Network Working Group C. Adams Request for Comments: 2479 Entrust Technologies Category: Informational December 1998 Independent Data Unit Protection Generic Security Service Application Program Interface (IDUP-GSS-API) Status of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (1998). All Rights Reserved. ABSTRACT The IDUP-GSS-API extends the GSS-API [RFC-2078] for applications requiring protection of a generic data unit (such as a file or message) in a way which is independent of the protection of any other data unit and independent of any concurrent contact with designated "receivers" of the data unit. Thus, it is suitable for applications such as secure electronic mail where data needs to be protected without any on-line connection with the intended recipient(s) of that data. The protection offered by IDUP includes services such as data origin authentication with data integrity, data confidentiality with data integrity, and support for non-repudiation services. Subsequent to being protected, the data unit can be transferred to the recipient(s) - or to an archive - perhaps to be processed ("unprotected") only days or years later. Throughout the remainder of this document, the "unit" of data described in the above paragraph will be referred to as an IDU (Independent Data Unit). The IDU can be of any size (the application may, if it wishes, split the IDU into pieces and have the protection computed a piece at a time, but the resulting protection token applies to the entire IDU). However, the primary characteristic of an IDU is that it represents a stand-alone unit of data whose protection is entirely independent of any other unit of data. If an application protects several IDUs and sends them all to a single receiver, the IDUs may be unprotected by that receiver in any order over any time span; no logical connection of any kind is implied by the protection process itself.
As with RFC-2078, this IDUP-GSS-API definition provides security services to callers in a generic fashion, supportable with a range of underlying mechanisms and technologies and hence allowing source- level portability of applications to different environments. This specification defines IDUP-GSS-API services and primitives at a level independent of underlying mechanism and programming language environment, and is to be complemented by other, related specifications: - documents defining specific parameter bindings for particular language environments; - documents defining token formats, protocols, and procedures to be implemented in order to realize IDUP-GSS-API services atop particular security mechanisms. TABLE OF CONTENTS 1. IDUP-GSS-API Characteristics and Concepts .................. 3 1.1. IDUP-GSS-API Constructs .................................. 5 1.1.1. Credentials ............................................ 5 1.1.2. Tokens ................................................. 5 1.1.3. Security Environment ................................... 6 1.1.4. Mechanism Types ........................................ 6 1.1.5. Naming ................................................. 6 1.1.6. Channel Bindings ....................................... 6 1.2. IDUP-GSS-API Features and Issues ......................... 6 1.2.1. Status Reporting ....................................... 6 1.2.2. Per-IDU Security Service Availability .................. 9 1.2.3. Per-IDU Replay Detection and Sequencing ................ 9 1.2.4. Quality of Protection .................................. 9 1.2.5. The Provision of Time .................................. 12 2. Interface Descriptions ..................................... 13 2.1. Credential management calls .............................. 14 2.1.1. Relationship to GSS-API ................................ 14 2.2. Environment-level calls .................................. 15 2.2.1. Relationship to GSS-API ................................ 15 2.2.2. IDUP_Establish_Env call ................................ 15 2.2.3. IDUP_Abolish_Env call .................................. 19 2.2.4. IDUP_Inquire_Env call .................................. 19 2.3. Per-IDU protection/unprotection calls .................... 20 2.3.1. Relationship to GSS-API ................................ 20 2.3.2. The "SE" Calls ......................................... 21 2.3.3. The "EV" Calls ......................................... 27 2.3.4. The "GP" Calls ......................................... 36 2.4. Special-Purpose calls .................................... 47 2.4.1. Relationship to GSS-API ................................ 47 2.4.2. IDUP_Form_Complete_PIDU ................................ 48 2.5. Support calls ............................................ 49
