Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 3116

Methodology for ATM Benchmarking

Pages: 127
Informational
Part 5 of 5 – Pages 106 to 127
First   Prev   None

Top   ToC   RFC3116 - Page 106   prevText

3.4. ATM Service: Signaling

3.4.1. CAC Denial Time and Connection Establishment Time

Objective: To determine the CAC rejection time and Connection Establishment Time on the SUT as defined in RFC 2761 "Terminology for ATM Benchmarking". Procedure: 1) Set up the SUT and test device using the bi-directional configuration. 2) Create a UNI signaling setup message, as described in Appendix C, specifying a PCR which will not allow CAC to reject the call.
Top   ToC   RFC3116 - Page 107
   3)  Send the UNI signaling setup message.  Note the time the setup
       message was sent.  Verify that the SVC has been setup with the
       correct parameters.  Note the time the connect message was
       received

   4)  Create a UNI signaling setup message, as described in Appendix C,
       specifying a PCR which will allow CAC to reject the call.

   5)  Send the UNI signaling setup message.  Note the time the setup
       message was sent.  Verify that the SVC has been rejected with the
       correct cause code.  Note the time the release complete message
       was received.

   6)  Compute the rejection time as the difference between the time the
       release complete message was received and the time setup message
       was send.

   Reporting Format:

      The results of the CAC Denial Time and Connection Establishment
      Time tests SHOULD be reported in a form of a table.  The rows
      SHOULD be labeled call accepted and call rejected.  The columns
      SHOULD be labeled time setup sent, time response received, and
      correct response.  The elements of the columns 1 and 2 SHOULD be
      in seconds.  The elements of column 3 SHOULD be be either True or
      False, indicating whether the particular condition was observed
      for each test.

      The table MUST also indicate the packet size in octets and traffic
      rate in packets per second as generated by the test device.

3.4.2. Connection Teardown Time

Objective: To determine the Connection Teardown Time on the SUT as defined in RFC 2761 "Terminology for ATM Benchmarking". Procedure: 1) Set up the SUT and test device using the bi-directional configuration. 2) Create a UNI signaling setup message, as described in Appendix C, specifying a PCR which will not allow CAC to reject the call. 3) Send the UNI signaling setup message. Note the time the setup message was sent. Verify that the SVC has been setup with the correct parameters. Note the time the connect message was received
Top   ToC   RFC3116 - Page 108
   4)  Create a UNI signaling release message, as described in Appendix
       C, specifying a cause code of normal call clearing.

   5)  Send the UNI signaling release message.  Note the time the
       release message was sent.  Verify that the SVC has been
       terminated with the correct cause code.  Note the time the
       release complete message was received.

   6)  Compute the release time as the difference between the time the
       release complete message was received and the time release
       message was send.

   Reporting Format:

      The results of the Connection Teardown Time tests SHOULD be
      reported in a form of a table.  The rows SHOULD be labeled call
      accepted and call released.  The columns SHOULD be labeled time
      message sent, time response received, and correct response.  The
      elements of the columns 1 and 2 SHOULD be in seconds.  The
      elements of column 3 SHOULD be be either True or False, indicating
      whether the particular condition was observed for each test.

      The table MUST also indicate the packet size in octets and traffic
      rate in packets per second as generated by the test device.

3.4.3. Crankback Time

Objective: To determine the Crankback Time on the SUT as defined in RFC 2761 "Terminology for ATM Benchmarking". Procedure: 1) Set up the SUT and test device using the uni-directional passthrough configuration. 2) Create a PNNI signaling setup message, as described in Appendix C, specifying a DTL which is not blocked by the far end SUT. 3) Send the PNNI signaling setup message. Note the time the setup message was sent. Verify that the connect message has been received by the near-end switch. Note the time the connect message was received 4) Create a PNNI signaling setup message, as described in Appendix C, specifying a DTL which is blocked by the far end SUT. 5) Send the PNNI signaling release message. Note the time the release message was sent. Note the time the release complete
Top   ToC   RFC3116 - Page 109
       message was received.  Note the time the near-end switch sends
       it's own PNNI setup message (referred to as the near-end setup
       message) specifying the non- blocked DTL.

