-hop unchanged will yield a more efficient signaling path (fewer hops). It is a local policy decision of the LS to decide whether to propagate or change the NextHopServer.5.4. AdvertisementPath
Conditional Mandatory: True (if ReachableRoutes and/or WithdrawnRoutes attribute is present). Required Flags: Well-known. Potential Flags: None. TRIP Type Code: 4. This attribute identifies the ITADs through which routing information carried in an advertisement has passed. The AdvertisementPath attribute is analogous to the AS_PATH attribute in BGP. The attributes differ in that BGP's AS_PATH also reflects the path to the destination. In TRIP, not every domain need modify the next-hop, so the AdvertisementPath may include many more hops than the actual path to the destination. The RoutedPath attribute (Section 5.5) reflects the actual signaling path to the destination.5.4.1. AdvertisementPath Syntax
AdvertisementPath is a variable length attribute that is composed of a sequence of ITAD path segments. Each ITAD path segment is represented by a type-length-value triple. The path segment type is a 1-octet long field with the following values defined:
Value Segment Type 1 AP_SET: unordered set of ITADs a route in the advertisement message has traversed 2 AP_SEQUENCE: ordered set of ITADs a route in the advertisement message has traversed The path segment length is a 1-octet long field containing the number of ITADs in the path segment value field. The path segment value field contains one or more ITAD numbers, each encoded as a 4-octets long field. ITAD numbers uniquely identify an Internet Telephony Administrative Domain, and must be obtained from IANA. See Section 13 for procedures to obtain an ITAD number from IANA.5.4.2. Route Origination and AdvertisementPath
When an LS originates a route then: - The originating LS shall include its own ITAD number in the AdvertisementPath attribute of all advertisements sent to LSs located in neighboring ITADs. In this case, the ITAD number of the originating LS's ITAD will be the only entry in the AdvertisementPath attribute. - The originating LS shall include an empty AdvertisementPath attribute in all advertisements sent to LSs located in its own ITAD. An empty AdvertisementPath attribute is one whose length field contains the value zero.5.4.3. Route Selection and AdvertisementPath
The AdvertisementPath may be used for route selection. Possible criteria to be used are the number of hops on the path and the presence or absence of particular ITADs on the path. As discussed in Section 10, the AdvertisementPath is used to prevent routing information from looping. If an LS receives a route with its own ITAD already in the AdvertisementPath, the route MUST be discarded.5.4.4. Aggregation and AdvertisementPath
The rules for aggregating AdvertisementPath attributes are given in the following sections, where the term "path" used in Section 5.4.4.1 and 5.4.4.2 is understood to mean AdvertisementPath.
5.4.4.1. Aggregating Routes with Identical Paths
If all routes to be aggregated have identical path attributes, then the aggregated route has the same path attribute as the individual routes.5.4.4.2. Aggregating Routes with Different Paths
For the purpose of aggregating path attributes we model each ITAD within the path as a pair <type, value>, where "type" identifies a type of the path segment (AP_SEQUENCE or AP_SET), and "value" is the ITAD number. Two ITADs are said to be the same if their corresponding <type, value> are the same. If the routes to be aggregated have different path attributes, then the aggregated path attribute shall satisfy all of the following conditions: - All pairs of the type AP_SEQUENCE in the aggregated path MUST appear in all of the paths of routes to be aggregated. - All pairs of the type AP_SET in the aggregated path MUST appear in at least one of the paths of the initial set (they may appear as either AP_SET or AP_SEQUENCE types). - For any pair X of the type AP_SEQUENCE that precedes pair Y in the aggregated path, X precedes Y in each path of the initial set that contains Y, regardless of the type of Y. - No pair with the same value shall appear more than once in the aggregated path, regardless of the pair's type. An implementation may choose any algorithm that conforms to these rules. At a minimum, a conformant implementation MUST be able to perform the following algorithm that meets all of the above conditions: - Determine the longest leading sequence of tuples (as defined above) common to all the paths of the routes to be aggregated. Make this sequence the leading sequence of the aggregated path. - Set the type of the rest of the tuples from the paths of the routes to be aggregated to AP_SET, and append them to the aggregated path. - If the aggregated path has more than one tuple with the same value (regardless of tuple's type), eliminate all but one such tuple by deleting tuples of the type AP_SET from the aggregated path. An implementation that chooses to provide a path aggregation algorithm that retains significant amounts of path information may wish to use the procedure of Section 5.4.4.3.
