Tech-invite3GPPspaceIETFspace
959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 2719

Framework Architecture for Signaling Transport

Pages: 24
Informational

Top   ToC   RFC2719 - Page 1
Network Working Group                                              L. Ong
Request for Comments: 2719                                Nortel Networks
Category: Informational                                         I. Rytina
                                                                M. Garcia
                                                                 Ericsson
                                                          H. Schwarzbauer
                                                                 L. Coene
                                                                  Siemens
                                                                   H. Lin
                                                                Telcordia
                                                                I. Juhasz
                                                                    Telia
                                                              M. Holdrege
                                                                   Lucent
                                                                 C. Sharp
                                                            Cisco Systems
                                                             October 1999


             Framework Architecture for Signaling Transport

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

This document defines an architecture framework and functional requirements for transport of signaling information over IP. The framework describes relationships between functional and physical entities exchanging signaling information, such as Signaling Gateways and Media Gateway Controllers. It identifies interfaces where signaling transport may be used and the functional and performance requirements that apply from existing Switched Circuit Network (SCN) signaling protocols.
Top   ToC   RFC2719 - Page 2

Table of Contents

1. Introduction..................................................2 1.1 Overview.....................................................2 1.2 Terminology..................................................3 1.3 Scope.......................................................5 2. Signaling Transport Architecture.............................5 2.1 Gateway Component Functions.................................5 2.2 SS7 Interworking for Connection Control.....................6 2.3 ISDN Interworking for Connection Control....................8 2.4 Architecture for Database Access............................9 3. Protocol Architecture........................................10 3.1 Signaling Transport Components..............................10 3.2 SS7 access for Media Gateway Control........................11 3.3 Q.931 Access to MGC.........................................12 3.4 SS7 Access to IP/SCP........................................12 3.5 SG to SG....................................................14 4. Functional Requirements......................................15 4.1 Transport of SCN Signaling Protocols........................15 4.2 Performance of SCN Signaling Protocols......................17 4.2.1 SS7 MTP Requirements......................................17 4.2.2 SS7 MTP Level 3 Requirements..............................17 4.2.3 SS7 User Part Requirements................................18 4.2.4 ISDN Signaling Requirements...............................18 5. Management...................................................19 6. Security Considerations......................................19 6.1 Security Requirements.......................................19 6.2 Security Mechanisms Currently Available in IP Networks......20 7. Abbreviations................................................21 8. Acknowledgements.............................................21 9. References...................................................21 Authors' Addresses..............................................22 Full Copyright Statement........................................24

1. Introduction

1.1 Overview

This document defines an architecture framework for transport of message-based signaling protocols over IP networks. The scope of this work includes definition of encapsulation methods, end-to-end protocol mechanisms and use of existing IP capabilities to support the functional and performance requirements for signaling transport. The framework portion describes the relationships between functional and physical entities used in signaling transport, including the framework for control of Media Gateways, and other scenarios where signaling transport may be required.
Top   ToC   RFC2719 - Page 3
   The requirements portion describes functional and performance
   requirements for signaling transport such as flow control, in-
   sequence delivery and other functions that may be required for
   specific SCN signaling protocols.

1.2 Terminology

The following are general terms are used in this document: Backhaul: Backhaul refers to the transport of signaling from the point of interface for the associated data stream (i.e., SG function in the MGU) back to the point of call processing (i.e., the MGCU), if this is not local. Signaling Transport (SIG): SIG refers to a protocol stack for transport of SCN signaling protocols over an IP network. It will support standard primitives to interface with an unmodified SCN signaling application being transported, and supplements a standard IP transport protocol underneath with functions designed to meet transport requirements for SCN signaling. Switched Circuit Network (SCN): The term SCN is used to refer to a network that carries traffic within channelized bearers of pre-defined sizes. Examples include Public Switched Telephone Networks (PSTNs) and Public Land Mobile Networks (PLMNs). Examples of signaling protocols used in SCN include Q.931, SS7 MTP Level 3 and SS7 Application/User parts. The following are terms for functional entities relating to signaling transport in a distributed gateway model. Media Gateway (MG): A MG terminates SCN media streams, packetizes the media data,, if it is not already packetized, and delivers packetized traffic to the packet network. It performs these functions in reverse order for media streams flowing from the packet network to the SCN.
Top   ToC   RFC2719 - Page 4
   Media Gateway Controller (MGC):

   An MGC handles the registration and management of resources at the
   MG. The MGC may have the ability to authorize resource usage based on
   local policy.  For signaling transport purposes, the MGC serves as a
   possible termination and origination point for SCN application
   protocols, such as SS7 ISDN User Part and Q.931/DSS1.