   6)  Compute the crankback time as the difference between the time the
       near-end setup message was received and the time release message
       was send.

   Reporting Format:

      The results of the Crankback Time tests SHOULD be reported in a
      form of a table.  The rows SHOULD be labeled DTL call accepted and
      call released.  The columns SHOULD be labeled time message sent,
      time response received, and correct response.  The elements of the
      columns 1 and 2 SHOULD be in seconds.  The elements of column 3
      SHOULD be be either True or False, indicating whether the
      particular condition was observed for each test.

      The table MUST also indicate the packet size in octets and traffic
      rate in packets per second as generated by the test device.

3.4.4. Route Update Response Time

Objective: To determine the Route Update Response Time on the SUT as defined in RFC 2761 "Terminology for ATM Benchmarking". Procedure: 1) Set up the SUT and test device using the uni-directional passthrough configuration. 2) Create a PNNI PTSE as described in Appendix C, specifying a routing topology. Verify that the routing tables on the far-end and near-end switches are empty. 3) Send the PTSE message to the far-end switch. Note the time the PTSE message was sent. Verify that the PTSE message has been received by the far-end switch. Note the time the PTSE message was received. 4) Create another PNNI PTSE as described in Appendix C, specifying a change in the routing topology. Verify that the routing tables on the far-end and near-end switches contain the previous PTSE routes. 5) Send the PTSE message to the far-end switch. Note the time the PTSE message was sent. Verify that the PTSE message has been received by the far-end switch. Note the time the PTSE message
Top   ToC   RFC3116 - Page 110
       was received.  Note the time the PTSE was sent to the near-end
       switch.  Note the time the PTSE message was received on the
       near-end switch.

   6)  Compute the Route Update Response time as the difference between
       the time the far-end PTSE message was sent and the time far-end
       PTSE message was received by the near-end.

   Reporting Format:

      The results of the Route Update Response Time tests SHOULD be
      reported in a form of a table.  The rows SHOULD be labeled PTSE
      call accepted, far-end PTSE message send, and near-end message
      received.  The columns SHOULD be labeled time message sent, time
      response received, and correct response.  The elements of the
      columns 1 and 2 SHOULD be in seconds.  The elements of column 3
      SHOULD be be either True or False, indicating whether the
      particular condition was observed for each test.

      The table MUST also indicate the packet size in octets and traffic
      rate in packets per second as generated by the test device.

3.5. ATM Service: ILMI

3.5.1. MIB Alignment Time

Objective: To determine the MIB Alignment Time on the SUT as defined in RFC 2761 "Terminology for ATM Benchmarking". Procedure: 1) Set up the SUT and test device using the bi-directional configuration. 2) Send a Cold Start message to the SUT. Note the time the message was sent to the SUT. Verify that the Cold Start message has been received by the SUT. Note the time the message was received. 3) Send a Get Request message to the SUT. Note the time the message was sent to the SUT. Verify that the Get Request message has been received by the SUT. Note the time the message was received. 4) After all MIB elements are exchanged, verify that the final Get Request message has been received by the SUT. Note the time the message was send and received by the SUT.
Top   ToC   RFC3116 - Page 111
   5)  Compute the MIB Alignment Time as the difference between the time
       the Cold Start message was sent and the time the final Get
       Request was received by the SUT.

   Reporting Format:

      The results of the MIB Alignment Time tests SHOULD be reported in
      a form of a table.  The rows SHOULD be labeled Cold Start Send,
      Cold Start accepted, Final Get Request send, and Final Get Request
      received.  The columns SHOULD be labeled time message sent, time
      response received, and correct response.  The elements of the
      columns 1 and 2 SHOULD be in seconds.  The elements of column 3
      SHOULD be be either True or False, indicating whether the
      particular condition was observed for each test.

      The table MUST also indicate the packet size in octets and traffic
      rate in packets per second as generated by the test device.