2.5.1. Relationship to GSS-API ................................ 49 2.5.2. IDUP_Acquire_Cred_With_Auth ............................ 49 2.5.3. IDUP_Get_Token_Details ................................. 50 2.5.4. IDUP_Get_Policy_Info ................................... 53 2.5.5. IDUP_Cancel_Multibuffer_Op ............................. 55 3. Related Activities ......................................... 55 4. Acknowledgments ............................................ 56 5. Security Considerations .................................... 56 6. References ........................................... 56 7. Author's Address ........................................... 56 Appendix A Mechanism-Independent Token Format .................. 57 Appendix B Examples of IDUP Use ................................ 58 Full Copyright Statement ....................................... 70 1. IDUP-GSS-API Characteristics and Concepts The paradigm within which IDUP-GSS-API operates is as follows. An IDUP-GSS-API caller is any application that works with IDUs, calling on IDUP-GSS-API in order to protect its IDUs with services such as data origin authentication with integrity (DOA), confidentiality with integrity (CONF), and/or support for non-repudiation (e.g., evidence generation, where "evidence" is information that either by itself, or when used in conjunction with other information, is used to establish proof about an event or action (note: the evidence itself does not necessarily prove truth or existence of something, but contributes to establish proof) -- see [ISO/IEC] for fuller discussion regarding evidence and its role in various types of non-repudiation). An IDUP-GSS-API caller passes an IDU to, and accepts a token from, its local IDUP-GSS-API implementation, transferring the resulting protected IDU (P-IDU) to a peer or to any storage medium. When a P- IDU is to be "unprotected", it is passed to an IDUP-GSS-API implementation for processing. The security services available through IDUP-GSS-API in this fashion are implementable over a range of underlying mechanisms based on secret-key and/or public-key cryptographic technologies. During the protection operation, the input IDU buffers may be modified (for example, the data may be encrypted or encoded in some way) or may remain unchanged. In any case, the result is termed a "M-IDU" (Modified IDU) in order to distinguish it from the original IDU. Depending on the desire of the calling application and the capabilities of the underlying IDUP mechanism, the output produced by the protection processing may or may not encapsulate the M-IDU. Thus, the P-IDU may be the contents of a single output parameter (if encapsulation is done) or may be the logical concatenation of an unencapsulated token parameter and a M-IDU parameter (if encapsulation is not done). In the latter case, the protecting application may choose whatever method it wishes to concatenate or
combine the unencapsulated token and the M-IDU into a P-IDU, provided the unprotecting application knows how to de-couple the P-IDU back into its component parts prior to calling the IDUP unprotection set of functions. It is expected that any output buffer returned by IDUP (i.e., P-IDU or portion thereof) is ready for immediate transmission to the intended receiver(s) by the calling application, if this is desired. In other words, an application wishing to transmit data buffers as they appear from IDUP should not be unduly restricted from doing so by the underlying mechanism. The IDUP-GSS-API separates the operation of initializing a security environment (the IDUP_Establish_Env() call) from the operations of providing per-IDU protection, for IDUs subsequently protected in conjunction with that environment. Per-IDU protection and unprotection calls provide DOA, CONF, evidence, and other services, as requested by the calling application and as supported by the underlying mechanism. The following paragraphs provide an example illustrating the dataflows involved in the use of the IDUP-GSS-API by the sender and receiver of a P-IDU in a mechanism-independent fashion. The example assumes that credential acquisition has already been completed by both sides. Furthermore, the example does not cover all possible options available in the protection/unprotection calls. The sender first calls IDUP_Establish_Env() to establish a security environment. Then, for the IDU to be protected the sender calls the appropriate protection calls (SE, EV, or GP) to perform the IDU protection. The resulting P-IDU, which may (depending on whether or not encapsulation was chosen/available) be either the token itself or the logical concatenation of the token and the M-IDU, is now ready to be sent to the target. The sender then calls IDUP_Abolish_Env() to flush all environment- specific information. The receiver first calls IDUP_Establish_Env() to establish a security environment in order to unprotect the P-IDU. Then, for the received P-IDU the receiver calls the appropriate unprotection calls (SE, EV, or GP (known a priori, or possibly determined through the use of the IDUP_Get_token_details call)) to perform the P-IDU unprotection. The receiver then calls IDUP_Abolish_Env() to flush all environment-specific information. It is important to note that absolutely no synchronization is implied or expected between the data buffer size used by the sender as input to the protection calls, the data buffer size used by the receiver as