5.4.4.3. Example Path Aggregation Algorithm
An example algorithm to aggregate two paths works as follows: - Identify the ITADs (as defined in Section 5.4.1) within each path attribute that are in the same relative order within both path attributes. Two ITADs, X and Y, are said to be in the same order if either X precedes Y in both paths, or if Y precedes X in both paths. - The aggregated path consists of ITADs identified in (a) in exactly the same order as they appear in the paths to be aggregated. If two consecutive ITADs identified in (a) do not immediately follow each other in both of the paths to be aggregated, then the intervening ITADs (ITADs that are between the two consecutive ITADs that are the same) in both attributes are combined into an AP_SET path segment that consists of the intervening ITADs from both paths; this segment is then placed in between the two consecutive ITADs identified in (a) of the aggregated attribute. If two consecutive ITADs identified in (a) immediately follow each other in one attribute, but do not follow in another, then the intervening ITADs of the latter are combined into an AP_SET path segment; this segment is then placed in between the two consecutive ITADs identified in (a) of the aggregated path. If as a result of the above procedure a given ITAD number appears more than once within the aggregated path, all but the last instance (rightmost occurrence) of that ITAD number should be removed from the aggregated path.5.4.5. Route Dissemination and AdvertisementPath
When an LS propagates a route which it has learned from another LS, it shall modify the route's AdvertisementPath attribute based on the location of the LS to which the route will be sent. - When a LS advertises a route to another LS located in its own ITAD, the advertising LS MUST NOT modify the AdvertisementPath attribute associated with the route. - When a LS advertises a route to an LS located in a neighboring ITAD, then the advertising LS MUST update the AdvertisementPath attribute as follows:
* If the first path segment of the AdvertisementPath is of type AP_SEQUENCE, the local system shall prepend its own ITAD number as the last element of the sequence (put it in the leftmost position). * If the first path segment of the AdvertisementPath is of type AP_SET, the local system shall prepend a new path segment of type AP_SEQUENCE to the AdvertisementPath, including its own ITAD number in that segment.5.5. RoutedPath
Conditional Mandatory: True (if ReachableRoutes attribute is present). Required Flags: Well-known. Potential Flags: None. TRIP Type Code: 5. This attribute identifies the ITADs through which messages sent using this route would pass. The ITADs in this path are a subset of those in the AdvertisementPath.5.5.1. RoutedPath Syntax
The syntax of the RoutedPath attribute is the same as that of the AdvertisementPath attribute. See Section 5.4.1.5.5.2. Route Origination and RoutedPath
When an LS originates a route it MUST include the RoutedPath attribute. - The originating LS shall include its own ITAD number in the RoutedPath attribute of all advertisements sent to LSs located in neighboring ITADs. In this case, the ITAD number of the originating LS's ITAD will be the only entry in the RoutedPath attribute. - The originating LS shall include an empty RoutedPath attribute in all advertisements sent to LSs located in its own ITAD. An empty RoutedPath attribute is one whose length field contains the value zero.5.5.3. Route Selection and RoutedPath
The RoutedPath MAY be used for route selection, and in most cases is preferred over the AdvertisementPath for this role. Some possible criteria to be used are the number of hops on the path and the presence or absence of particular ITADs on the path.
5.5.4. Aggregation and RoutedPath
The rules for aggregating RoutedPath attributes are given in Section 5.4.4.1 and 5.4.4.2, where the term "path" used in Section 5.4.4.1 and 5.4.4.2 is understood to mean RoutedPath.5.5.5. Route Dissemination and RoutedPath
When an LS propagates a route that it learned from another LS, it modifies the route's RoutedPath attribute based on the location of the LS to which the route is sent. - When an LS advertises a route to another LS located in its own ITAD, the advertising LS MUST NOT modify the RoutedPath attribute associated with the route. - If the LS has not changed the NextHopServer attribute, then the LS MUST NOT change the RoutedPath attribute. - Otherwise, the LS changed the NextHopServer and is advertising the route to an LS in another ITAD. The advertising LS MUST update the RoutedPath attribute as follows: * If the first path segment of the RoutedPath is of type AP_SEQUENCE, the local system shall prepend its own ITAD number as the last element of the sequence (put it in the leftmost position). * If the first path segment of the RoutedPath is of type AP_SET, the local system shall prepend a new path segment of type AP_SEQUENCE to the RoutedPath, including its own ITAD number in that segment.5.6. AtomicAggregate
Conditional Mandatory: False. Required Flags: Well-known. Potential Flags: None. TRIP Type Code: 6. The AtomicAggregate attribute indicates that a route may traverse domains not listed in the RoutedPath. If an LS, when presented with a set of overlapping routes from a peer LS, selects the less specific route without selecting the more specific route, then the LS includes the AtomicAggregate attribute with the routing object.5.6.1. AtomicAggregate Syntax
This attribute has length zero (0); the value field is empty.