3.5.2. Address Registration Time

Objective: To determine the Address Registration Time on the SUT as defined in RFC 2761 "Terminology for ATM Benchmarking". Procedure: 1) Set up the SUT and test device using the bi-directional configuration. 2) Send a Set Request message to the SUT. Note the time the message was sent to the SUT. Verify that the Set Request message has been received by the SUT. Note the time the message was received. 3) Send a Get Request message to the SUT. Note the time the message was sent to the SUT. Verify that the Get Request message has been received by the SUT. Note the time the message was received. 4) After all MIB elements are exchanged, verify that the final Get Request message has been received by the SUT. Note the time the message was send and received by the SUT. 5) Compute the Address Registration Time as the difference between the time the Set Request message was sent and the time the final Get Request was received by the SUT.
Top   ToC   RFC3116 - Page 112
   Reporting Format:

      The results of the Address Registration Time tests SHOULD be
      reported in a form of a table.  The rows SHOULD be labeled Set
      Request Send, Set Request accepted, Final Get Request send, and
      Final Get Request received.  The columns SHOULD be labeled time
      message sent, time response received, and correct response.  The
      elements of the columns 1 and 2 SHOULD be in seconds.  The
      elements of column 3 SHOULD be be either True or False, indicating
      whether the particular condition was observed for each test.

      The table MUST also indicate the packet size in octets and traffic
      rate in packets per second as generated by the test device.

4. Security Considerations

As this document is solely for the purpose of providing methodology and describes neither a protocol nor an implementation, there are no security considerations associated with this document.

5. Notices

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETFs procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.
Top   ToC   RFC3116 - Page 113

6. References

[RFC2544] Bradner, S. and J. McQuaid, "Benchmarking Methodology for Network Interconnect Devices", RFC 2544, March 1999. [RFC2225] Laubach, M. and J. Halpern, "Classical IP and ARP over ATM", RFC 2225, April 1998. [RFC2761] Dunn, J. and C. Martin, "Terminology for ATM Benchmarking", RFC 2761, February 2000. [AF-ILMI4.0] ATM Forum Integrated Local Management Interface Version 4.0, af-ilmi-0065.000, September 1996. [AF-TEST-0022] Introduction to ATM Forum Test Specifications, af- test-0022.00, December 1994. [AF-TM4.1] ATM Forum, Traffic Management Specification Version 4.1, af-tm-0121.00, April 1996. [AF-UNI3.1] ATM Forum, User Network Interface Specification Version 3.1, September 1994. [AF-UNI4.0] ATM Forum, User Network Interface Specification Version 4.0, July 1996.

7. Authors' Addresses

Jeffrey Dunn Advanced Network Consultants, Inc. 4214 Crest Place Ellicott City, MD 21043, USA Phone: +1 (410) 750-1700 EMail: Jeffrey.Dunn@worldnet.att.net Cynthia Martin Advanced Network Consultants, Inc. 4214 Crest Place Ellicott City, MD 21043, USA Phone: +1 (410) 750-1700 EMail: Cynthia.E.Martin@worldnet.att.net
Top   ToC   RFC3116 - Page 114

Appendix A: Ranges

ATM NSAP Network Prefix. 39 0000 0000 0000 0000 0000 0000-39 0000 0000 0000 0000 0000 00FF 39 0000 0000 0000 0000 0001 0000-39 0000 0000 0000 0000 0001 00FF 39 0000 0000 0000 0001 0000 0000 39 0000 0000 0000 0002 0020 0000 39 0000 0000 0300 0002 0030 0000 39 0000 0000 4000 0002 0060 0000 39 0000 0006 0060 0002 0030 0000 39 0000 0006 0050 0002 0030 0000 39 0000 0009 0300 0002 0030 0000 39 0000 00A0 0300 0002 0030 0000 39 0000 0B00 0300 0002 0030 0000 39 0000 C000 0300 0002 0030 0000 ATM NSAP End System Identifier. 1111 1111 1111 00-1111 1111 11FF 00 2222 2222 2000 00-2222 2222 2222 00 9999 999A 0000 00-9999 999C 0000 00

Appendix B: Rates

PNNI Routing Update Size. 1) 1 PNNI routing entry update on non-aggregated addresses 2) 2 PNNI routing entry updates on non-aggregated addresses 3) 5 PNNI routing entry updates on non-aggregated addresses 4) 1 % of total available bandwidth or 1 Mb/s, whichever is less on non- aggregated addresses 5) 1 % of total available bandwidth or 1 Mb/s, whichever is less on of non-aggregated addresses and of aggregated addresses 6) 1 % of total available bandwidth or 1 Mb/s, whichever is less on aggregated addresses 7) 2 % of total available bandwidth or 2 Mb/s, whichever is less on non- aggregated addresses 8) 2 % of total available bandwidth or 2 Mb/s, whichever is less on of non-aggregated addresses and of aggregated addresses 9) 2 % of total available bandwidth or 2 Mb/s, whichever is less on aggregated addresses
Top   ToC   RFC3116 - Page 115
   PNNI Routing Update Repetition Interval.