   Signaling Gateway (SG):

   An SG is a signaling agent that receives/sends SCN native signaling
   at the edge of the IP network. The SG function may relay, translate
   or terminate SS7 signaling in an SS7-Internet Gateway. The SG
   function may also be co-resident with the MG function to process SCN
   signaling associated with line or trunk terminations controlled by
   the MG (e.g., signaling backhaul).

   The following are terms for physical entities relating to signaling
   transport in a distributed gateway model:

   Media Gateway Unit (MGU)

   An MG-Unit is a physical entity that contains the MG function.  It
   may contain other functions, esp. an SG function for handling
   facility-associated signaling.

   Media Gateway Control Unit (MGCU)

   An MGC-Unit is a physical entity containing the MGC function.

   Signaling Gateway Unit (SGU)

   An SG-Unit is a physical entity containing the SG function.

   Signaling End Point (SEP):

   This is a node in an SS7 network that originates or terminates
   signaling messages.  One example is a central office switch.

   Signal Transfer Point (STP):

   This is a node in an SS7 network that routes signaling messages based
   on their destination point code in the SS7 network.
Top   ToC   RFC2719 - Page 5

1.3 Scope

Signaling transport provides transparent transport of message-based signaling protocols over IP networks. The scope of this work includes definition of encapsulation methods, end-to-end protocol mechanisms and use of IP capabilities to support the functional and performance requirements for signaling. Signaling transport shall be used for transporting SCN signaling between a Signaling Gateway Unit and Media Gateway Controller Unit. Signaling transport may also be used for transport of message-based signaling between a Media Gateway Unit and Media Gateway Controller Unit, between dispersed Media Gateway Controller Units, and between two Signaling Gateway Units connecting signaling endpoints or signal transfer points in the SCN. Signaling transport will be defined in such a way as to support encapsulation and carriage of a variety of SCN protocols. It is defined in such a way as to be independent of any SCN protocol translation functions taking place at the endpoints of the signaling transport, since its function is limited to the transport of the SCN protocol. Since the function being provided is transparent transport, the following areas are considered outside the scope of the signaling transport work: - definition of the SCN protocols themselves. - signaling interworking such as conversion from Channel Associated Signaling (CAS) to message signaling protocols. - specification of the functions taking place within the SGU or MGU - in particular, this work does not address whether the SGU provides mediation/interworking, as this is transparent to the transport function. - similarly, some management and addressing functions taking place within the SGU or MGU are also considered out of scope, such as determination of the destination IP address for signaling, or specific procedures for assessing the performance of the transport session (i.e., testing and proving functions).

2. Signaling Transport Architecture

2.1 Gateway Component Functions

Figure 1 defines a commonly defined functional model that separates out the functions of SG, MGC and MG. This model may be implemented in a number of ways, with functions implemented in separate devices or combined in single physical units.
Top   ToC   RFC2719 - Page 6
   Where physical separation exists between functional entities,
   Signaling Transport can be applied to ensure that SCN signaling
   information is transported between entities with the required
   functionality and performance.

        +---------------+                      +--------------+
        |               |                      |              |
  SCN<-------->[SG]  <--+---------O------------+--> [SG]  <------> SCN
 signal |       |       |                      |     |        |   signal
        +-------|-------+                      +-----|--------+
       Signaling|gateway                    Signaling|gateway (opt)
                O                                    O
                |                                    |
        +-------|-------+                      +-----|--------+
        |       |       |                      |     |        |
        |      [MGC] <--+--------O-------------+--> [MGC]     |
        |       |       |                      |     |        |
        |       |       |                      |     |        |
        +-------|-------+                      +-----|--------+
        Gateway | controller                 Gateway | controller (opt)
                O                                    O
                |                                    |
        +-------|-------+                      +-----|--------+
  Media |       |       |                      |     |        | Media
 <------+---->[MG]  <---+-----RTP stream-------+-> [MG]  <----+-------->
  stream|               |                      |              | stream
        +---------------+                      +--------------+
        Media gateway                           Media gateway


                   Figure 1: Sigtran Functional Model

   As discussed above, the interfaces pertaining to signaling transport
   include SG to MGC, SG to SG.  Signaling transport may potentially be
   applied to the MGC to MGC or MG to MGC interfaces as well, depending
   on requirements for transport of the associated signaling protocol.