input to the unprotection calls, and the block sizes required by the underlying protection algorithms (integrity and confidentiality). All these sizes are meant to be independent; furthermore, the data buffer sizes used for the protection and unprotection calls are purely a function of the local environment where the calls are made. The IDUP-GSS-API design assumes and addresses several basic goals, including the following. Mechanism independence: The IDUP-GSS-API defines an interface to cryptographically implemented security services at a generic level which is independent of particular underlying mechanisms. For example, IDUP-GSS-API-provided services can be implemented by secret-key technologies or public-key approaches. Protocol environment independence: The IDUP-GSS-API is independent of the communications protocol suites which may be used to transfer P-IDUs, permitting use in a broad range of protocol environments. Protocol association independence: The IDUP-GSS-API's security environment construct has nothing whatever to do with communications protocol association constructs, so that IDUP-GSS- API services can be invoked by applications, wholly independent of protocol associations. Suitability for a range of implementation placements: IDUP-GSS-API clients are not constrained to reside within any Trusted Computing Base (TCB) perimeter defined on a system where the IDUP-GSS-API is implemented; security services are specified in a manner suitable for both intra-TCB and extra-TCB callers. 1.1. IDUP-GSS-API Constructs This section describes the basic elements comprising the IDUP-GSS- API. 1.1.1. Credentials Credentials in IDUP-GSS-API are to be understood and used as described in GSS-API [RFC-2078]. 1.1.2. Tokens Tokens in IDUP-GSS-API are to be understood and used as described in GSS-API [RFC-2078] with the exception that there are no context-level tokens generated by IDUP-GSS-API. The IDUP-GSS-API token may (depending on the underlying mechanism) encapsulate the M-IDU or may
be logically concatenated with the M-IDU prior to transfer to a target; furthermore, for some evidence services the token may be sent independently of any other data transfer. 1.1.3. Security Environment The "security environment" in IDUP-GSS-API is entirely different from the concept of security contexts used in GSS-API [RFC-2078]. Here, a security environment exists within a calling application (that is, it is purely local to the caller) for the purpose of protecting or unprotecting one or more IDUs using a particular caller credential or set of credentials. In GSS-API, on the other hand, a security context exists between peers (the initiator and the target) for the purpose of protecting, in real time, the data that is exchanged between them. Although they are different concepts, the env_handle in IDUP-GSS-API is similar to the context_handle in GSS-API in that it is a convenient way of tying together the entire process of protecting or unprotecting one or more IDUs using a particular underlying mechanism. As with the GSS-API security contexts, a caller can initiate and maintain multiple environments using the same or different credentials. 1.1.4. Mechanism Types Mechanism types in IDUP-GSS-API are to be understood and used as described in GSS-API [RFC-2078]. 1.1.5. Naming Naming in IDUP-GSS-API is to be understood and used as described in GSS-API [RFC-2078]. 1.1.6. Channel Bindings The concept of channel bindings discussed in GSS-API [RFC-2078] is not relevant to the IDUP-GSS-API. 1.2. IDUP-GSS-API Features and Issues This section describes aspects of IDUP-GSS-API operations and of the security services which the IDUP-GSS-API provides. It also provides commentary on design issues. 1.2.1. Status Reporting Status reporting in IDUP-GSS-API is to be understood and used as described in GSS-API [RFC-2078], with the addition of a number of IDUP-specific status codes. Descriptions of the major_status codes
used in IDUP are provided in Table 1. Codes that are informatory (i.e., that do not cause the requested operation to fail) are indicated with the symbol "(I)". As with GSS-API, minor_status codes, which provide more detailed status information than major_status codes, and which may include status codes specific to the underlying security mechanism, are not specified in this document. Table 1: IDUP-GSS-API Major Status Codes GSS_S_BAD_MECH indicates that a mech_type unsupported by the IDUP_GSS-API implementation was requested, causing the environment establishment operation to fail. GSS_S_BAD_QOP indicates that the provided qop_alg value is not recognized or supported for the environment. GSS_S_BAD_MIC indicates that the received P-IDU contains an incorrect integrity field (e.g., signature or MAC) for the data. GSS_S_COMPLETE indicates that the requested operation was successful. GSS_S_CREDENTIALS_EXPIRED indicates that the credentials associated with this operation have expired, so that the requested operation cannot be performed. GSS_S_DEFECTIVE_CREDENTIAL indicates that consistency checks performed on the credential structure referenced by claimant_cred_handle failed, preventing further processing from being performed using that credential structure. GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed on the received P-IDU failed, preventing further processing from being performed. GSS_S_FAILURE indicates that the requested operation could not be accomplished for reasons unspecified at the IDUP-GSS-API level, and that no interface-defined recovery action is available. GSS_S_NO_CRED indicates that no environment was established, either because the input cred_handle was invalid or because the caller lacks authorization to access the referenced credentials. IDUP_S_BAD_DOA_KEY indicates that the key used to provide IDU data origin auth. / integ. has either expired or been revoked.