5.6.2. Route Origination and AtomicAggregate
Routes are never originated with the AtomicAggregate attribute.5.6.3. Route Selection and AtomicAggregate
The AtomicAggregate attribute may be used in route selection - it indicates that the RoutedPath may be incomplete.5.6.4. Aggregation and AtomicAggregate
If any of the routes to aggregate has the AtomicAggregate attribute, then so MUST the resultant aggregate.5.6.5. Route Dissemination and AtomicAggregate
If an LS, when presented with a set of overlapping routes from a peer LS, selects the less specific route (see Section 0) without selecting the more specific route, then the LS MUST include the AtomicAggregate attribute with the routing object (if it is not already present). An LS receiving a routing object with an AtomicAggregate attribute MUST NOT make the set of destinations more specific when advertising it to other LSs, and MUST NOT remove the attribute when propagating this object to a peer LS.5.7. LocalPreference
Conditional Mandatory: False. Required Flags: Well-known. Potential Flags: None. TRIP Type Code: 7. The LocalPreference attribute is only used intra-domain, it indicates the local LS's preference for the routing object to other LSs within the same domain. This attribute MUST NOT be included when communicating to an LS in another domain, and MUST be included over intra-domain links.5.7.1. LocalPreference Syntax
The LocalPreference attribute is a 4-octet unsigned numeric value. A higher value indicates a higher preference.
5.7.2. Route Origination and LocalPreference
Routes MUST NOT be originated with the LocalPreference attribute to inter-domain peers. Routes to intra-domain peers MUST be originated with the LocalPreference attribute.5.7.3. Route Selection and LocalPreference
The LocalPreference attribute allows one LS in a domain to calculate a preference for a route, and to communicate this preference to other LSs within the domain.5.7.4. Aggregation and LocalPreference
The LocalPreference attribute is not affected by aggregation.5.7.5. Route Dissemination and LocalPreference
An LS MUST include the LocalPreference attribute when communicating with peer LSs within its own domain. An LS MUST NOT include the LocalPreference attribute when communicating with LSs in other domains. LocalPreference attributes received from inter-domain peers MUST be ignored.5.8. MultiExitDisc
Conditional Mandatory: False. Required Flags: Well-known. Potential Flags: None. TRIP Type Code: 8. When two ITADs are connected by more than one set of peers, the MultiExitDisc attribute may be used to specify preferences for routes received over one of those links versus routes received over other links. The MultiExitDisc parameter is used only for route selection.5.8.1. MultiExitDisc Syntax
The MultiExitDisc attribute carries a 4-octet unsigned numeric value. A higher value represents a more preferred routing object.5.8.2. Route Origination and MultiExitDisc
Routes originated to intra-domain peers MUST NOT be originated with the MultiExitDisc attribute. When originating a route to an inter- domain peer, the MultiExitDisc attribute may be included.
5.8.3. Route Selection and MultiExitDisc
The MultiExitDisc attribute is used to express a preference when there are multiple links between two domains. If all other factors are equal, then a route with a higher MultiExitDisc attribute is preferred over a route with a lower MultiExitDisc attribute.5.8.4. Aggregation and MultiExitDisc
Routes with differing MultiExitDisc parameters MUST NOT be aggregated. Routes with the same value in the MultiExitDisc attribute MAY be aggregated and the same MultiExitDisc attribute attached to the aggregated object.5.8.5. Route Dissemination and MultiExitDisc
If received from a peer LS in another domain, an LS MAY propagate the MultiExitDisc to other LSs within its domain. The MultiExitDisc attribute MUST NOT be propagated to LSs in other domains. An LS may add the MultiExitDisc attribute when propagating routing objects to an LS in another domain. The inclusion of the MultiExitDisc attribute is a matter of policy, as is the value of the attribute.5.9. Communities
Conditional Mandatory: False. Required Flags: Not Well-Known, Independent Transitive. Potential Flags: None. TRIP Type Code: 9. A community is a group of destinations that share some common property. The Communities attribute is used to group destinations so that the routing decision can be based on the identity of the group. Using the Communities attribute should significantly simplify the distribution of routing information by providing an administratively defined aggregation unit. Each ITAD administrator may define the communities to which a particular route belongs. By default, all routes belong to the general Internet Telephony community. As an example, the Communities attribute could be used to define an alliance between a group of Internet Telephony service providers for a specific subset of routing information. In this case, members of
that alliance would accept only routes for destinations in this group that are advertised by other members of the alliance. Other destinations would be more freely accepted. To achieve this, a member would tag each route with a designated Community attribute value before disseminating it. This relieves the members of such an alliance, from the responsibility of keeping track of the identities of all other members of that alliance. Another example use of the Communities attribute is with aggregation. It is often useful to advertise both the aggregate route and the component more-specific routes that were used to form the aggregate. These information components are only useful to the neighboring TRIP peer, and perhaps the ITAD of the neighboring TRIP peer, so it is desirable to filter out the component routes. This can be achieved by specifying a Community attribute value that the neighboring peers will match and filter on. That way it can be assured that the more specific routes will not propagate beyond their desired scope.5.9.1. Syntax of Communities
The Communities attribute is of variable length. It consists of a set of 8-octet values, each of which specifies a community. The first 4 octets of the Community value are the Community ITAD Number and the next 4 octets are the Community ID. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +---------------+---------------+--------------+----------------+ | Community ITAD Number 1 | +---------------+---------------+--------------+----------------+ | Community ID 1 | +---------------+---------------+--------------+----------------+ | . . . . . . . . . +---------------+---------------+--------------+----------------+ Figure 14: Communities Syntax For administrative assignment, the following assumptions may be made: The Community attribute values starting with a Community ITAD Number of 0x00000000 are hereby reserved. The following communities have global significance and their operation MUST be implemented in any Community attribute-aware TRIP LS.