2.2 SS7 Interworking for Connection Control

Figure 2 below shows some example implementations of these functions in physical entities as used for interworking of SS7 and IP networks for Voice over IP, Voice over ATM, Network Access Servers, etc. No recommendation is made as to functional distribution and many other examples are possible but are not shown to be concise. The use of signaling transport is independent of the implementation.
Top   ToC   RFC2719 - Page 7
   For interworking with SS7-controlled SCN networks, the SG terminates
   the SS7 link and transfers the signaling information to the MGC using
   signaling transport.  The MG terminates the interswitch trunk and
   controls the trunk based on the control signaling it receives from
   the MGC. As shown below in case (a), the SG, MGC and MG may be
   implemented in separate physical units, or as in case (b), the MGC
   and MG may be implemented in a single physical unit.

   In alternative case (c), a facility-associated SS7 link is terminated
   by the same device (i.e., the MGU) that terminates the interswitch
   trunk. In this case, the SG function is co-located with the MG
   function, as shown below, and signaling transport is used to
   "backhaul" control signaling to the MGCU.

   Note: SS7 links may also be terminated directly on the MGCU by
   cross-connecting at the physical level before or at the MGU.

            SGU
           +--------+
   SS7<------>[SG]  |
   (ISUP)  |   |    |
           +---|----+
            ST |                SGU                       MGCU
           +---|----+           +--------+                +--------+
           | [MGC]  |      SS7---->[SG]  |                | [MGC]  |
           |   |    |           |   |    |                |  | |   |
           +---|----+           +---|----+                +--|-|---+
          MGCU |                 ST |                        | |
               |                    |                     ST | |
     Media +---|----+     Media +---|----+                +--|-|---+
      ------->[MG]  |      ----->[MG/MGC]|      SS7 link-->[SG]|   |
    stream |        |    stream |        |       Media------> [MG] |
           +--------+           +--------+       stream   +--------+
           MGU                  MGU                       MGU

            (a)                     (b)                      (c)

   Notes: ST = Signaling Transport used to carry SCN signaling

                     Figure 2: Example Implementations
Top   ToC   RFC2719 - Page 8
   In some implementations, the function of the SG may be divided into
   multiple physical entities to support scaling, signaling network
   management and addressing concerns.  Thus, Signaling Transport can be
   used between SGs as well as from SG to MGC. This is shown in Figure 3
   below.

               SGU                                 MGCU
             +---------+                         +---------+
             |         |          ST             |         |
             |  [SG2]------------------------------>[MGC]  |
             |   ^ ^   |                         |         |
             +---|-|---+                         +---------+
                 | |
                 | |             ST
               ST| +--------------------------------+
                 |                                  |
                 |                                  |
        SS7  +---|----------+             SS7  +----|---------+
   -----------> [SG1]       |        -----------> [SG1]       |
    media    |              |         media    |              |
   ------------------->[MG] |        ------------------->[MG] |
    stream   +--------------+         stream   +--------------+
              MGU                                MGU


                        Figure 3: Multiple SG Case

   In this configuration, there may be more than one MGU handling
   facility associated signaling (i.e. more than one containing it's own
   SG function), and only a single SGU. It will therefore be possible to
   transport one SS7 layer between SG1 and SG2, and another SS7 layer
   between SG2 and MGC. For example, SG1 could transport MTP3 to SG2,
   and SG2 could transport ISUP to MGC.