   Repetition Interval begins after initial PNNI routing table
      stabilizes.

   1) 1 update every 1 hour, for 24 hours

   2) 1 update every 30 minutes, for 24 hours

   3) 1 update every 5 minutes, for 1 hour

   4) 1 update every 1 minute, for 15 minutes

   5) 1 update every 30 seconds, for 5 minutes

   6) 1 update every 30 seconds, for 1 minute

   7) 1 update every 1 second, for 30 seconds

   Maximum WAN Connection rates in packets per second (pps):

                    25.6        OC-3c       OC-12c
   IP Packet Size
   octets/cells
       44/2         30188       176603      706412
       64/2         30188       176603      706412
      128/3         20125       117735      470940
      256/6         10062        58867      235468
    1024/22          2744        16054      64216
    1518/32          1886        11037      44148
    2048/43          1404         8214      32856
    4472/94           642         3757      15028
   9180/192           314         1839       7356

   Maximum LAN Connection rates in packets per second (pps):

                    DS-1       DS-3       E1        E3
   IP Packet Size
   octets/cells
       44/2          1811      52133      2340     40000
       64/2          1811      52133      2340     40000
      128/3          1207      34755      1560     26666
      256/6           603      17377       780     13333
    1024/22           164       4739       212      3636
    1518/32           113       3258       146      2500
    2048/43            84       2424       108      1860
    4472/94            38       1109        49       851
    9180/192           18        543        24       416
Top   ToC   RFC3116 - Page 116
   Notes: 1.  PDU size in cells is computed based on ceiling( ( PDU size
   in octets + 16) / 48).  This assumes an 8 octet LLC/SNAP header and
   an 8 octet AAL/5 trailer.

   2.  Due to the number of possible configurations, IMA pps rates are
   not listed, but may be derived from the following formula: floor
   (IDCR/cells per packet), where cells per packet is computed as in
   note 1.

   3. The following cell rates were used: DS-1 = 3622 cps (using ATM TC)
   E1 = 4681 cps 25.6 Mb/s = 60377 cps E3 = 80000 cps (using ATM TC)
   DS-3 = 104266 cps (using ATM TC) OC-3c = 353207 cps OC-12c = 1412828
   cps

Appendix C: PDU's

TCP/IP over ATM Example 1. LLC: DSAP 0xAA (SNAP-SAP) SSAP 0xAA (SNAP-SAP) Control 0x03 (Unnumbered Information) SNAP: OUI 0x00-00-00 (Ethertype) PID 0x0800 (Internet Protocol) IP: Version = 4 Header length = 20 Type of service = 0 000. .... Precedence = Routine(0) ...0 .... Delay = Normal (0) .... 0... Throughput = Normal (0) .... .0.. Reliability = Normal (0) Packet length = 40 Id = 0 Fragmentation Info = 0x0000 .0.. .... .... .... Don't Fragment Bit = FALSE ..0. .... .... .... More Fragments Bit = FALSE ...0 0000 0000 0000 Fragment offset = 0 Time to live = 255 Protocol = TCP (6) Header checksum = F9CF Source address = 15.19.209.236 Destination address = 15.19.209.237 TCP: Source port = smtp (25) Destination port = smtp (25) Sequence number = 1 Ack number = 0 Data offset = 20 Flags = 0x02 ..0. .... URGENT Flag = FALSE ...0 .... ACK Flag = FALSE
Top   ToC   RFC3116 - Page 117
                 .... 0... PUSH Flag = FALSE
                 .... .0.. RST Flag = FALSE
                 .... ..1. SYN Flag = TRUE
                 .... ...0 FIN Flag = FALSE
             Window = 0
             Checksum = EDAF
             Urgent pointer = 00000000