IDUP_S_BAD_ENC_IDU indicates that decryption of the received IDU cannot be completed because the encrypted IDU was invalid/defective (e.g., the final block was short or had incorrect padding). IDUP_S_BAD_KE_KEY indicates that the key used to establish a key for confidentiality purposes between originator and target has either expired or been revoked. IDUP_S_BAD_TARG_INFO indicates that the full set of supplied information regarding the target(s) is invalid or is insufficient for the protection of an IDU, so P-IDU cannot be created. IDUP_S_DEFECTIVE_VERIF indicates that consistency checks performed on Service_Verification_Info failed, preventing further processing from being performed with that parameter. IDUP_S_ENCAPSULATION_UNAVAIL (I) indicates that the underlying mechanism does not support encapsulation of the M-IDU into the token. IDUP_S_INAPPROPRIATE_CRED indicates that the credentials supplied do not contain the information necessary for P-IDU unprotection. IDUP_S_INCOMPLETE (I) indicates that the unprotection of the P-IDU is not yet complete (i.e., a determination cannot yet be made on the validity of the P-IDU). The application should call IDUP_Form_Complete_PIDU and then should call this function again with the complete P-IDU. IDUP_S_INCONSISTENT_PARAMS indicates that the supplied parameters are inconsistent (e.g., only one or the other of two parameters may be supplied, but both have been input). IDUP_S_MORE_OUTBUFFER_NEEDED (I) indicates that the output buffer supplied is too small to hold the generated data. The application should continue calling this routine (until GSS_S_COMPLETE is returned) in order to get all remaining output data. IDUP_S_MORE_PIDU_NEEDED (I) indicates that not enough of the P-IDU has been input yet for the completion of StartUnprotect. The application should call this routine again with another buffer of P-IDU in partial(initial)_pidu_buffer. IDUP_S_NO_ENV indicates that no valid environment was recognized for the env_handle provided.
IDUP_S_NO_MATCH indicates that Service_Verification_Info (or evidence_check) and the P-IDU to be verified do not match. IDUP_S_REQ_TIME_SERVICE_UNAVAIL indicates that the time service requested (TTIME or UTIME) is not available in the environment. IDUP_S_SERVICE_UNAVAIL indicates that the underlying mechanism does not support the service requested. IDUP_S_SERV_VERIF_INFO_NEEDED (I) indicates that the Service_Verification_Info parameter bundle must be input in order for service verification to proceed. The output parameter service_verification_info_id contains an identifier which may be used by the calling application to locate the necessary information. IDUP_S_UNKNOWN_OPER_ID indicates that the input prot_oper_id value is not recognized or supported in the underlying mechanism. 1.2.2. Per-IDU Security Service Availability Per-IDU security service availability in IDUP-GSS-API is to be understood and used as described in GSS-API [RFC-2078], with the exception that combinations of services requested by the calling application and supported by the underlying mechanism may be applied simultaneously to any IDU (true for both the SE and the EV calls, but true in the fullest sense for the GP calls). GSS-API callers desiring per-message security services should check the relevant service OBJECT IDs at environment establishment time to ensure that what is available in the established environment is suitable for their security needs. 1.2.3. Per-IDU Replay Detection and Sequencing The concept of per-IDU replay detection and sequencing discussed in GSS-API [RFC-2078] is not relevant to the IDUP-GSS-API. 1.2.4. Quality of Protection The concept of QOP control in IDUP-GSS-API is to be understood essentially as described in GSS-API [RFC-2078]. However, the actual description and use of the QOP parameter is given as follows. The qop_algs parameter for IDUP is defined to be a 32-bit unsigned integer with the following bit-field assignments:
31 (MSB) (LSB) 0 ---------------------------------------------- | U(19) | TS(5) | IA(4) | MA(4) | ---------------------------------------------- where U is a 19-bit Unspecified field (available for future use/expansion) -- must be set to zero; TS is a 5-bit Type Specifier (a semantic qualifier whose value specifies the type of algorithm which may be used to protect the corresponding IDU -- see below for details); IA is a 4-bit field enumerating Implementation-specific Algorithms; and MA is a 4-bit field enumerating Mechanism-defined Algorithms. The interpretation of the qop_algs parameter is as follows. The MA field is examined first. If it is non-zero then the algorithm used to protect the IDU is the mechanism-specified algorithm corresponding to that integer value. If MA is zero then IA is examined. If this field value is non-zero then the algorithm used to protect the IDU is the implementation- specified algorithm corresponding to that integer value. Note that use of this field may hinder portability since a particular value may specify one algorithm in one implementation of the mechanism and may not be supported or may specify a completely different algorithm in another implementation of the mechanism. Finally, if both MA and IA are zero then TS is examined. A value of zero for TS specifies the default algorithm for the established mechanism. A non-zero value for TS corresponds to a particular algorithm qualifier and selects any algorithm from the mechanism specification which satisfies that qualifier (which actual algorithm is selected is an implementation choice; the calling application need not be aware of the choice made). The following TS values (i.e., algorithm qualifiers) are specified; other values may be added in the future.