- NO_EXPORT (Community ITAD Number = 0x00000000 and Community ID = 0xFFFFFF01). Any received route with a community attribute containing this value MUST NOT be advertised outside of the receiving TRIP ITAD. Other community values MUST be encoded using an ITAD number in the four most significant octets. The semantics of the final four octets (the Community ID octets) may be defined by the ITAD (e.g., ITAD 690 may define research, educational, and commercial community IDs that may be used for policy routing as defined by the operators of that ITAD).5.9.2. Route Origination and Communities
The Communities attribute is not well-known. If a route has a Communities attribute associated with it, the LS MUST include that attribute in the advertisement it originates.5.9.3. Route Selection and Communities
The Communities attribute may be used for route selection. A route that is a member of a certain community may be preferred over another route that is not a member of that community. Likewise, routes without a certain community value may be excluded from consideration.5.9.4. Aggregation and Communities
If a set of routes is to be aggregated and the resultant aggregate does not carry an Atomic_Aggregate attribute, then the resulting aggregate should have a Communities attribute that contains the union of the Community attributes of the aggregated routes.5.9.5. Route Dissemination and Communities
An LS may manipulate the Communities attribute before disseminating a route to a peer. Community attribute manipulation may include adding communities, removing communities, adding a Communities attribute (if none exists), deleting the Communities attribute, etc.5.10. ITAD Topology
Conditional Mandatory: False. Required Flags: Well-known, Link-State encapsulated. Potential Flags: None. TRIP Type Code: 10.
Within an ITAD, each LS must know the status of other LSs so that LS failure can be detected. To do this, each LS advertises its internal topology to other LSs within the domain. When an LS detects that another LS is no longer active, the information sourced by that LS can be deleted (the Adj-TRIB-In for that peer may be cleared). The ITAD Topology attribute is used to communicate this information to other LSs within the domain. An LS MUST send a topology update each time it detects a change in its internal peer set. The topology update may be sent in an UPDATE message by itself or it may be piggybacked on an UPDATE message which includes ReachableRoutes and/or WithdrawnRoutes information. When an LS receives a topology update from an internal LS, it MUST recalculate which LSs are active within the ITAD via a connectivity algorithm on the topology.5.10.1. ITAD Topology Syntax
The ITAD Topology attribute indicates the LSs with which the LS is currently peering. The attribute consists of a list of the TRIP Identifiers with which the LS is currently peering, the format is given in Figure 15. This attribute MUST use the link-state encapsulation as defined in Section 4.3.2.4. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +---------------+---------------+--------------+----------------+ | TRIP Identifier 1 | +---------------+---------------+--------------+----------------+ | TRIP Identifier 2 ... | +---------------+---------------+--------------+----------------+ Figure 15: ITAD Topology Syntax5.10.2. Route Origination and ITAD Topology
The ITAD Topology attribute is independent of any routes in the UPDATE. Whenever the set of internal peers of an LS changes, it MUST create an UPDATE with the ITAD Topology Attribute included listing the current set of internal peers. The LS MUST include this attribute in the first UPDATE it sends to a peer after the peering session is established.
5.10.3. Route Selection and ITAD Topology
This attribute is independent of any routing information in the UPDATE. When an LS receives an UPDATE with an ITAD Topology attribute, it MUST compute the set of LSs currently active in the domain by performing a connectivity test on the ITAD topology as given by the set of originated ITAD Topology attributes. The LS MUST locally purge the Adj-TRIB-In for any LS that is no longer active in the domain. The LS MUST NOT propagate this purging information to other LSs as they will make a similar decision.5.10.4. Aggregation and ITAD Topology
This information is not aggregated.5.10.5. Route Dissemination and ITAD Topology
An LS MUST ignore the attribute if received from a peer in another domain. An LS MUST NOT send this attribute to an inter-domain peer.5.11. ConvertedRoute
Conditional Mandatory: False. Required Flags: Well-known. Potential Flags: None. TRIP Type Code: 12. The ConvertedRoute attribute indicates that an intermediate LS has altered the route by changing the route's Application Protocol. For example, if an LS receives a route with Application Protocol X and changes the Application Protocol to Y before advertising the route to an external peer, the LS MUST include the ConvertedRoute attribute. The attribute is an indication that the advertised application protocol will not be used end-to-end, i.e., the information advertised about this route is not complete.5.11.1. ConvertedRoute Syntax
This attribute has length zero (0); the value field is empty.5.11.2. Route Origination and ConvertedRoute
Routes are never originated with the ConvertedRoute attribute.