 TCP/IP over ATM Example 2.
LLC:     DSAP                         0xAA (SNAP-SAP)
             SSAP                        0xAA (SNAP-SAP)
             Control                     0x03 (Unnumbered Information)
    SNAP:  OUI                        0x00-00-00 (Ethertype)
             PID                         0x0800 (Internet Protocol)
    IP:      Version = 4
             Header length = 20
             Type of service = 0
                 000. .... Precedence = Routine(0)
                 ...0 .... Delay = Normal (0)
                 .... 0... Throughput = Normal (0)
                 .... .0.. Reliability = Normal (0)
             Packet length = 40
             Id = 0
             Fragmentation Info = 0x0000
                 .0.. ....  .... .... Don't Fragment Bit = FALSE
                 ..0. ....  .... .... More Fragments Bit = FALSE
                 ...0 0000  0000 0000 Fragment offset = 0
             Time to live = 255
             Protocol = TCP (6)
             Header checksum = F9CF
             Source address = 15.19.209.236
             Destination address = 15.19.209.237
    TCP:     Source port = ftp-data (20)
             Destination port = 2000
             Sequence number = 1
             Ack number = 0
             Data offset = 20
             Flags = 0x02
                 ..0. .... URGENT Flag = FALSE
                 ...0 .... ACK Flag = FALSE
                 .... 0... PUSH Flag = FALSE
                 .... .0.. RST Flag = FALSE
                 .... ..1. SYN Flag = TRUE
                 .... ...0 FIN Flag = FALSE
             Window = 0
             Checksum = E5FD
             Urgent pointer = 00000000
Top   ToC   RFC3116 - Page 118
 UDP/IP over ATM Example.
    LLC:    DSAP                        0xAA (SNAP-SAP)
            SSAP                        0xAA (SNAP-SAP)
            Control                     0x03 (Unnumbered Information)
    SNAP:   OUI                         0x00-00-00 (Ethertype)
            PID                         0x0800 (Internet Protocol)
    IP:      Version = 4
             Header length = 20
             Type of service = 0
                 000. .... Precedence = Routine(0)
                 ...0 .... Delay = Normal (0)
                 .... 0... Throughput = Normal (0)
                 .... .0.. Reliability = Normal (0)
             Packet length = 28
             Id = 0
             Fragmentation Info = 0x0000
                 .0.. ....  .... .... Don't Fragment Bit = FALSE
                 ..0. ....  .... .... More Fragments Bit = FALSE
                 ...0 0000  0000 0000 Fragment offset = 0
             Time to live = 255
             Protocol = ICMP (1)
             Header checksum = F9E0
             Source address = 15.19.209.236
             Destination address = 15.19.209.237
    ICMP:    Type = Echo request (8)
             Code = 0
             Checksum = F7FF
             Identifier = 0 (0x0)
             Sequence Number = 0 (0x0)

 RIP Routing Update over ATM.

    -- DATAGRAM HEADER
          offset data (hex)            description
          00     FF FF FF FF FF FF     dest MAC address is broadcast
          06     xx xx xx xx xx xx     source hardware address
          12     08 00                 type

          -- IP HEADER
          14     45                    IP version - 4, header length (4
         byte units) - 5
          15     00                    service field
          16     00 EE                 total length
          18     00 00                 ID
          20     40 00                 flags (3 bits) 4 (do not
         fragment),
                                       fragment offset-0
          22     0A                    TTL
Top   ToC   RFC3116 - Page 119
          23     11                    protocol - 17 (UDP)
          24     C4 8D                 header checksum
          26     xx xx xx xx           source IP address
          30     xx xx xx              destination IP address
          33     FF                    host part = FF for broadcast

          -- UDP HEADER
          34     02 08                 source port 208 = RIP
          36     02 08                 destination port 208 = RIP
          38     00 DA                 UDP message length
          40     00 00                 UDP checksum

          -- RIP packet
          42     02                  command = response
          43     01                  version = 1
          44     00 00               0

          -- net 1
          46     00 02               family = IP
          48     00 00               0
          50     xx xx xx            net 1 IP address
          53     00                  net not node
          54     00 00 00 00         0
          58     00 00 00 00         0
          62     00 00 00 07         metric 7