When qop_algs is used to select a confidentiality algorithm: 00000 (0) = default confidentiality algorithm 00001 (1) = IDUP_SYM_ALG_STRENGTH_STRONG 00010 (2) = IDUP_SYM_ALG_STRENGTH_MEDIUM 00011 (3) = IDUP_SYM_ALG_STRENGTH_WEAK 11111 (31) = IDUP_NO_CONFIDENTIALITY When qop_algs is used to select a DOA/integrity algorithm: 00000 (0) = default integrity algorithm 00001 (1) = IDUP_INT_ALG_DIG_SIGNATURE (integrity provided through a digital signature) 00010 (2) = IDUP_INT_ALG_NON_DIG_SIGNATURE (integrity without a dig. sig. (e.g., with a MAC)) 11111 (31) = IDUP_NO_INTEGRITY Clearly, qualifiers such as strong, medium, and weak are debatable and likely to change with time, but for the purposes of this version of the specification we define these terms as follows. A confidentiality algorithm is "weak" if the effective key length of the cipher is 40 bits or less; it is "medium-strength" if the effective key length is strictly between 40 and 80 bits; and it is "strong" if the effective key length is 80 bits or greater. ("Effective key length" describes the computational effort required to break a cipher using the best-known cryptanalytic attack against that cipher.) A five-bit TS field allows up to 30 qualifiers for each of confidentiality and integrity (since "0" is reserved for "default" and "31" is reserved for "none", as shown above). This document specifies three for confidentiality and two for integrity, leaving a lot of room for future specification. Suggestions of qualifiers such as "fast", "medium-speed", and "slow" have been made, but such terms are difficult to quantify (and in any case are platform- and processor-dependent), and so have been left out of this initial specification. The intention is that the TS terms be quantitative, environment-independent qualifiers of algorithms, as much as this is possible. Use of the qop_algs parameter as defined above is ultimately meant to be as follows. - TS values are specified at the IDUP-GSS-API level and are therefore portable across mechanisms. Applications which know nothing about algorithms are still able to choose "quality" of protection for their message tokens.
- MA values are specified at the mechanism level and are therefore portable across implementations of a mechanism. - IA values are specified at the implementation level (in user documentation, for example) and are therefore typically non- portable. An application which is aware of its own mechanism implementation and the mechanism implementation of its intended P-IDU recipient, however, is free to use these values since they will be perfectly valid and meaningful for protecting IDUs between those entities. The receiver of a P-IDU must pass back to its calling application (in IDUP_Start_Unprotect()) a qop_algs parameter with all relevant fields set. For example, if triple-DES has been specified by a mechanism as algorithm 8, then a receiver of a triple-DES-protected P-IDU must pass to its application (TS=1, IA=0, MA=8). In this way, the application is free to read whatever part of the qop_algs parameter it understands (TS or IA/MA). 1.2.5. The Provision of Time IDUP mechanisms should make provision in their protocols for the carrying of time information from originator to target(s). That is, a target (a legitimate recipient) should get some indication during unprotection regarding the time at which the protection operation took place. This is particularly important if the mechanism offers non-repudiation services because in some cases evidence verification may only be achievable if the time at which the evidence was generated is known. Depending upon the platform and resources available to the implementation, an IDUP environment may have access to a source of trusted (secure) time, untrusted (local) time, both kinds of time, or no time. OBJECT IDs indicating such availability are returned by the IDUP_Establish_Env() call. When starting a protection operation, an application may specify which time services it wishes to have applied to the IDU. Similarly, for unprotection, an application may specify which kind of time (if any) to consult when the validity of the P-IDU is to be established. Specifying both kinds of time is interpreted to mean that the calling application does not care which kind of time is used. The IDUP calls which use a time parameter specify the type of that parameter to be INTEGER. This INTEGER is defined in all cases to be the number of seconds which have elapsed since midnight, January 1, 1970, coordinated universal time.