2.3 ISDN Interworking for Connection Control

In ISDN access signaling, the signaling channel is carried along with data channels, so that the SG function for handling Q.931 signaling is co-located with the MG function for handling the data stream. Where Q.931 is then transported to the MGC for call processing, signaling transport would be used between the SG function and MGC. This is shown in Figure 3 below.
Top   ToC   RFC2719 - Page 9
                             MGCU
                             +-------------+
                             |    [MGC]    |
                             |     | |     |
                             +-----|-|-----+
                                   | |
                                   | O device control
                                   | |
                          Q.931/ST O |
                                   | |
                             +-----|-|-----+
                             |     | |     |
                       Q.931---->[SG]|     |
                      signals|       |     |
                             |       |     |
                    Media---->[MG]   |
                    stream   |             |
                             +-------------+
                             MGU


                   Figure 4: Q.931 transport model

2.4 Architecture for Database Access

Transaction Capabilities (TCAP) is the application part within SS7 that is used for non-circuit-related signaling. TCAP signaling within IP networks may be used for cross-access between entities in the SS7 domain and the IP domain, such as, for example: - access from an SS7 network to a Service Control Point (SCP) in IP. - access from an SS7 network to an MGC. - access from an MGC to an SS7 network element. - access from an IP SCP to an SS7 network element. A basic functional model for TCAP over IP is shown in Figure 5.
Top   ToC   RFC2719 - Page 10
                            +--------------+
                            | IP SCP       |
                            +--|----|------+
                               |    |
            SGU                |    |                SGU
           +--------------+    |    |    +--------------+
           |              |    |    |    |              |
   SS7<--------->[SG] ---------+    |    |     [SG]<---------> SS7
   (TCAP)  |      |       |         |    |      |       |
           +------|-------+         |    +------|-------+
                  |                 |           |
                  O    +------------+           O
          MGCU    |    |                        | MGCU
          +-------|----|--+               +-----|--------+
          |       |    |  |               |     |        |
          |      [MGC]    |               |    [MGC]     |
          |       |       |               |     |        |
          +-------|-------+               +-----|--------+
                  |                             |
          +-------|-------+               +-----|------+
    Media |       |       |               |     |      | Media
   <------+---->[MG]  <---+--RTP stream---+--> [MG]  <-+-------->
    stream|               |               |            | stream
          +---------------+               +------------+
          MGU                             MGU


                     Figure 5: TCAP Signaling over IP

3. Protocol Architecture

This section provides a series of examples of protocol architecture for the use of Signaling Transport (SIG).

3.1 Signaling Transport Components

Signaling Transport in the protocol architecture figures below is assumed to consist of three components (see Figure 6): 1) an adaptation sub-layer that supports specific primitives, e.g., management indications, required by a particular SCN signaling application protocol. 2) a Common Signaling Transport Protocol that supports a common set of reliable transport functions for signaling transport. 3) a standard, unmodified IP transport protocol.
Top   ToC   RFC2719 - Page 11
                 +-- +--------------------------------+
                 |   |      SCN adaptation module     |
                 |   +--------------------------------+
                 |                  |
               S |   +--------------------------------+
               I |   | Common Signaling Transport     |
               G |   +--------------------------------+
                 |                  |
                 |   +--------------------------------+
                 |   |     standard IP transport      |
                 +-- +--------------------------------+


                Figure 6: Signaling Transport Components

3.2. SS7 access for Media Gateway Control

This section provides a protocol architecture for signaling transport supporting SS7 access for Media Gateway Control. ****** SS7 ******* SS7 ****** IP ******* *SEP *--------* STP *------* SG *------------* MGC * ****** ******* ****** ******* +----+ +-----+ |ISUP| | ISUP| +----+ +-----+ +---------+ +-----+ |MTP | |MTP | |MTP | SIG| | SIG | |L1-3| |L1-3 | |L1-3+----+ +-----+ | | | | | | IP | | IP | +----+ +-----+ +---------+ +-----+ STP - Signal Transfer Point SEP - Signaling End Point SG - Signaling Gateway SIG - Signaling Transport MGC - Media Gateway Controller Figure 7: SS7 Access to MGC
Top   ToC   RFC2719 - Page 12

3.3. Q.931 Access to MGC

This section provides a protocol architecture for signaling transport supporting ISDN point-to-point access (Q.931) for Media Gateway Control. ****** ISDN ********* IP ******* * EP *--------------* SG/MG *------------* MGC * ****** ********* ******* +----+ +-----+ |Q931| | Q931| +----+ +---------+ +-----+ |Q921| |Q921| SIG| | SIG | + + + +----+ +-----+ | | | | IP | | IP | +----+ +---------+ +-----+ MG/SG - Media Gateway with SG function for backhaul EP - ISDN End Point Figure 8: ISDN Access