          -- net 2

          66     00 02               family = IP
          68     00 00               0
          70     xx xx xx            net 2 IP address
          73     00                  net not node
          74     00 00 00 00         0
          78     00 00 00 00         0
          82     00 00 00 07         metric 7

          -- net 3
          86     00 02               family = IP
          88     00 00               0
          90     xx xx xx            net 3 IP address
          93     00                  net not node
          94     00 00 00 00         0
          98     00 00 00 00         0
          102    00 00 00 07         metric 7

          -- net 4
          106    00 02               family = IP
          108    00 00               0
Top   ToC   RFC3116 - Page 120
          110    xx xx xx            net 4 IP address
          113    00                  net not node
          114    00 00 00 00         0
          118    00 00 00 00         0
          122    00 00 00 07         metric 7

          -- net 5
          126    00 02               family = IP
          128    00 00               0
          130    00                  net 5 IP address
          133    00                  net not node
          134    00 00 00 00         0
          138    00 00 00 00         0
          142    00 00 00 07         metric 7

          -- net 6
          146    00 02               family = IP
          148    00 00               0
          150    xx xx xx            net 6 IP address
          153    00                  net not node
          154    00 00 00 00         0
          158    00 00 00 00         0
          162    00 00 00 07         metric 7

   UNI  3.1 Signaling Setup Message Example.  PCR will not allow CAC to
   reject the call.

    Protocol Discriminator    : Q.93B UNI call control
    Call Reference Length     : 3
    Call Reference Flag       : orig
    Call Reference Value      : 0
    Message Type              : SETUP
    Ext                       : last octet
    Action Indicator          : clear call
    Message Length            : 50
    Information Element ID    : ATM Traffic Descriptor
    Ext                       : last octet
    Coding Standard           : ITU-T standard
    Action Indicator          : clear call
    IE Length                 : 9
    Cell Rate Subfield ID     : forward peak CR(CLP=0+1)
    Forward Peak Cell Rate    : 1
    Cell Rate Subfield ID     : backward peak CR(CLP=0+1)
    Backward Peak Cell Rate   : 1
    Cell Rate Subfield ID     : best effort indicator
    Information Element ID    : Broadband Bearer Capability
    Ext                       : last octet
    Coding Standard           : ITU-T standard
Top   ToC   RFC3116 - Page 121
    Action Indicator          : clear call
    IE Length                 : 2
    Ext                       : last octet
    Bearer Class              : BCOB-X
    Ext                       : last octet
    Clipping Susceptibility   : not susceptible to clipping
    User Plane Connection CFG : point-to-point
    Information Element ID    : Called Party Number
    Ext                       : last octet
    Coding Standard           : ITU-T standard
    Action Indicator          : clear call
    IE Length                 : 21
    Ext                       : last octet
    Addressing/Numbering Plan : ISO NSAP addressing
    ISO NSAP Address Octets   : 3900000000000000000000000011111111111100
    Information Element ID    : Quality of Service Parameter
    Ext                       : last octet
    Coding Standard           : ITU-T standard
    Action Indicator          : clear call
    IE Length                 : 2
    QoS Class Forward         : QoS class 0 - unspecified
    QoS Class Backward        : QoS class 0 - unspecified

   UNI 3.1 Signaling Setup Message Reject Example.  PCR  will  allow
   CAC  to reject the call.