2. Interface Descriptions This section describes the IDUP-GSS-API's operational interface, dividing the set of calls offered into five groups. Credential management calls are related to the acquisition and release of credentials by API callers. Environment-level calls are related to the management of the security environment by an API caller. Per-IDU calls are related to the protection or unprotection of individual IDUs in established security environments. Special-purpose calls deal with unusual or auxiliary evidence generation/verification requirements. Support calls provide extra functions useful to IDUP- GSS-API callers. Table 2 groups and summarizes the calls in tabular fashion. Table 2: IDUP-GSS-API Calls CREDENTIAL MANAGEMENT (see the calls given in Section 2.1 of GSS-API [RFC-2078]) ENVIRONMENT-LEVEL CALLS IDUP_Establish_Env IDUP_Abolish_Env IDUP_Inquire_Env PER-IDU CALLS SE (SIGN,ENCRYPT) CALLS IDUP_SE_SingleBuffer_Protect IDUP_SE_SingleBuffer_Unprotect IDUP_SE_MultiBuffer_StartProtect IDUP_SE_MultiBuffer_EndProtect IDUP_SE_MultiBuffer_StartUnprotect IDUP_SE_MultiBuffer_EndUnprotect IDUP_SE_Process_Buffer EV (EVIDENCE) CALLS IDUP_EV_SingleBuffer_Generate IDUP_EV_SingleBuffer_Verify IDUP_EV_MultiBuffer_StartGenerate IDUP_EV_MultiBuffer_EndGenerate IDUP_EV_MultiBuffer_StartVerify IDUP_EV_MultiBuffer_EndVerify IDUP_EV_Process_Buffer GP (GENERAL PROTECTION) CALLS IDUP_Start_Protect IDUP_Protect IDUP_End_Protect IDUP_Start_Unprotect IDUP_Unprotect IDUP_End_Unprotect
SPECIAL-PURPOSE CALLS (might not be supported by all mechanisms) IDUP_Form_Complete_PIDU SUPPORT CALLS IDUP_Acquire_cred_with_auth IDUP_Get_Token_Details IDUP_Get_Policy_Info IDUP_Cancel_Multibuffer_Op (see also the calls given in Section 2.4 of GSS-API [RFC-2078]) In terms of conformance to this specification, IDUP-GSS-API implementations must support the credential management calls, the environment-level calls, some subset of the per-IDU calls, and the support calls (except where explicitly stated otherwise in Section 2.5). The subset of per-IDU calls supported will depend upon the underlying mechanisms supported and will typically be the SE calls, or the EV calls, or both. As stated in Section 2.3.2.1, implementations are encouraged to support the more powerful GP calls to anticipate the future needs of applications developers, but this is not required for conformance. 2.1. Credential management calls 2.1.1. Relationship to GSS-API Credential management in IDUP-GSS-API is to be understood and used as described in GSS-API [RFC-2078]. The calls given in Section 2.1 of GSS-API (including all associated parameters) are unchanged, although the interpretation of the cred_usage parameter in the GSS-API calls for IDUP purposes is as follows. ENCRYPT_ONLY 8 DECRYPT_ONLY 16 SIGN_ONLY 32 VERIFY_ONLY 64 The values above may be logically OR'ed together in any desired combination to restrict credential usage (where OR'ing all values results in NO_RESTRICTION). Future possible values for this parameter are for further study. The call IDUP_Acquire_cred_with_auth has been added as a support call in this specification to permit authenticated credential acquirement; see Section 2.5.2 for details.