5.11.3. Route Selection and ConvertedRoute
The ConvertedRoute attribute may be used in route selection - it indicates that advertised routing information is not complete.5.11.4. Aggregation and ConvertedRoute
If any of the routes to aggregate has the ConvertedRoute attribute, then so MUST the resultant aggregate.5.11.5. Route Dissemination and ConvertedRoute
If an LS changes the Application Protocol of a route before advertising the route to an external peer, the LS MUST include the ConvertedRoute attribute.5.12. Considerations for Defining New TRIP Attributes
Any proposal for defining new TRIP attributes should specify the following: - the use of this attribute, - the attribute's flags, - the attribute's syntax, - how the attribute works with route origination, - how the attribute works with route aggregation, and - how the attribute works with route dissemination and the attribute's scope (e.g., intra-domain only like LocalPreference) IANA will manage the assignment of TRIP attribute type codes to new attributes.6. TRIP Error Detection and Handling
This section describes errors to be detected and the actions to be taken while processing TRIP messages. When any of the conditions described here are detected, a NOTIFICATION message with the indicated Error Code, Error Subcode, and Data fields MUST be sent, and the TRIP connection MUST be closed. If no Error Subcode is specified, then a zero Subcode MUST be used. The phrase "the TRIP connection is closed" means that the transport protocol connection has been closed and that all resources for that TRIP connection have been de-allocated. If the connection was inter-domain, then routing table entries associated with the remote peer MUST be marked as invalid. Routing table entries MUST NOT be
marked as invalid if an internal peering session is terminated. The fact that the routes have been marked as invalid is passed to other TRIP peers before the routes are deleted from the system. Unless specified explicitly, the Data field of the NOTIFICATION message that is sent to indicate an error MUST be empty.6.1. Message Header Error Detection and Handling
All errors detected while processing the Message Header are indicated by sending the NOTIFICATION message with the Error Code Message Header Error. The Error Subcode elaborates on the specific nature of the error. The error checks in this section MUST be performed by each LS upon receipt of every message. If the Length field of the message header is less than 3 or greater than 4096, or if the Length field of an OPEN message is less than the minimum length of the OPEN message, or if the Length field of an UPDATE message is less than the minimum length of the UPDATE message, or if the Length field of a KEEPALIVE message is not equal to 3, or if the Length field of a NOTIFICATION message is less than the minimum length of the NOTIFICATION message, then the Error Subcode MUST be set to Bad Message Length. The Data field contains the erroneous Length field. If the Type field of the message header is not recognized, then the Error Subcode MUST be set to "Bad Message Type." The Data field contains the erroneous Type field.6.2. OPEN Message Error Detection and Handling
All errors detected while processing the OPEN message are indicated by sending the NOTIFICATION message with the Error Code "OPEN Message Error." The Error Subcode elaborates on the specific nature of the error. The error checks in this section MUST be performed by each LS upon receipt of every OPEN message. If the version number contained in the Version field of the received OPEN message is not supported, then the Error Subcode MUST be set to "Unsupported Version Number." The Data field is a 1-octet unsigned integer, which indicates the largest locally supported version number, which is less than the version of the remote TRIP peer bid (as indicated in the received OPEN message). If the ITAD field of the OPEN message is unacceptable, then the Error Subcode MUST be set to "Bad Peer ITAD." The determination of acceptable ITAD numbers is outside the scope of this protocol.
If the Hold Time field of the OPEN message is unacceptable, then the Error Subcode MUST be set to "Unacceptable Hold Time." An implementation MUST reject Hold Time values of one or two seconds. An implementation MAY reject any proposed Hold Time. An implementation that accepts a Hold Time MUST use the negotiated value for the Hold Time. If the TRIP Identifier field of the OPEN message is not valid, then the Error Subcode MUST be set to "Bad TRIP Identifier." A TRIP identifier is 4-octets in length and can take any value. An LS considers the TRIP Identifier invalid if it already has an open connection with another peer LS that has the same ITAD and TRIP Identifier. Any two LSs within the same ITAD MUST NOT have equal TRIP Identifier values. This restriction does not apply to LSs in different ITADs since the purpose is to uniquely identify an LS using its TRIP Identifier and its ITAD number. If one of the Optional Parameters in the OPEN message is not recognized, then the Error Subcode MUST be set to "Unsupported Optional Parameters." If the Optional Parameters of the OPEN message include Capability Information with an unsupported capability (unsupported in either capability type or value), then the Error Subcode MUST be set to "Unsupported Capability," and the entirety of the unsupported capabilities MUST be listed in the Data field of the NOTIFICATION message. If the Optional Parameters of the OPEN message include Capability Information which does not match the receiving LS's capabilities, then the Error Subcode MUST be set to "Capability Mismatch," and the entirety of the mismatched capabilities MUST be listed in the Data field of the NOTIFICATION message.6.3. UPDATE Message Error Detection and Handling
All errors detected while processing the UPDATE message are indicated by sending the NOTIFICATION message with the Error Code "UPDATE Message Error." The Error Subcode elaborates on the specific nature of the error. The error checks in this section MUST be performed by each LS upon receipt of every UPDATE message. These error checks MUST occur before flooding procedures are invoked with internal peers.