3.4. SS7 Access to IP/SCP

This section provides a protocol architecture for database access, for example providing signaling between two IN nodes or two mobile network nodes. There are a number of scenarios for the protocol stacks and the functionality contained in the SIG, depending on the SS7 application. In the diagrams, SS7 Application Part (S7AP) is used for generality to cover all Application Parts (e.g. MAP, IS-41, INAP, etc). Depending on the protocol being transported, S7AP may or may not include TCAP. The interface to the SS7 layer below S7AP can be either the TC-user interface or the SCCP-user interface. Figure 9a shows the scenario where SCCP is the signaling protocol being transported between the SG and an IP Signaling Endpoint (ISEP), that is, an IP destination supporting some SS7 application protocols.
Top   ToC   RFC2719 - Page 13
          ******   SS7  ******* SS7  ******     IP      *******
          *SEP *--------* STP *------* SG *-------------* ISEP*
          ******        *******      ******             *******

          +-----+                                       +-----+
          |S7AP |                                       |S7AP |
          +-----+                                       +-----+
          |SCCP |                                       |SCCP |
          +-----+        +-----+      +---------+       +-----+
          |MTP  |        |MTP  |      |MTP |SIG |       |SIG  |
          +     +        +     +      +    +----+       +-----+
          |     |        |     |      |    | IP |       |IP   |
          +-----+        +-----+      +---------+       +-----+


        Figure 9a: SS7 Access to IP node - SCCP being transported

   Figure 9b shows the scenario where S7AP is the signaling protocol
   being transported between SG and ISEP. Depending on the protocol
   being transported, S7AP may or may not include TCAP, which implies
   that SIG must be able to support both the TC-user and the SCCP-user
   interfaces.

          ******   SS7  ******* SS7  ******     IP      *******
          *SEP *--------* STP *------* SG *-------------* ISEP*
          ******        *******      ******             *******

          +-----+                                       +-----+
          |S7AP |                                       |S7AP |
          +-----+                     +----+----+       +-----+
          |SCCP |                     |SCCP|    |       |     |
          +-----+        +-----+      +----|SIG |       |SIG  |
          |MTP  |        |MTP  |      |MTP |    |       |     |
          +     +        +     +      +    +----+       +-----+
          |     |        |     |      |    |IP  |       |IP   |
          +-----+        +-----+      +---------+       +-----+


        Figure 9b: SS7 Access to IP node - S7AP being transported
Top   ToC   RFC2719 - Page 14

3.5. SG to SG

This section identifies a protocol architecture for support of signaling between two endpoints in an SCN signaling network, using signaling transport directly between two SGs. The following figure describes protocol architecture for a scenario with two SGs providing different levels of function for interworking of SS7 and IP. This corresponds to the scenario given in Figure 3. The SS7 User Part (S7UP) shown is an SS7 protocol using MTP directly for transport within the SS7 network, for example, ISUP. In this scenario, there are two different usage cases of SIG, one which transports MTP3 signaling, the other which transports ISUP signaling. ****** SS7 ****** IP ****** IP ****** *SEP *-------* SG1*----------* SG2*-------*MGC * ****** ****** ****** ****** +----+ +----+ |S7UP| |S7UP| +----+ +----+----+ +----+ |MTP3| |MTP3| | | | +----+ +---------+ +----+ SIG| |SIG | |MTP2| |MTP2|SIG | |SIG | | | | + + + +----+ +----+----+ +----+ | | | | IP | | IP | | IP | +----+ +----+----+ +----+----+ +----+ S7UP - SS7 User Part Figure 10: SG to SG Case 1 The following figure describes a more generic use of SS7-IP interworking for transport of SS7 upper layer signaling across an IP network, where the endpoints are both SS7 SEPs.
Top   ToC   RFC2719 - Page 15
            ******   SS7  ******    IP     ******  SS7   ******
            *SEP *--------* SG *-----------* SG *--------*SEP *
            ******        ******           ******        ******

            +----+                                       +-----+
            |S7UP|                                       | S7UP|
            +----+                                       +-----+
            |MTP3|                                       | MTP3|
            +----+        +---------+     +---------+    +-----+
            |MTP2|        |MTP2| SIG|     |SIG |MTP2|    | MTP2|
            +    +        +    +----+     +----+    +    +     +
            |    |        |    | IP |     | IP |    |    |     |
            +----+        +----+----+     +----+----+    +-----+