    Protocol Discriminator    : Q.93B UNI call control
    Call Reference Length     : 3
    Call Reference Flag       : orig
    Call Reference Value      : 0
    Message Type              : SETUP
    Ext                       : last octet
    Action Indicator          : clear call
    Message Length            : 50
    Information Element ID    : ATM Traffic Descriptor
    Ext                       : last octet
    Coding Standard           : ITU-T standard
    Action Indicator          : clear call
    IE Length                 : 8
    Cell Rate Subfield ID     : forward peak CR(CLP=0+1)
    Forward Peak Cell Rate    : 300000
    Cell Rate Subfield ID     : backward peak CR(CLP=0+1)
    Backward Peak Cell Rate   : 300000
    Information Element ID    : Broadband Bearer Capability
    Ext                       : last octet
    Coding Standard           : ITU-T standard
    Flag                      : not significant
    Action Indicator          : clear call
Top   ToC   RFC3116 - Page 122
    IE Length                 : 3
    Ext                       : another octet
    Bearer Class              : BCOB-X
    Ext                       : last octet
    Traffic Type              : constant bit rate
    Timing Requirements       : end-to-end timing required
    Ext                       : last octet
    Clipping Susceptibility   : not susceptible to clipping
    User Plane Connection CFG : point-to-point
    Information Element ID    : Called Party Number
    Ext                       : last octet
    Coding Standard           : ITU-T standard
    Action Indicator          : clear call
    IE Length                 : 21
    Ext                       : last octet
    Addressing/Numbering Plan : ISO NSAP addressing
    ISO NSAP Address Octets   : 3900000000000000000000000011111111111100
    Information Element ID    : Quality of Service Parameter
    Ext                       : last octet
    Coding Standard           : ITU-T standard
    Action Indicator          : clear call
    IE Length                 : 2
    QoS Class Forward         : QoS class 0 - unspecified
    QoS Class Backward        : QoS class 0 - unspecified

   UNI  3.1 Signaling Release Message, specifying a cause code of normal
   call clearing.

    Protocol Discriminator   : Q.93B UNI call control
    Call Reference Length    : 3
    Call Reference Flag      : orig
    Call Reference Value     : 0
    Message Type             : RELEASE
    Ext                      : last octet
    Action Indicator         : clear call
    Message Length           : 6
    Information Element ID   : Cause
    Ext                      : last octet
    Coding Standard          : ITU-T standard
    Action Indicator         : clear call
    IE Length                : 2
    Ext                      : last octet
    Location                 : user
    Ext                      : last octet
    Cause Value              : NE:normal call clearing

   PNNI Signaling Setup Message, specifying a DTL which is not blocked
   by the far end SUT.
Top   ToC   RFC3116 - Page 123
    Protocol Discriminator    : PNNI signalling
    Call Reference Length     : 3
    Call Reference Flag       : from
    Message Type              : SETUP
    Ext                       : last octet
    Pass Along Request        : no pass along request
    Action Indicator          : clear call
    Message Length            : 56
    Information Element ID    : ATM Traffic Descriptor
    Ext                       : last octet
    Coding Standard           : ITU-T standardized
    Pass Along Request        : no pass along request
    Action Indicator          : clear call
    IE Length                 : 0
    Information Element ID    : Broadband Bearer Capability
    Ext                       : last octet
    Coding Standard           : ITU-T standardized
    Pass Along Request        : no pass along request
    Action Indicator          : clear call
    IE Length                 : 3
    Ext                       : another octet
    Bearer Class              : BCOB-X
    Ext                       : last octet
    ATM Transfer Capability   : reserved for bwd compatibility
    Ext                       : last octet
    Clipping Susceptibility   : not susceptible to clipping
    User Plane Connection cfg : point-to-point
    Information Element ID    : Called Party Number
    Ext                       : last octet
    Coding Standard           : ITU-T standardized
    Pass Along Request        : no pass along request
    Action Indicator          : clear call
    IE Length                 : 8
    Ext                       : last octet
    Type of Number            : unknown
    Addressing/Numbering Plan : ATM endsystem address
    ATM Endsystem Address Oct : 11111111111101
    Information Element ID    : Designated Transit List
    Ext                       : last octet
    Coding Standard           : ATM Forum specific
    Pass Along Request        : no pass along request
    Action Indicator          : clear call
    IE Length                 : 29
    Current Transit Pointer   : 0
    Logical Node/Port Indicat : Logical Node/Port Indicator
    Logical Node Identifier   : 3900000000000000000000000011111111111100
Top   ToC   RFC3116 - Page 124
   PNNI  Signaling Setup Message Reject, specifying a DTL which is
   blocked by the far end SUT.