If any recognized attribute has Attribute Flags that conflict with the Attribute Type Code, then the Error Subcode MUST be set to "Attribute Flags Error." The Data field contains the erroneous attribute (type, length and value). If any recognized attribute has an Attribute Length that conflicts with the expected length (based on the attribute type code), then the Error Subcode MUST be set to "Attribute Length Error." The Data field contains the erroneous attribute (type, length and value). If any of the mandatory (i.e., conditional mandatory attribute and the conditions for including it in the UPDATE message are fulfilled) well-known attributes are not present, then the Error Subcode MUST be set to "Missing Well-known Mandatory Attribute." The Data field contains the Attribute Type Code of the missing well-known conditional mandatory attributes. If any of the well-known attributes are not recognized, then the Error Subcode MUST be set to "Unrecognized Well-known Attribute." The Data field contains the unrecognized attribute (type, length and value). If any attribute has a syntactically incorrect value, or an undefined value, then the Error Subcode is set to "Invalid Attribute." The Data field contains the incorrect attribute (type, length and value). Such a NOTIFICATION message is sent, for example, when a NextHopServer attribute is received with an invalid address. The information carried by the AdvertisementPath attribute is checked for ITAD loops. ITAD loop detection is done by scanning the full AdvertisementPath, and checking that the ITAD number of the local ITAD does not appear in the AdvertisementPath. If the local ITAD number appears in the AdvertisementPath, then the route MAY be stored in the Adj-TRIB-In. However unless the LS is configured to accept routes with its own ITAD in the advertisement path, the route MUST not be passed to the TRIP Decision Process. The operation of an LS that is configured to accept routes with its own ITAD number in the advertisement path are outside the scope of this document. If the UPDATE message was received from an internal peer and either the WithdrawnRoutes, ReachableRoutes, or ITAD Topology attribute does not have the Link-State Encapsulation flag set, then the Error Subcode is set to "Invalid Attribute" and the data field contains the attribute. Likewise, the attribute is invalid if received from an external peer and the Link-State Flag is set. If any attribute appears more than once in the UPDATE message, then the Error Subcode is set to "Malformed Attribute List."
6.4. NOTIFICATION Message Error Detection and Handling
If a peer sends a NOTIFICATION message, and there is an error in that message, there is unfortunately no means of reporting this error via a subsequent NOTIFICATION message. Any such error, such as an unrecognized Error Code or Error Subcode, should be noticed, logged locally, and brought to the attention of the administration of the peer. The means to do this, however, are outside the scope of this document.6.5. Hold Timer Expired Error Handling
If a system does not receive successive messages within the period specified by the negotiated Hold Time, then a NOTIFICATION message with a "Hold Timer Expired" Error Code MUST be sent and the TRIP connection MUST be closed.6.6. Finite State Machine Error Handling
An error detected by the TRIP Finite State Machine (e.g., receipt of an unexpected event) MUST result in sending a NOTIFICATION message with the Error Code "Finite State Machine Error" and the TRIP connection MUST be closed.6.7. Cease
In the absence of any fatal errors (that are indicated in this section), a TRIP peer MAY choose at any given time to close its TRIP connection by sending the NOTIFICATION message with the Error Code "Cease." However, the Cease NOTIFICATION message MUST NOT be used when a fatal error indicated by this section exists.6.8. Connection Collision Detection
If a pair of LSs try simultaneously to establish a transport connection to each other, then two parallel connections between this pair of speakers might well be formed. We refer to this situation as connection collision. Clearly, one of these connections must be closed. Based on the value of the TRIP Identifier, a convention is established for detecting which TRIP connection is to be preserved when a collision occurs. The convention is to compare the TRIP Identifiers of the peers involved in the collision and to retain only the connection initiated by the LS with the higher-valued TRIP Identifier.