                      Figure 11: SG to SG Case 2

4. Functional Requirements

4.1 Transport of SCN Signaling Protocols

Signaling transport provides for the transport of native SCN protocol messages over a packet switched network. Signaling transport shall: 1) Transport of a variety of SCN protocol types, such as the application and user parts of SS7 (including MTP Level 3, ISUP, SCCP, TCAP, MAP, INAP, IS-41, etc.) and layer 3 of the DSS1/PSS1 protocols (i.e. Q.931 and QSIG). 2) Provide a means to identify the particular SCN protocol being transported. 3) Provide a common base protocol defining header formats, security extensions and procedures for signaling transport, and support extensions as necessary to add individual SCN protocols if and when required. 4) In conjunction with the underlying network protocol (IP), provide the relevant functionality as defined by the appropriate SCN lower layer. Relevant functionality may include (according to the protocol being transported): - flow control - in sequence delivery of signaling messages within a control stream
Top   ToC   RFC2719 - Page 16
   -  logical identification of the entities on which the signaling
      messages originate or terminate
   -  logical identification of the physical interface controlled by the
      signaling message
   -  error detection
   -  recovery from failure of components in the transit path
   -  retransmission and other error correcting methods
   -  detection of unavailability of peer entities.

   For example:

   -  if the native SCN protocol is ISUP or SCCP, the relevant
      functionality provided by MTP2/3 shall be provided.
   -  if the native SCN protocol is TCAP, the relevant functionality
      provided by SCCP connectionless classes and MTP 2/3 shall be
      supported.
   -  if the native SCN protocol is Q.931, the relevant functionality
      provided by Q.921 shall be supported.
   -  if the native SCN protocol is MTP3, the relevant functionality of
      MTP2 shall be supported.

   5) Support the ability to multiplex several higher layer SCN sessions
   on one underlying signaling transport session.  This allows, for
   example, several DSS1 D-Channel sessions to be carried in one
   signaling transport session.

   In general, in-sequence delivery is required for signaling messages
   within a single control stream, but is not necessarily required for
   messages that belong to different control streams.  The protocol
   should if possible take advantage of this property to avoid blocking
   delivery of messages in one control stream due to sequence error
   within another control stream.  The protocol should also allow the SG
   to send different control streams to different destination ports if
   desired.

   6) Be able to transport complete messages of greater length than the
   underlying SCN segmentation/reassembly limitations.  For example,
   signaling transport should not be constrained by the length
   limitations defined for SS7 lower layer protocol (e.g. 272 bytes in
   the case of narrowband SS7) but should be capable of carrying longer
   messages without requiring segmentation.

   7) Allow for a range of suitably robust security schemes to protect
   signaling information being carried across networks. For example,
   signaling transport shall be able to operate over proxyable sessions,
   and be able to be transported through firewalls.
Top   ToC   RFC2719 - Page 17
   8) Provide for congestion avoidance on the Internet, by supporting
   appropriate controls on signaling traffic generation (including
   signaling generated in SCN) and reaction to network congestion.

4.2 Performance of SCN Signaling Protocols

This section provides basic values regarding performance requirements of key SCN protocols to be transported. Currently only message-based SCN protocols are considered. Failure to meet these requirements is likely to result in adverse and undesirable signaling and call behavior.

4.2.1 SS7 MTP requirements

The performance requirements below have been specified for transport of MTP Level 3 network management messages. The requirements given here are only applicable if all MTP Level 3 messages are to be transported over the IP network. - Message Delay - MTP Level 3 peer-to-peer procedures require response within 500 to 1200 ms. This value includes round trip time and processing at the remote end. Failure to meet this limitation will result in the initiation of error procedures for specific timers, e.g., timer T4 of ITU-T Recommendation Q.704.

4.2.2 SS7 MTP Level 3 requirements

The performance requirements below have been specified for transport of MTP Level 3 user part messages as part of ITU-T SS7 Recommendations [SS7]. - Message Loss - no more than 1 in 10E+7 messages will be lost due to transport failure - Sequence Error - no more than 1 in 10E+10 messages will be delivered out-of- sequence (including duplicated messages) due to transport failure - Message Errors - no more than 1 in 10E+10 messages will contain an error that is undetected by the transport protocol (requirement is 10E+9 for ANSI specifications)
Top   ToC   RFC2719 - Page 18
   -  Availability
      -  availability of any signaling route set is 99.9998% or better,
         i.e., downtime 10 min/year or less.  A signaling route set is
         the complete set of allowed signaling paths from a given
         signaling point towards a specific destination.