Protocol Discriminator      : PNNI signalling
    Call Reference Length   : 3
    Call Reference Flag     : from
    Call Reference Value    : 0
    Message Type            : SETUP
    Ext                     : last octet
    Pass Along Request      : no pass along request
    Action Indicator        : clear call
    Message Length          : 56
    Information Element ID  : ATM Traffic Descriptor
    Ext                     : last octet
    Coding Standard         : ITU-T standardized
    Pass Along Request      : no pass along request
    Action Indicator        : clear call
    IE Length               : 0
    Information Element ID  : Broadband Bearer Capability
    Ext                     : last octet
    Coding Standard         : ITU-T standardized
    Pass Along Request      : no pass along request
    Action Indicator        : clear call
    IE Length               : 3
    Bearer Class            : BCOB-X
    Ext                     : last octet
    ATM Transfer Capability : reserved for bwd compatibility
    Ext                     : last octet
    Clipping Susceptibility : not susceptible to clipping
    User Plane Connection cfg : point-to-point
    Information Element ID  : Called Party Number
    Ext                     : last octet
    Coding Standard         : ITU-T standardized
    Pass Along Request      : no pass along request
    Action Indicator        : clear call
    IE Length               : 8
    Ext                     : last octet
    Addressing/Numbering Plan : ATM endsystem address
    ATM Endsystem Address Oct : 11111111111101
    Information Element ID    : Designated Transit List
    Ext                       : last octet
    Coding Standard           : ATM Forum specific
    Pass Along Request        : no pass along request
    Action Indicator          : clear call
    IE Length                 : 29
    Current Transit Pointer   : 0
    Logical Node/Port Indicat : Logical Node/Port Indicator
    Logical Node Identifier   : 3900000000000000000000000011111111111100
Top   ToC   RFC3116 - Page 125
   PNNI Far End Request Message.

Header:  Packet Type                    5 (PTSE REQUEST)
             Packet Length             40
             Protocol Version           1
             Newest Version Supported   1
             Oldest Version Supported   0
             Reserved                   0
    IG:      Information Group Type   513 (Requested PTSE Header)
             Information Group Length  32
             Originating Node ID
                   00013900-00000000-00000000-00000011-11111111-1100
             PTSE Request Count     1
             PTSE Identifier        0

   PNNI PTSE, specifying a routing topology.

Header:  Packet Type                    4 (DATABASE SUMMARY)
             Packet Length             76
             Protocol Version           1
             Newest Version Supported   1
             Oldest Version Supported   0
             Reserved                   0
             Initialize (I)Bit          1 (during init. of DB syn
                                           process)
             More (M)Bit                1 (PTSEs to summarize)
             Master (MS)Bit             1 (both nodes)
             Reserved                   0
             Reserved                   0
             DS Sequence Number         0
    IG:      Information Group Type   512 (Nodal PTSE Summaries)
             Information Group Length  60
             Originating Node ID
                 00013900-00000000-00000000-00000011-11111111-1100
             Originating Node's Peer Group 00000000-00000000-00000000-
                                           0001
             Reserved                    0
             PTSE Summary Count          1
             PTSE Type                   0
             Reserved                    0
             PTSE Identifier             0
             PTSE Sequence Number        0
             PTSE Checksum               0
             PTSE Remaining Lifetime     0
Top   ToC   RFC3116 - Page 126
   PNNI PTSE Update, specifying a change in the routing topology.

Header:  Packet Type                    2 (PTSP)
             Packet Length             96
             Protocol Version           1
             Newest Version Supported   1
             Oldest Version Supported   0
             Reserved                   0
             Originating Node ID
                 00013900-00000000-00000000-00000011-11111111-1100
             Originating Node's Peer Group 00000000-00000000-00000000-
                                           0001
    IG:      Information Group Type     64 (PTSE)
             Information Group Length   52
             PTSE Type                   0
             Reserved                    0
             PTSE Identifier             0
             PTSE Sequence Number        0
             PTSE Checksum           42252
             PTSE Remaining Lifetime  3600
    IG:       Information Group Type   224 (Internal Reachable ATM
                                            Addresses)
             Information Group Length   32
             VP Capability Flag          1 (VPCs supported)
             Reserved                    0
             Reserved                    0
             Port ID                     0
             Scope of Advertisement     96
             Address Information Length 14
             Address Information Count   1
             Prefix Length              13
             Reachable Address Prefix   39000000-00000000-00000000-01
Top   ToC   RFC3116 - Page 127
Full Copyright Statement

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.