Upon receipt of an OPEN message, the local LS MUST examine all of its connections that are in the OpenConfirm state. An LS MAY also examine connections in an OpenSent state if it knows the TRIP Identifier of the peer by means outside of the protocol. If among these connections there is a connection to a remote LS, whose TRIP Identifier equals the one in the OPEN message, then the local LS MUST perform the following collision resolution procedure: The TRIP Identifier and ITAD of the local LS is compared to the TRIP Identifier and ITAD of the remote LS (as specified in the OPEN message). TRIP Identifiers are treated as 4-octet unsigned integers for comparison. If the value of the local TRIP Identifier is less than the remote one, or if the two TRIP Identifiers are equal and the value of the ITAD of the local LS is less than value of the ITAD of the remote LS, then the local LS MUST close the TRIP connection that already exists (the one that is already in the OpenConfirm state), and accept the TRIP connection initiated by the remote LS: 1. Otherwise, the local LS closes the newly created TRIP connection and continues to use the existing one (the one that is already in the OpenConfirm state). 2. If a connection collision occurs with an existing TRIP connection that is in the Established state, then the LS MUST unconditionally close off the newly created connection. Note that a connection collision cannot be detected with connections in Idle, Connect, or Active states. 3. To close the TRIP connection (that results from the collision resolution procedure), an LS MUST send a NOTIFICATION message with the Error Code "Cease" and the TRIP connection MUST be closed.7. TRIP Version Negotiation
Peer LSs may negotiate the version of the protocol by making multiple attempts to open a TRIP connection, starting with the highest version number each supports. If an open attempt fails with an Error Code "OPEN Message Error" and an Error Subcode "Unsupported Version Number," then the LS has available the version number it tried, the version number its peer tried, the version number passed by its peer in the NOTIFICATION message, and the version numbers that it supports. If the two peers support one or more common versions, then this will allow them to rapidly determine the highest common version. In order to support TRIP version negotiation, future versions of TRIP must retain the format of the OPEN and NOTIFICATION messages.
8. TRIP Capability Negotiation
An LS MAY include the Capabilities Option in its OPEN message to a peer to indicate the capabilities supported by the LS. An LS receiving an OPEN message MUST NOT use any capabilities that were not included in the OPEN message of the peer when communicating with that peer.9. TRIP Finite State Machine
This section specifies TRIP operation in terms of a Finite State Machine (FSM). Following is a brief summary and overview of TRIP operations by state as determined by this FSM. A condensed version of the TRIP FSM is found in Appendix 1. There is one TRIP FSM per peer and these FSMs operate independently. Idle state: Initially TRIP is in the Idle state for each peer. In this state, TRIP refuses all incoming connections. No resources are allocated to the peer. In response to the Start event (initiated by either the system or the operator), the local system initializes all TRIP resources, starts the ConnectRetry timer, initiates a transport connection to the peer, starts listening for a connection that may be initiated by the remote TRIP peer, and changes its state to Connect. The exact value of the ConnectRetry timer is a local matter, but should be sufficiently large to allow TCP initialization. If an LS detects an error, it closes the transport connection and changes its state to Idle. Transitioning from the Idle state requires generation of the Start event. If such an event is generated automatically, then persistent TRIP errors may result in persistent flapping of the LS. To avoid such a condition, Start events MUST NOT be generated immediately for a peer that was previously transitioned to Idle due to an error. For a peer that was previously transitioned to Idle due to an error, the time between consecutive Start events, if such events are generated automatically, MUST exponentially increase. The value of the initial timer SHOULD be 60 seconds, and the time SHOULD be at least doubled for each consecutive retry up to some maximum value. Any other event received in the Idle state is ignored. Connect State: In this state, an LS is waiting for a transport protocol connection to be completed to the peer, and is listening for inbound transport connections from the peer.
If the transport protocol connection succeeds, the local LS clears the ConnectRetry timer, completes initialization, sends an OPEN message to its peer, sets its Hold Timer to a large value, and changes its state to OpenSent. A Hold Timer value of 4 minutes is suggested. If the transport protocol connect fails (e.g., retransmission timeout), the local system restarts the ConnectRetry timer, continues to listen for a connection that may be initiated by the remote LS, and changes its state to Active state. In response to the ConnectRetry timer expired event, the local LS cancels any outstanding transport connection to the peer, restarts the ConnectRetry timer, initiates a transport connection to the remote LS, continues to listen for a connection that may be initiated by the remote LS, and stays in the Connect state. If the local LS detects that a remote peer is trying to establish a connection to it and the IP address of the peer is not an expected one, then the local LS rejects the attempted connection and continues to listen for a connection from its expected peers without changing state. If an inbound transport protocol connection succeeds, the local LS clears the ConnectRetry timer, completes initialization, sends an OPEN message to its peer, sets its Hold Timer to a large value, and changes its state to OpenSent. A Hold Timer value of 4 minutes is suggested. The Start event is ignored in the Connect state. In response to any other event (initiated by either the system or the operator), the local system releases all TRIP resources associated with this connection and changes its state to Idle. Active state: In this state, an LS is listening for an inbound connection from the peer, but is not in the process of initiating a connection to the peer. If an inbound transport protocol connection succeeds, the local LS clears the ConnectRetry timer, completes initialization, sends an OPEN message to its peer, sets its Hold Timer to a large value, and changes its state to OpenSent. A Hold Timer value of 4 minutes is suggested.