   -  Message length (payload accepted from SS7 user parts)
      -  272 bytes for narrowband SS7, 4091 bytes for broadband SS7

4.2.3 SS7 User Part Requirements

More detailed analysis of SS7 User Part Requirements can be found in [Lin]. ISUP Message Delay - Protocol Timer Requirements - one example of ISUP timer requirements is the Continuity Test procedure, which requires that a tone generated at the sending end be returned from the receiving end within 2 seconds of sending an IAM indicating continuity test. This implies that one way signaling message transport, plus accompanying nodal functions need to be accomplished within 2 seconds. ISUP Message Delay - End-to-End Requirements - the requirement for end-to-end call setup delay in ISUP is that an end-to-end response message be received within 20-30 seconds of the sending of the IAM. Note: while this is the protocol guard timer value, users will generally expect faster response time. TCAP Requirements - Delay Requirements - TCAP does not itself define a set of delay requirements. Some work has been done [Lin2] to identify application-based delay requirements for TCAP applications.

4.2.4 ISDN Signaling Requirements

Q.931 Message Delay - round-trip delay should not exceed 4 seconds. A Timer of this length is used for a number of procedures, esp. RELASE/RELEASE COMPLETE and CONNECT/CONNECT ACK where excessive delay may result in management action on the channel, or release of a call being set up. Note: while this value is indicated by protocol timer specifications, faster response time is normally expected by the user.
Top   ToC   RFC2719 - Page 19
         -  12 sec. timer (T309) is used to maintain an active call in
         case of loss of the data link, pending re-establishment.  The
         related ETSI documents specify a maximum value of 4 seconds
         while ANSI specifications [T1.607] default to 90 seconds.

5. Management

Operations, Administration & Management (OA&M) of IP networks or SCN networks is outside the scope of SIGTRAN. Examples of OA&M include legacy telephony management systems or IETF SNMP managers. OA&M implementors and users should be aware of the functional interactions of the SG, MGC and MG and the physical units they occupy.

6. Security Considerations

6.1 Security Requirements

When SCN related signaling is transported over an IP network two possible network scenarios can be distinguished: - Signaling transported only within an Intranet; Security measures are applied at the discretion of the network owner. - Signaling transported, at least to some extent, in the public Internet; The public Internet should be regarded generally as an "insecure" network and usage of security measures is required. Generally security comprises several aspects - Authentication: It is required to ensure that the information is sent to/from a known and trusted partner. - Integrity: It is required to ensure that the information hasn't been modified while in transit. - Confidentiality: It might be sometimes required to ensure that the transported information is encrypted to avoid illegal use. - Availability: It is required that the communicating endpoints remain in service for authorized use even if under attack.
Top   ToC   RFC2719 - Page 20

6.2 Security Mechanisms Currently Available in IP Networks

Several security mechanisms are currently available for use in IP networks. - IPSEC ([RFC2401]): IPSEC provides security services at the IP layer that address the above mentioned requirements. It defines the two protocols AH and ESP respectively that essentially provide data integrity and data confidentiality services. The ESP mechanism can be used in two different modes: - Transport mode; - Tunnel mode. In Transport mode IPSEC protects the higher layer protocol data portion of an IP packet, while in Tunnel mode a complete IP packet is encapsulated in a secure IP tunnel. If the SIG embeds any IP addresses outside of the SA/DA in the IP header, passage through a NAT function will cause problems. The same is true for using IPsec in general, unless an IPsec ready RSIP function is used as described in RFC 2663 [NAT]. The use of IPSEC does not hamper the use of TCP or UDP as the underlying basis of SIG. If automated distribution of keys is required the IKE protocol ([RFC2409]) can be applied. - SSL, TLS ([RFC2246]): SSL and TLS also provide appropriate security services but operate on top of TCP/IP only. It is not required to define new security mechanisms in SIG, as the use of currently available mechanisms is sufficient to provide the necessary security. It is recommended that IPSEC or some equivalent method be used, especially when transporting SCN signaling over public Internet.
Top   ToC   RFC2719 - Page 21