2.2. Environment-level calls This group of calls is devoted to the establishment and management of an environment for the purpose of IDU protection and unprotection. Before protecting or unprotecting any IDU, an application must call IDUP_Establish_Env() to initialize environment information and select the underlying IDUP-GSS mechanism to be used. A series of protection or unprotection calls is made to process each IDU, the protection calls resulting in a P-IDU for each. Finally, IDUP_Abolish_Env() is called to flush all environment information. Semantically, acquiring credentials and establishing an environment is (in many cases) analogous to logging in to a system -- it authenticates a local user to the system and gives that user access to a set of operations which can be performed. 2.2.1. Relationship to GSS-API The set of calls described in this section is used in place of the calls described in Section 2.2 of GSS-API [RFC-2078], since those calls are specific to a session-oriented environment. 2.2.2. IDUP_Establish_Env call Inputs: o claimant_cred_handle CREDENTIAL HANDLE, -- NULL parameter specifies "use default" o req_mech_type OBJECT IDENTIFIER, -- NULL parameter specifies "use default" o req_environmentPolicies EnvironmentPolicies, -- NULL parameter specifies "use default" o req_services SET OF OBJECT IDENTIFIER, -- GSS_C_NO_OID_SET requests full set of services available -- for req_mech_type Outputs: o major_status INTEGER, o minor_status INTEGER, o env_handle ENVIRONMENT HANDLE, o actual_mech_type OBJECT IDENTIFIER, -- actual mechanism always indicated, never NULL o actual_environmentPolicies EnvironmentPolicies, -- actual values always indicated, never NULL o ret_services SET OF OBJECT IDENTIFIER, Return major_status codes: o GSS_S_COMPLETE -- environment-level information was successfully initialized,
-- and IDU / P-IDU processing can begin. o GSS_S_DEFECTIVE_CREDENTIAL o GSS_S_NO_CRED o GSS_S_CREDENTIALS_EXPIRED -- the credentials provided through claimant_cred_handle are -- no longer valid, so environment cannot be established. o GSS_S_BAD_MECH o GSS_S_FAILURE The following structures are defined to facilitate environment policy input and output: EnvironmentPolicies ::= SEQUENCE { confPolicy [0] PolicyAndTime OPTIONAL, -- NULL parameter (on input) specifies "use default" integPolicy [1] PolicyAndTime OPTIONAL, -- NULL parameter (on input) specifies "use default" evidencePolicy [2] PolicyAndTime OPTIONAL } -- NULL parameter (on input) specifies "use default" PolicyAndTime ::= SEQUENCE { policy OBJECT IDENTIFIER, -- this environment-level policy identifier is separate from -- the policy provisions connected with credentials, if they exist time INTEGER -- on input: the policy rules available at the specified time -- on output: the time at which the policy rules came into effect -- (defined to be the number of seconds elapsed since midnight, -- January 1, 1970, coordinated universal time) endTime INTEGER OPTIONAL } -- on input: unused -- on output: the expiration time of the given policy rules This routine is used by an application which protects or unprotects IDUs. Using information in the credentials structure referenced by claimant_cred_handle, IDUP_Establish_Env() initializes the data structures required to protect or unprotect IDUs. The claimant_cred_handle, if non-NULL, must correspond to a valid credentials structure. This routine returns an env_handle for all future references to this environment; when protection, unprotection, or IDUP_Abolish_Env() calls are made, this handle value will be used as the input env_handle argument. It is the caller's responsibility to establish a communications path to the intended recipients of the P-IDU, and to transmit the P-IDU to those recipients over that path. This may occur subsequent to the IDUP_Abolish_Env() call.