In response to the ConnectRetry timer expired event, the local system restarts the ConnectRetry timer, initiates a transport connection to the TRIP peer, continues to listen for a connection that may be initiated by the remote TRIP peer, and changes its state to Connect. If the local LS detects that a remote peer is trying to establish a connection to it and the IP address of the peer is not an expected one, then the local LS rejects the attempted connection and continues to listen for a connection from its expected peers without changing state. Start event is ignored in the Active state. In response to any other event (initiated by either the system or the operator), the local system releases all TRIP resources associated with this connection and changes its state to Idle. OpenSent state: In this state, an LS has sent an OPEN message to its peer and is waiting for an OPEN message from its peer. When an OPEN message is received, all fields are checked for correctness. If the TRIP message header checking or OPEN message checking detects an error (see Section 6.2) or a connection collision (see Section 6.8), the local system sends a NOTIFICATION message and changes its state to Idle. If there are no errors in the OPEN message, TRIP sends a KEEPALIVE message and sets a KeepAlive timer. The Hold Timer, which was originally set to a large value (see above), is replaced with the negotiated Hold Time value (see Section 4.2). If the negotiated Hold Time value is zero, then the Hold Time timer and KeepAlive timers are not started. If the value of the ITAD field is the same as the local ITAD number, then the connection is an "internal" connection; otherwise, it is "external" (this will affect UPDATE processing). Finally, the state is changed to OpenConfirm. If the local LS detects that a remote peer is trying to establish a connection to it and the IP address of the peer is not an expected one, then the local LS rejects the attempted connection and continues to listen for a connection from its expected peers without changing state. If a disconnect notification is received from the underlying transport protocol, the local LS closes the transport connection, restarts the ConnectRetry timer, continues to listen for a connection that may be initiated by the remote TRIP peer, and goes into the Active state.
If the Hold Timer expires, the local LS sends a NOTIFICATION message with the Error Code "Hold Timer Expired" and changes its state to Idle. In response to the Stop event (initiated by either system or operator) the local LS sends a NOTIFICATION message with the Error Code "Cease" and changes its state to Idle. The Start event is ignored in the OpenSent state. In response to any other event the local LS sends a NOTIFICATION message with the Error Code "Finite State Machine Error" and changes its state to Idle. Whenever TRIP changes its state from OpenSent to Idle, it closes the transport connection and releases all resources associated with that connection. OpenConfirm state: In this state, an LS has sent an OPEN to its peer, received an OPEN from its peer, and sent a KEEPALIVE in response to the OPEN. The LS is now waiting for a KEEPALIVE or NOTIFICATION message in response to its OPEN. If the local LS receives a KEEPALIVE message, it changes its state to Established. If the Hold Timer expires before a KEEPALIVE message is received, the local LS sends NOTIFICATION message with the Error Code "Hold Timer Expired" and changes its state to Idle. If the local LS receives a NOTIFICATION message, it changes its state to Idle. If the KeepAlive timer expires, the local LS sends a KEEPALIVE message and restarts its KeepAlive timer. If a disconnect notification is received from the underlying transport protocol, the local LS closes the transport connection, restarts the ConnectRetry timer, continues to listen for a connection that may be initiated by the remote TRIP peer, and goes into the Active state. In response to the Stop event (initiated by either the system or the operator) the local LS sends NOTIFICATION message with the Error Code "Cease" and changes its state to Idle. The Start event is ignored in the OpenConfirm state.
In response to any other event the local LS sends a NOTIFICATION message with the Error Code "Finite State Machine Error" and changes its state to Idle. Whenever TRIP changes its state from OpenConfirm to Idle, it closes the transport connection and releases all resources associated with that connection. Established state: In the Established state, an LS can exchange UPDATE, NOTIFICATION, and KEEPALIVE messages with its peer. If the negotiated Hold Timer is zero, then no procedures are necessary for keeping a peering session alive. If the negotiated Hold Time value is non-zero, the procedures of this paragraph apply. If the Hold Timer expires, the local LS sends a NOTIFICATION message with the Error Code "Hold Timer Expired" and changes its state to Idle. If the KeepAlive Timer expires, then the local LS sends a KeepAlive message and restarts the KeepAlive Timer. If the local LS receives an UPDATE or KEEPALIVE message, then it restarts its Hold Timer. Each time the LS sends an UPDATE or KEEPALIVE message, it restarts its KeepAlive Timer. If the local LS receives a NOTIFICATION message, it changes its state to Idle. If the local LS receives an UPDATE message and the UPDATE message error handling procedure (see Section6.3) detects an error, the local LS sends a NOTIFICATION message and changes its state to Idle. If a disconnect notification is received from the underlying transport protocol, the local LS changes its state to Idle. In response to the Stop event (initiated by either the system or the operator), the local LS sends a NOTIFICATION message with the Error Code "Cease" and changes its state to Idle. The Start event is ignored in the Established state. In response to any other event, the local LS sends a NOTIFICATION message with Error Code "Finite State Machine Error" and changes its state to Idle. Whenever TRIP changes its state from Established to Idle, it closes the transport connection and releases all resources associated with that connection. Additionally, if the peer is an external peer, the LS deletes all routes derived from that connection.