7. Abbreviations

CAS Channel-Associated Signaling DSS1 Digital Subscriber Signaling INAP Intelligent Network Application Part ISEP IP Signaling End Point ISUP Signaling System 7 ISDN User Part MAP Mobile Application Part MG Media Gateway MGU Media Gateway Unit MGC Media Gateway Controller MGCU Media Gateway Controller Unit MTP Signaling System 7 Message Transfer Part PLMN Public Land Mobile Network PSTN Public Switched Telephone Network S7AP SS7 Application Part S7UP SS7 User Part SCCP SS7 Signaling Connection Control Part SCN Switched Circuit Network SEP Signaling End Point SG Signaling Gateway SIG Signaling Transport protocol stack SS7 Signaling System No. 7 TCAP Signaling System 7 Transaction Capabilities Part

8. Acknowledgements

The authors would like to thank K. Chong, I. Elliott, Ian Spiers, Al Varney, Goutam Shaw, C. Huitema, Mike McGrew and Greg Sidebottom for their valuable comments and suggestions.

9. References

[NAT] Srisuresh P. and M. Holdrege, "IP Network Address Translator (NAT) Terminology and Considerations", RFC 2663, August 1999. [PSS1/QSIG] ISO/IEC 11572 Ed. 2 (1997-06), "Information technology - Telecommunications and information exchange between systems - Private Integrated Services Network - Circuit mode bearer services - Inter-exchange signalling procedures and protocol" [Q.931/DSS1] ITU-T Recommendation Q.931, ISDN user-network interface layer 3 specification (5/98) [SS7] ITU-T Recommendations Q.700-775, Signalling System No. 7
Top   ToC   RFC2719 - Page 22
   [SS7 MTP]    ITU-T Recommendations Q.701-6, Message Transfer Part of
                SS7

   [T1.607]     ANSI T1.607-1998, Digital Subscriber Signaling System
                Number 1 (DSS1) - Layer 3 Signaling Specification for
                Circuit-Switched Bearer Services

   [Lin]        Lin, H., Seth, T., et al., "Performance Requirements for
                Signaling in Internet Telephony", Work in Progress.

   [Lin2]       Lin, H., et al., "Performance Requirements for TCAP
                Signaling in Internet Telephony", Work in Progress.

   [RFC2246]    Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
                RFC 2246, January 1999.

   [RFC2409]    Harkins, D. and C. Carrel, "The Internet Key Exchange
                (IKE)", RFC 2409, November 1998.

   [RFC2401]    Kent, S. and R. Atkinson, "Security Architecture for the
                Internet Protocol", RFC 2401, November 1998.

Authors' Addresses

Lyndon Ong Nortel Networks 4401 Great America Parkway Santa Clara, CA 95054, USA EMail: long@nortelnetworks.com Ian Rytina Ericsson Australia 37/360 Elizabeth Street Melbourne, Victoria 3000, Australia EMail: ian.rytina@ericsson.com Matt Holdrege Lucent Technologies 1701 Harbor Bay Parkway Alameda, CA 94502 USA EMail: holdrege@lucent.com
Top   ToC   RFC2719 - Page 23
   Lode Coene
   Siemens Atea
   Atealaan 34
   Herentals, Belgium

   EMail: lode.coene@siemens.atea.be


   Miguel-Angel Garcia
   Ericsson Espana
   Retama 7
   28005 Madrid, Spain

   EMail: Miguel.A.Garcia@ericsson.com


   Chip Sharp
   Cisco Systems
   7025 Kit Creek Road
   Res Triangle Pk, NC 27709, USA

   EMail: chsharp@cisco.com


   Imre Juhasz
   Telia
   Sweden

   EMail: imre.i.juhasz@telia.se


   Haui-an Paul Lin
   Telcordia Technologies
   Piscataway, NJ, USA

   EMail: hlin@research.telcordia.com


   HannsJuergen Schwarzbauer
   SIEMENS AG
   Hofmannstr. 51
   81359 Munich,  Germany

   EMail: HannsJuergen.Schwarzbauer@icn.siemens.de
Top   ToC   RFC2719 - Page 24
Full Copyright Statement

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.