The req_services parameter may be used by the calling application to request that data origin authentication with integrity, confidentiality with integrity, evidence generation, and/or evidence verification services be available in the established environment. Requests can also be made for "trusted" or "untrusted" time services. Requesting evidence generation or verification indicates that the calling application may wish to generate or verify evidence information for non-repudiation purposes (note: an IDU protector may request that a flag be inserted into a P-IDU asking a recipient to provide an evidence of the type "non-repudiation of delivery"; however, the IDUP-GSS-API cannot by itself guarantee that the evidence will be sent because there is no way to force a target to send an evidence_token back to the IDU protector). Not all features will be available in all underlying mech_types; the returned value of ret_services indicates, as a function of mech_type processing capabilities and the initiator-provided input OBJECT IDs, the set of features which will be available in the environment. The value of this parameter is undefined unless the routine's major_status indicates COMPLETE. Failure to provide the precise set of services desired by the caller does not cause environment establishment to fail; it is the caller's choice to abolish the environment if the service set provided is unsuitable for the caller's use. The returned mech_type value indicates the specific mechanism employed in the environment and will never indicate the value for "default". The following OBJECT IDs are defined for protection and unprotection services (the OBJECT ID iso.org.dod.internet.security.services, 1.3.6.1.5.7, has been assigned by IANA, and some of the security services under that node are assigned as shown below). It is recognized that this list may grow over time. PER_CONF = { 1.3.6.1.5.7.1.1 } -- perform data confidentiality (i.e., encrypt data) PER_CONF_FULL = { 1.3.6.1.5.7.1.3 } -- perform full confidentiality (i.e., encrypt data and sig) -- (may be used only when PER_DOA is requested simultaneously) PER_DOA = { 1.3.6.1.5.7.3.1 } -- perform data origin authentication with data integrity PER_DOA_CIPH = { 1.3.6.1.5.7.3.3 } -- perform DOA with DI over ciphertext (rather than plaintext) -- (may be used only when PER_CONF is requested simultaneously) PER_POO = { 1.3.6.1.5.7.4.1 } -- perform (i.e., create) non-repudiable "proof of origin" PER_POD = { 1.3.6.1.5.7.4.3 } -- perform (i.e., create) non-repudiable "proof of delivery"
REC_CONF = { 1.3.6.1.5.7.1.2 } -- receive data confidentiality (i.e., decrypt data) REC_CONF_FULL = { 1.3.6.1.5.7.1.4 } -- receive full confidentiality (i.e., decrypt data and sig) -- (may be used only when REC_DOA is received simultaneously) REC_DOA = { 1.3.6.1.5.7.3.2 } -- receive / verify DOA with data integrity REC_DOA_CIPH = { 1.3.6.1.5.7.3.4 } -- verify DOA with DI over ciphertext (rather than plaintext) -- (may be used only when PER_CONF is received simultaneously) REC_POO = { 1.3.6.1.5.7.4.2 } -- receive / verify "proof of origin" REC_POD = { 1.3.6.1.5.7.4.4 } -- receive / verify "proof of delivery" TTIME = { 1.3.6.1.5.7.7.1 } -- trusted time availability UTIME = { 1.3.6.1.5.7.7.2 } -- untrusted time availability The PER_CONF return value (in the ret_services paramater) indicates whether the environment supports confidentiality services, and so informs the caller whether or not a request for encryption can be honored. In similar fashion, the PER_DOA return value indicates whether DOA services are available in the established environment, and the PER_POO and PER_POD return values indicate whether evidence generation services are available. The TTIME and UTIME values indicate whether trusted time and untrusted time are available for protection / unprotection services. Note that, unlike a GSS "context", an IDUP environment does not have an explicit lifetime associated with it. Instead, it relies on the lifetime of the calling entity's credential (set by the caller in the GSS_Acquire_cred() call). When the credential expires (or is explicitly deleted in any other way), no new operations are allowed in the IDUP environment (although operations which have begun, such as the Protection set of calls, can be taken to completion).
2.2.3. IDUP_Abolish_Env call Input: o env_handle ENVIRONMENT HANDLE Outputs: o major_status INTEGER, o minor_status INTEGER, Return major_status codes: o GSS_S_COMPLETE -- the relevant environment-specific information was flushed. o IDUP_S_NO_ENV o GSS_S_FAILURE This call is made to flush environment-specific information. (Once an environment is established, cached credential and environment-related info. is expected to be retained until an IDUP_Abolish_Env() call is made or until the cred. lifetime expires.) Attempts to perform IDU processing on a deleted environment will result in error returns. 2.2.4. IDUP_Inquire_Env call Input: o env_handle ENVIRONMENT HANDLE, Outputs: o major_status INTEGER, o minor_status INTEGER, o mech_type OBJECT IDENTIFIER, -- the mechanism supporting this environment o environmentPolicies EnvironmentPolicies, -- the environment policies in effect o ret_services SET OF OBJECT IDENTIFIER, Return major_status codes: o GSS_S_COMPLETE -- referenced environment is valid and mech_type and other return -- values describe the characteristics of the environment. o GSS_S_CREDENTIALS_EXPIRED o IDUP_S_NO_ENV o GSS_S_FAILURE This routine provides environment-related information to the caller.